Homework 3- Due Sept. 24th.
Do problems 2.1.8, 2.1.14, 2.1.15, 2.2.1, 2.2.4, 2.2.8 from Durrett
and the following:

1. Let X be an exponential r.v. with parameter λ, i.e., $F_{X}(x)=\left(1-e^{-\lambda x}\right) 1_{[0, \infty)}(x)$. Define the random variables

$$
\begin{gathered}
Y=\lfloor X\rfloor:=\sup \{n \in \mathbb{Z}: n \leq x\} \text { (the integer part of } \mathrm{X} \text {) }, \\
Z=X-\lfloor X\rfloor \text { (the fractional part of } \mathrm{X} \text {). }
\end{gathered}
$$

(a) Compute the distributions of Y and of Z (for Y, its more natural to give the pmf: $\mathbb{P}(Y=n), n=0,1,2, \ldots$; for Z compute either the distribution function or density function).
(b) Show that Y and Z are independent.
2. Prove that if X is a random variable that is independent of itself, then X is a.s. constant.

