Homework 7- Due Oct. 29.
Do problems 3.3.13, 3.3.16, 3.4.4, 3.4,6, 3.4.12 from Durrett, and the following

1. Let $f(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$ be the density function of the standard normal distribution, and let $\Phi(x)=\int_{\infty}^{x} f(u) d u$ be its C.D.F. Prove the inequalities

$$
\frac{1}{x+x^{-1}} f(x) \leq 1-\Phi(x) \leq \frac{1}{x} f(x), \text { for }(x>0)
$$

Hint: To prove the upper bound, use the fact that for $t>x$ we have $e^{-t^{2} / 2} \leq(t / x) e^{-t^{2} / 2}$. For the lower bound, use the identity

$$
\frac{d}{d x}\left(\frac{e^{-x^{2} / 2}}{x}\right)=-\left(1+\frac{1}{x^{2}}\right) e^{-x^{2} / 2}
$$

to compute $\int_{x}^{\infty}\left(1+u^{-2}\right) e^{-u^{2} / 2} d u$, which can then be bounded by $\left(1+x^{-2}\right) \int_{x}^{\infty} e^{-u^{2} / 2} d u$. Optional- Can you find a better bound?

