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The numerical range of a bounded linear operator T on a Hilbert

space H is defined to be the subsetW(T) = {〈Tv, v〉 : v ∈ H, ‖v‖ =
1} of the complex plane. For operators on a finite-dimensional

Hilbert space, it is known that if W(T) is a circular disk then the

center of the disk must be a multiple eigenvalue of T . In particular,

if T has minimal polynomial z3 − 1, thenW(T) cannot be a circular

disk. In this paper we show that this is no longer the case when H is

infinite dimensional. The collection of 3×3matrices with threefold

symmetry about the origin are also classified.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

If H is a complex Hilbert space and T is a bounded linear operator on H, the numerical range of T is

the subsetW(T) of the complex plane defined by

W(T) = {〈Tv, v〉 | v ∈ H, ‖v‖ = 1}.
Since the quadratic forms in the definition of W(T) arise naturally in, or are the primary object of

study in, so many problems involving the operator T , properties of the numerical range have been

extensively developed. Some standard references about the numerical range include [4] and Chapter

I of [6]. The numerical radius of T , written asw(T), is the supremum of the moduli of values inW(T):

w(T) = sup{|z| : z ∈ W(T)}.
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Of course, w(T) � ‖T‖. For finite-dimensional H, the numerical range W(T) is always closed, so

that sup in the definition of w(T) can be replaced by max. This is no longer the case in the infinite

dimensional setting.

The most famous result about the numerical range is the Toeplitz–Hausdorff theorem, going back

to [5,18], according to whichW(T) is always convex. If T acts on a 2-dimensional space, thenW(T) is
an ellipse with the foci at the eigenvalues of T . For a more detailed description and the proof of this

result, as well as of the Toeplitz–Hausdorff theorem, see e.g. [6].

As it turns out, the elliptical shape of the numerical range is actually determined not by the di-

mension of the underlying space but by the fact that the operator is annihilated by a second degree

polynomial. Such operators are called quadratic, and the respective result was established by Tso and

Wu [19] (see also [15], where this result was extended to show that several types of generalized nu-

merical ranges of quadratic operators are also ellipses, open or closed). For our purposes, the following

particular case is relevant.

Theorem 1. If T is an operator on a Hilbert space H and T2 = I with T �= ±I, then W(T) is an elliptical

disk (open or closed) with foci at ±1 or the closed interval [−1, 1]. In particular, it is not a circular disk.

In [2], the numerical ranges of composition operators induced by disk automorphisms were classi-

fied for many types of automorphisms; in many cases the numerical ranges are disks centered at the

origin. In agreement with Theorem 1, this never is the case for elliptic automorphisms with rotation

parameter ω satisfying ω2 = 1.

The authors of [2] conjectured that for an automorphic composition operator satisfying Tn = I for

any natural n, W(T) is not a disk. Note that for T acting on a finite dimensional space, W(T) can be a

circular disk only if the center of this disk is anmultiple eigenvalue of T (see, e.g. [11, Corollary 4.4], and

also [20] for stronger more recent results and historical comments). So, operators satisfying Tn = I

cannot have circular numerical ranges in the finite dimensional setting. However, in Theorem 14, we

construct an operator T on an infinite-dimensional Hilbert space where T3 = I and W(T) is a disk.

This does not answer the original question about composition operators, but it suggests techniques

specific to composition operators may be required for n � 3.

Some basic definitions used throughout the paper follow.

Definition 2. If T is any operator on a Hilbert space that satisfies q(T) = 0 for a non-zero polynomial

q, then T is algebraic.

Every finite matrix, but not every operator on an infinite dimensional Hilbert space, is algebraic. If

T is algebraic, then the unique monic polynomial q of lowest degree for which q(T) = 0 is called the

minimal polynomial of T .

The support function of a convex set is used in the analysis that follows, so its definition and

properties will be briefly developed.

Definition 3. If E is a convex subset of the complex plane, then the support function pE is defined for

all real θ by:

pE(θ) = sup
{
�e−iθ z | z ∈ E

}
.

The value pE(θ) is the maximum scalar projection of the set E in the direction of θ . Assume E

contains the origin. Clearly the definition of Ewill then imply pE(θ) � 0 for all θ . If a line L is extended
from the origin in the direction of the vector (cos(θ), sin(θ)) then pE(θ)will be the distance from the

origin to the point on ∂E where a line L′ perpendicular to L is tangent to the boundary of E.

The support function completely determines the closure of E; that is, if pE(θ) = pF(θ) for convex
sets E and F and all real θ , then E = F .

When the set E is an ellipse, the support function has a simple formula. This result appears inmany

standard references about convex sets as well as in [2,3]:
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Proposition 4. If a, b > 0 and E is the elliptical disk determined by x2

a2
+ y2

b2
� 1, then

pE(θ) =
√
a2 cos2(θ) + b2 sin2(θ),

for all real θ .

In the remaining discussion, E = W(T) for an operator T on a Hilbert space. In this case we will

abbreviate pW(T) to simply pT .

In Section 2, a support function for 3× 3 matrices with minimal polynomial z3 − 1 is derived; it is

used in Section 3 to produce an operator T on an infinite dimensional Hilbert space that satisfies T3 = I

and also has a disk as its numerical range. Section 4 provides necessary and sufficient conditions for a

3 × 3 matrix to have threefold symmetry about the origin.

2. Three by three matrices

The numerical ranges of 3 × 3 matrices were classified by Kippenhahn [10]. The numerical range

of a 3× 3matrixM is either (1) the convex hull of its eigenvalues, (2) the convex hull of an ellipse and

a point (which reduces to an ellipse if the point is inside the ellipse), (3) a shape with a flat portion on

the boundary, and (4) an ovular shape. This classification is in terms of the associated curve of M. The

latter is defined by the equation LM(u, v,w) = 0 in homogenous line coordinates, where

LM(u, v,w) = det(uH + vK + wI), (1)

and H and K are the real and imaginary Hermitian parts of M, respectively.

An alternative classification in terms of the entries ofM and its standard canonical formswas given

in [9], and further analysis about 3×3matrices with flat portions was provided in [14]. Since amatrix

satisfying M3 = I (and satisfying no lower degree polynomial equation) must have all three distinct

cube roots of unity as its eigenvalues, results in [9] or [11] show the numerical range of such a matrix

is not a disk. A natural question is whether having a minimal polynomial of z3 − 1 prevents any of

the other types of numerical ranges in a 3 × 3 matrix. The classification results in [9] and [14] can

also be used to show that any of the four numerical range possibilities above can occur for a matrix

M satisfying M3 = I; the elliptical numerical ranges just cannot reduce to disks. Specific examples of

matrices that have each possible type of numerical range follow.

Let ω1 = ei
2π
3 and ω2 = ei

4π
3 , so all of the matrices in the four examples below have minimal

polynomial z3 − 1.

Example 5. IfM is a diagonal matrix with diagonal entries 1, ω1, ω2, thenM3 = I and the numerical

range of M is the triangle with vertices at 1, ω1, and ω2. Clearly any normal matrix with eigenvalues

1, ω1, ω2 will have the same numerical range.

Example 6. If

M =

⎛⎜⎜⎜⎝
1 x 0

0 ω1 0

0 0 ω2

⎞⎟⎟⎟⎠ ,

and |x| � 3, then W(M) is an ellipse. If 0 < |x| < 3, then W(M) is a cone-shaped convex hull of an

ellipse and a point external to the ellipse.

The facts about the example above follow directly from the conditions in Theorems 2.2 and 2.4 of

[9].
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Example 7. If

M =

⎛⎜⎜⎜⎝
1 2 2

0 ω1 1

0 0 ω2

⎞⎟⎟⎟⎠ ,

then W(M) has a flat portion on its boundary.

The facts in Example 7 follow from the conditions in Theorem 1.2 of [14].

Example 8. If x and y are both nonzero complex numbers and

M =

⎛⎜⎜⎜⎝
1 x y

0 ω1 0

0 0 ω2

⎞⎟⎟⎟⎠ ,

then W(M) is ovular.

SinceM inExample8 isnotnormal, thenumerical rangeofM is not the convexhull of its eigenvalues.

The same theorems from [9] and [14] that were mentioned above show that W(M) is not the convex

hull of a point and an ellipse and has no flat part. The only remaining possibility is thatW(M) is ovular.
Our analysis of 3 × 3 matrices repeatedly uses the same functions of the entries of the matrix, so

we define these quantities here. First, note that by Schur’s Lemma, any 3 × 3 matrix with minimal

polynomial z3 − 1 is unitarily equivalent to an upper triangular matrix of the form below. Since

numerical ranges are preserved under unitary equivalence, we can assumeM equals this matrix:

M =

⎛⎜⎜⎜⎝
1 a b

0 ω1 c

0 0 ω2

⎞⎟⎟⎟⎠ , (2)

where ω1 = ei
2π
3 , ω2 = ei

4π
3 and a, b, and c are arbitrary complex numbers.

Let

Hθ = �(e−iθM) =

⎛⎜⎜⎜⎝
cos(θ) e−iθ a

2
e−iθ b

2

eiθ a
2

cos
(
θ − 2π

3

)
e−iθ c

2

eiθ b
2

eiθ c
2

cos
(
θ − 4π

3

)
⎞⎟⎟⎟⎠ .

The support function ofM is computed in terms of Hθ :

pM(θ) = sup
{
�(e−iθ z) | z ∈ W(M)

}
= sup

{
�(e−iθ 〈Mv, v〉) | v ∈ C

3, ‖v‖ = 1
}

= sup
{
〈Hθv, v〉 | v ∈ C

3, ‖v‖ = 1
}

and sinceHθ is hermitian, the last supremum is themaximumeigenvalue ofHθ . That is, for every value

of θ , the maximum root of the characteristic polynomial of Hθ is pM(θ).
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The characteristic polynomial of Hθ as a function of x is

qθ (x) = −x3 + sx + t(θ) (3)

where

s = |a|2 + |b|2 + |c|2 + 3

4
(4)

and t(θ) = det Hθ . Directly computing this determinant leads to

t(θ) = cos(θ) cos

(
θ − 2π

3

)
cos

(
θ − 4π

3

)
− |a|2

4
cos

(
θ − 4π

3

)

−|b|2
4

cos

(
θ − 2π

3

)
− |c|2

4
cos(θ) + 2�e−iθ abc

8
.

Trigonometric identities show that t(θ) simplifies to:

t(θ) = 1

4
cos(3θ) + f cos(θ) + g sin(θ), (5)

with

f = 1

8
(|a|2 + |b|2 − 2|c|2 + 2�abc) (6)

g = 1

8

(√
3|a|2 − √

3|b|2 + 2
abc
)
. (7)

Further calculations show that we can find a formula for the support function of the numerical range

for any 3 × 3 matrix of the form (2).

Proposition 9. Let M be any 3 × 3matrix of the form (2). The support function for M is

pM(θ) = 2√
3

√
s cos

⎛⎝1

3
arccos

⎛⎝ t(θ)

2

√
27

s3

⎞⎠⎞⎠ , (8)

where s and t(θ) are defined as in (4) and (5).

Proof. Fix θ ∈ [0, 2π). Substitution, or the Chebyshev cube root formula, shows that pM(θ) is a root

of the characteristic polynomial qθ given in (3). To show that (8) delivers a formula for the support

function, it remains to observe that pM(θ) is the maximum root of qθ (i.e. that pM(θ) is the maximum

eigenvalue ofHθ ). The localmaximumvalue of qθ occurs at x =
√

s√
3
and the localminimumvalue of qθ

occurs at x = −
√

s√
3
. Therefore, two distinct roots of qθ cannot both be greater than or equal to

√
s√
3
or

there would be another local extreme value at a location greater than
√

s√
3
. Since the range of arccosine

is [0, π ], the value of pM(θ) is greater than or equal to
2
√

s√
3

1
2

=
√

s√
3
, so pM(θ) is themaximum root. �

3. Counterexample on an infinite-dimensional space

Asdiscussed in the introduction, if anoperatorT is quadraticwithdistinct eigenvalues, theneven ifT

is defined on an infinite dimensional space, the numerical range of T is an ellipse (possibly degenerate)
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with foci at the eigenvalues of T . Therefore the numerical range of T is not a disk since the foci are

distinct. See [15], [19] or [2] for details. For example, if T2 = I (and T �= ±I), then the eigenvalues of

T are exactly the values −1 and 1, and the numerical range of T is an ellipse with major axis on the

x-axis and minor axis on the y-axis. Consequently, the maximum value of the support function of T is

always attained at the angles θ = 0 and θ = π and at no other values of θ .
In contrast, although an operatorwithminimal polynomial z3−1 has eigenvalues equal to the cube

roots of unity, there are no fixed angles at which the support function of W(T) is always maximized.

Even a 3 × 3 matrix M with M3 = I can have a support function for W(M) which is maximized at

any given angle. In Proposition 11, a collection of 3× 3matrices illustrating this fact is constructed. In

Theorem 14, this collection is used to construct an operator T on an infinite dimensional Hilbert space

that satisfies T3 = I and has numerical range equal to a disk.

Recall that in [2], the authors showed that a composition operator (with an elliptic automorphism

as symbol) which satisfied C2
ϕ = I could not have a disk as its numerical range because this operator

is quadratic. Although our counterexample in this section shows that no such general argument can

be used to prove that a composition operator satisfying C3
ϕ = I does not have a disk as its numerical

range, the special case of a composition operator is still open.

The first lemma is a technical result that permits creating a support function with absolute maxi-

mum at a given value by constructing a critical point at that value.

Lemma 10. If B > 9 and β is in [0, 2π), then the function τ(θ) = cos(3θ) + B cos(θ − β) achieves

its absolute maximum value on [0, 2π) at exactly one point; namely, at the unique value of θ in [0, 2π)
where τ ′(θ) = 0 and τ ′′(θ) < 0.

Proof. Due to the symmetry about the value θ = π , it suffices to show there is exactly one critical

value θ0 in [0, π) because there is a one to one correspondence between critical values in [0, π)
and [π, 2π) where absolute maxima in [0, π) correspond to absolute minima in [π, 2π) and vice

versa. Furthermore, the argument is particularly straightforward if β = 0 or β = π , so we may fix

β ∈ (0, 2π) with β �= π .

We wish to show that when B > 9, there is exactly one value of θ in (0, π) such that

τ ′(θ) = −3 sin(3θ) − B sin(θ − β) = 0,

but this is equivalent to showing that whenM ∈
(
0, 1

3

)
, there is exactly one value of θ in (0, π) such

that

ηM(θ) = M sin(3θ) + sin(θ − β) = 0.

Define Ω to be the set of all M ∈
(
0, 1

3

)
such that ηM has two or more zeroes in (0, π). If Ω is

not empty, then M0 = inf Ω is in [0, 1
3
). If M is sufficiently small (for example if M < 1√

10
), then ηM

cannot have two roots in the same small interval because that would lead to a contradiction via Rolle’s

Theorem. Therefore M0 > 0.

Now consider the function ηM0
. Since ηM0

(0) and ηM0
(π) have opposite signs, ηM0

has at least one

root in (0, π). If ηM0
has a double root θ0, we are done, because then sin(θ0 − β) = −M0 sin(3θ0)

and cos(θ0 − β) = −3M0 cos(3θ0), so we obtain the contradiction

1 = M2
0 sin2(3θ0) + 9M2

0 cos2(3θ0) = M2
0 + 8M2

0 cos2(3θ0) <
1

9
+ 8

9
= 1.

To see that ηM0
has a double root, note that if it has only one root in (0, π), then there is a sequence

Mn decreasing toward M0 such that ηMn
has two distinct roots in (0, π) for each n and a value θ̃

between the distinct roots where η′
Mn

(θ̃) = 0. As n goes toward∞, subsequential limits of these roots

all coincide, which proves that the root of ηM0
is double.
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IfηM0
has exactly two roots in (0, π), then one of themmust be a double root sinceηM0

has opposite

signs on endpoints. Finally, if ηM0
has three or more distinct single roots (i.e. roots where ηM0

has a

sign change) in (0, π), then a continuity argument shows that ηM must also have three or more sign

changes forM < M0 withM sufficiently close toM0, contradicting the definition ofM0. Therefore the

only possibility is that ηM0
has a double root, so Ω is empty. This proves the proposition. �

Proposition 11. Let α ∈ [0, 2π) and let a >
3
√

9. There exists β ∈ [0, 2π) such that the maximum

value of the support function of the numerical range of the matrix

M(a, β) =

⎛⎜⎜⎜⎝
1 aeiβ a

0 ω1 a

0 0 ω2

⎞⎟⎟⎟⎠ , (9)

is achieved at the value α. This maximum value is given by

√
a2 + 1 cos

⎛⎝1

3
arccos

⎛⎝cos(3α) +
√
a6 − 9 sin2(3α)

(
√

a2 + 1)3

⎞⎠⎞⎠ .

Recall that the maximum value of pM(θ) is the numerical radius of M.

Proof. First define functions u and v on [0, 2π ] × (
3
√

9, ∞) as follows.

u(α, a) = −3 sin(α) sin(3α) + cos(α)

√
a6 − 9 sin2(3α),

and

v(α, a) = 3 cos(α) sin(3α) + sin(α)

√
a6 − 9 sin2(3α).

A straightforward computation shows that

u(α, a)2 + v(α, a)2 = a6.

Now fix α ∈ [0, 2π) and a >
3
√

9. Since
√
u(α, a)2 + v(α, a)2 = a3, we can set β equal to the

angle in [0, 2π) such that

u(α, a) + iv(α, a) = a3(cos(β) + i sin(β)). (10)

Multiplying the real and imaginary parts of Eq.(10) by cos(α) and sin(α) respectively and adding

them, we obtain:

a3 cos(α − β) =
√
a6 − 9 sin2(3α). (11)

Similarly, multiplying the real and imaginary parts of (10) by sin(α) and − cos(α):

a3 sin(α − β) = −3 sin(3α). (12)

DefineM(a, β) as in Eq. (9). Substituting the entries of (9) into the definitions (4) and (5) and then

into the formula for (8) yields

pM(a,β)(θ) =
√
a2 + 1 cos

(
1

3
arccos

(
cos(3θ) + a3 cos(θ − β)

(
√

a2 + 1)3

))
. (13)
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Fig. 1. W
(
M

(
3, 3π

2

))
.

The function cos
(
1
3
arccos (x)

)
is an increasing function of x. Therefore the function pM(a,β)(θ)will

achieve its maximum value on [0, 2π) at the value of θ where

τ(θ) = cos(3θ) + a3 cos(θ − β)

is maximized. The identities (11) and (12) show that τ(θ) satisfies τ ′(α) = 0 and

τ ′′(α) = −9 cos(3α) −
√
a6 − 9 sin2(3α).

The right sideof theexpressionabove isnegativebecausea >
3
√

9. Thereforeτ(θ)hasa localmaximum

at θ = α.

Furthermore, the conditions required for Lemma 10 apply because a3 > 9. Therefore τ(θ) achieves
its maximum at exactly one value in [0, 2π), and since pM(a,β)(θ) is maximized when τ(θ) is maxi-

mized, this unique value must be θ = α.

The identity (11) also shows that τ(α) = cos(3α) +
√
a6 − 9 sin2(3α). Substituting θ = α and

this expression into (13) results in the formula for the maximum value of pM(a,β)(α) as stated in the

theorem. �

Example 12. If a = 3 and α = 3π
2
, then (10) shows that

eiβ = 1

9
− 4

√
5i

9

and the matrix

M

(
3,

3π

2

)
=

⎛⎜⎜⎜⎝
1 1

9
(3 − 12

√
5i) 3

0 e
2π i
3 3

0 0 e
4π i
3

⎞⎟⎟⎟⎠
has numerical range with maximum support value of approximately 3.10781 at θ = 3π

2
as shown in

Fig. 1.

Proposition 13. For any α ∈ [0, 2π) and any x ∈ (

√
9

2
3 + 1, ∞) there exists a 3 × 3 matrix M such

that the minimal polynomial of M is z3 − 1, the support function of M achieves its maximum value at α,

and pM(α) = x. Furthermore, the operator norm of M satisfies ||M|| � 2x.
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Proof. Let

m(a, α) =
√
a2 + 1 cos

⎛⎝1

3
arccos

⎛⎝ cos(3α) +
√
a6 − 9 sin2(3α)

(
√

a2 + 1)3

⎞⎠⎞⎠ .

It is straightforward to verify that for any α ∈ [0, 2π), m(a, α) is an increasing function of a for

a ∈
(
9

1
3 , ∞

)
. Furthermore,m(a, α) goes to infinity as a approaches infinity.

Fix α ∈ [0, 2π). If x ∈
(√

9
2
3 + 1, ∞

)
, then a0 = √

x2 − 1 ∈ (9
1
3 , ∞) and m(a0, α) �√

a20 + 1 = x. By increasing a0 to some value a, x = m(a, α) can be attained. Assume such an a

that results in amaximum support value of x is produced. If the corresponding β is chosen by (10) and

M = M(a, β), then M3 = I, the numerical radius of M is pM(α) = x and since ‖M‖ � 2ω(M) (see

[4]), it follows that ‖M‖ � 2x. �

Theorem 14. There exists a Hilbert space H and a bounded linear operator T on H such that W(T) is an
open disk centered at the origin and the minimal polynomial of T is z3 − 1.

Proof. We proceed in two steps.

Step 1. Let us construct a Hilbert space Ĥ and an operator T̂ on Ĥ with minimal polynomial z3 − 1

such thatW(T̂) is the union of an open disk centered at the origin and a set of points on the boundary

of the disk. Define

Ĥ = C
3 ⊕ C

3 ⊕ C
3 ⊕ · · ·

Fix x >

√
9

2
3 + 1. Let {αn}∞n=1 denote a dense collection of angles in [0, 2π). For each αn, let Mn

denote the 3×3matrix whose support function is guaranteed by Proposition 13 to attain amaximum

value of x at αn. Recall that since the spectrum ofMn consists of the cube roots of unity and the origin

is in their convex hull, the origin is in eachW(Mn). Now define the block diagonal operator T̂ on Ĥ by

T̂ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M1 0 0 0 0

0 M2 0 0 0

0 0 M3 0 0

0 0 0 M4 0

0 0 0 0
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Since each Mn has norm bounded by 2x, the operator T̂ is bounded on Ĥ. Let co(Ω) denote the

convex hull of the set Ω in C. Then (see, e.g. [13])

W(T̂) = co

( ∞⋃
n=1

W(Mn)

)
. (14)

To see that the closure of the set (14) is a disk, note that for each n, Mn has compact numerical

range containing the origin and with a maximum support function value of x at αn. Consequently

each W(Mn) is contained in the closure of the disk D(0, x) of radius x and center 0, and therefore

the union
⋃∞

n=1 W(Mn) and the closure of its convex hull are contained in D(0, x). This shows that

W(T̂) ⊆ D(0, x).
Conversely, if z ∈ D(0, x), then z = xreit for 0 < r < 1 and t ∈ [0, 2π). Since {αn}∞n=1 is dense

in [0, 2π), there exist αk and αm such that αk < t � αm and cos(αm − αk) > 2r2 − 1. This choice
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guarantees that the minimum distance from the origin to the line segment from xeiαm to xeiαk (i.e.

the magnitude of the midpoint of xeiαm and xeiαk ) is greater than |z| = xr, so z will be contained

in the convex hull of the points 0, xeiαm and xeiαk . Since these three points are all in the convex set

W(T̂), z must also be inW(T̂). This proves that D(0, x) ⊆ W(T̂). Therefore,W(T̂) consists of the open

disk D(0, x) along with some of the boundary points of D(0, x); namely the {αn} values. Finally, the

minimal polynomial of T̂ is identical to the minimal polynomial of each block Mj , namely z3 − 1.

Step 2. To obtain an operator T whose numerical range is an open disk, let x >

√
9

2
3 + 1 and let

{xn} be a increasing sequence in the interval

(√
9

2
3 + 1, x

)
that converges to x. By the construction

described in Step 1, there exists a Hilbert space Ĥn and an operator T̂n with the minimal polynomial

z3 − 1 such thatW(T̂n) is the union of the open disk D(0, xn) along with some of the boundary points

of D(0, xn). Define the Hilbert space H by

H = Ĥ1 ⊕ Ĥ2 ⊕ Ĥ3 ⊕ ...,

and define the operator T on H as a block diagonal operator in terms of the T̂n operators:

T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T̂1 0 0 0 0

0 T̂2 0 0 0

0 0 T̂3 0 0

0 0 0 T̂4 0

0 0 0 0
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Clearly D(0, xn) ⊂ W(T̂n) ⊂ D(0, xn) for each positive integer n. Consequently,

∞⋃
n=1

D(0, xn) ⊂ co

∞⋃
n=1

(
W(T̂n)

)
⊂

∞⋃
n=1

D(0, xn).

Since the left hand side and the right hand side of the latter chain of inclusions coincide with D(0, x),
so does the middle term, which in turn equals W(T). As at step 1, the minimal polynomial of T is the

same as the minimal polynomial of each block T̂j , and therefore still equals z3 − 1. �

Note that theHilbert spaceH in the previous theorem is separable. If the first part of the proof above

is modified by replacing the dense set {αn} with the entire boundary of the the disk D(0, x), then a

non-separable space H and an operator T on H could be constructed so that the minimal polynomial

of T is z3 − 1 and W(T) is the closed disk D(0, x).

4. Threefold symmetry

The explicit formula (8) for the support function of a 3 × 3 matrix satisfying M3 = I also allows

derivation of a simple condition that determines whether or not the numerical range W(M) has a

certain kind of symmetry about the origin.

Definition 15. A set S has threefold symmetry about the origin if z ∈ S implies e
2π i
3 z ∈ S.

Clearly the spectrum of a matrixM withminimal polynomial z3 − 1 has threefold symmetry about

the origin, but the numerical range might not as the examples from Section 2 show. The property of

having n-fold symmetry about the origin is the obvious generalization of threefold symmetry.



T.R. Harris et al. / Linear Algebra and its Applications 435 (2011) 2639–2657 2649

Definition 16. Let M and C be n × n complex matrices. The C-numerical range of M is the set

WC(M) = {Tr(CUMU∗) : U∗U = I}.
The C-numerical range of amatrix is one of several generalizations of the classical numerical range.

The classical numerical range satisfies the identity W(M) = WE11(M) where E11 is the matrix with 1

in the upper left corner and zeroes elsewhere. Therefore any result that applies toWC(M) for all C also

applies to the classical numerical range.

In [8], Li and Tsing proved a number of results about which n×nmatrices (and general linear oper-

ators) have C-numerical ranges with different types of circular symmetry. For example, they showed

that the C-numerical range of M has n-fold symmetry about the origin for all n × n matrices C if and

only if M is unitarily equivalent to a special block matrix. These conditions are also equivalent to the

unitary orbit of M having n-fold symmetry about the origin. Block versions of these results hold as

well.

In the n = 3 case, their results show that a 3 × 3 matrixM that satisfies the conditionWC(M) has
threefold symmetry about the origin for all 3 × 3 matrices C if and only ifM is unitarily equivalent to

a matrix V of the form

V =

⎛⎜⎜⎜⎝
0 0 p

q 0 0

0 r 0

⎞⎟⎟⎟⎠ . (15)

Therefore, the results in [8] show that if there exist p, q, r ∈ C such thatM is unitarily equivalent to

V above, thenWC(M)has has threefold symmetry about the origin for all 3×3matricesC and therefore

W(M) has threefold symmetry about the origin. However, the results in [8] do not determine whether

a 3× 3 matrixM for which it is only known that its classical numerical range has threefold symmetry

about the origin must be unitarily equivalent to a matrix of the form (15). Theorem 19 answers that

question in the affirmative.

Proposition 17. If the numerical range of a 3 × 3matrix M has threefold symmetry about the origin but

is not a disk, then the spectrum of M has threefold symmetry about the origin.

Proof. Kippenhahn’s classification shows that the only possible numerical ranges of 3 × 3 matrices

with threefold symmetry about the origin are disks, equilateral triangles, or ovular shapes. By as-

sumption, W(M) is not a disk. If W(M) is a triangle with threefold symmetry about the origin, then

the eigenvalues ofM are the vertices of the triangle and therefore the eigenvalues also have threefold

symmetry. So it will suffice to prove this result when W(M) is ovular, and in this case Kippenhahn

showed that the associated curve as defined with (1) is irreducible and consists of two components:

an outer portion and an inner portion. The outer component of the curve is the boundary of W(M)
and therefore has threefold symmetry about the origin since W(M) does.

The matrix M̃ = ei
2π
3 M satisfies W(M̃) = ei

2π
3 W(M) = W(M), so W(M̃) is also ovular. The

associated curve for M̃ is defined as before and because W(M̃) is ovular this curve is also irreducible.

The outer portion of the associated curve of M̃ is the boundary of W(M̃) = W(M). Since the outer

portions of the associated curves for M and M̃ (consisting of infinitely many points) coincide and the

curves are irreducible, they must be the same curve. Therefore these curves have the same real foci.

According to [10, Theorem 11], the real foci of the associated curve of a matrix are the eigenvalues of

the matrix, so the eigenvalues of M and M̃ are identical, which proves that the eigenvalues of M have

threefold symmetry about the origin in the ovular case. �

In the proof of the main result in this section, a 3 × 3 matrixM is shown to be unitarily equivalent

to a matrix of the form (15) by proving a sufficient collection of identities involving unitary invariants

for 3 × 3 matrices. In general, two n × n matrices M and V are unitarily equivalent if TrY(M,M∗) =
TrY(V, V∗) for a sufficiently large collection of words Y(s, t) in two noncommuting variables. When
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n = 3, it was shown by Pearcy [12] that checking equality of traces for a certain collection of nine

words is sufficient to guarantee unitary equivalence. This result was improved upon by Sibirskiĭ [16]

(see also [17] and the related discussion in [7]) who brought the number of words down to seven. For

convenience of reference, we state the result below.

Theorem 18. The 3 × 3matrices M and V are unitarily equivalent if and only if the following seven trace

identities hold:

Tr(M) = Tr(V), (16a)

Tr(M2) = Tr(V2), (16b)

Tr(MM∗) = Tr(VV∗), (16c)

Tr(M3) = Tr(V3), (16d)

Tr(M2M∗) = Tr(V2V∗), (16e)

Tr(M2(M∗)2) = Tr(V2(V∗)2), (16f)

Tr(M2(M∗)2MM∗) = Tr(V2(V∗)2VV∗). (16g)

Furthermore, any proper subcollection of the preceding identities is not sufficient to guarantee unitary

equivalence.

Theorem 19. Let M be any 3 × 3 matrix. Assume W(M) is not a disk. Then the following are equivalent:

(i) W(M) has threefold symmetry about the origin.

(ii) Tr(M2M∗) = 0 and the spectrum σ(M) has threefold symmetry about the origin.

(iii) There exist p, q, r ∈ C such that M is unitarily equivalent to the matrix V in (15).

Proof. Condition (iii) implies condition (i) by the results in [8], so that we need only to establish the

implications (i)→ (ii)→ (iii). Thiswill first be done under the additional assumption that theminimal

polynomial of M is z3 − 1.

The general case will follow directly from this special case.

(i)→ (ii): AssumeM is a 3×3matrixwithminimal polynomial z3−1 such thatW(M)has threefold
symmetry about the origin. M can be represented in the form (2) and the support function for M is

pM(θ) as given in (8). The function pM(θ) must satisfy

pM(θ) = pM

(
θ + 2π

3

)
for all θ ∈ [0, 2π). Cancelling injective composed functions in the expression for pM(θ) results in

t(θ) = t
(
θ + 2π

3

)
for all θ ∈ [0, 2π). With the use of formulas (6) and (7) we obtain

1

4
cos(3θ) + f cos(θ) + g sin(θ) = 1

4
cos(3θ + 2π) + f cos

(
θ + 2π

3

)
+ g sin

(
θ + 2π

3

)
.

Clearly the cos(3θ) terms cancel and the function f cos(θ) + g sin(θ) has period greater than 2π
3

unless f = g = 0.

Therefore

0 = 1

8
(|a|2 + |b|2 − 2|c|2 + 2�abc), and

0 = 1

8

(√
3|a|2 − √

3|b|2 + 2
abc
)
.
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Computing directly from (2) yields

Tr(M2M∗) = −ω2|a|2 − ω1|b|2 − |c|2 + abc

= 1

2

(
|a|2 + |b|2 − 2|c|2 + 2�abc

)
+ i

1

2

(√
3|a|2 − √

3|b|2 + 2
abc
)

= 4f + i4g

= 0.

Since σ(M) consists of the cube roots of unity, the spectrum has threefold symmetry about the

origin so (i) → (ii) is established in the special case thatM is a 3× 3 matrix with minimal polynomial

z3 − 1.

(ii)→ (iii): NowassumeM is a 3×3matrixwithminimal polynomial z3−1 such that Tr(M2M∗) =
0. In [1], it is shown that every 3 × 3 matrix is unitarily equivalent to a matrix of the form

M =

⎛⎜⎜⎜⎝
λ1 0 x

y λ2 0

0 z λ3

⎞⎟⎟⎟⎠ .

IfM3 = I, then

λ3
1 + xyz = λ3

2 + xyz = λ3
3 + xyz = 1, (17)

and

(λ1 + λ2 + λ3)xy = (λ1 + λ2 + λ3)xz = (λ1 + λ2 + λ3)yz = 0,

(λ2
1 + λ1λ3 + λ2

3)x = (λ2
1 + λ1λ2 + λ2

2)y = (λ2
2 + λ2λ3 + λ2

3)z = 0. (18)

The equations in (17) show that |λi| = | 3
√

1 − xyz| for i = 1, 2, 3, so the λi values all have the

same magnitude.

If any of the values x, y, or z is zero, then λ3
i = 1 for i = 1, 2, 3 and the lambda values are the

eigenvalues ofM which are the distinct cube roots of unity by the minimal polynomial hypothesis. By

assumption,

0 = Tr(M2M∗) = |λ1|2λ1+|λ2|2λ2+|λ3|2λ3+|x|2(λ1+λ3)+|y|2(λ1+λ2)+|z|2(λ2+λ3),

from which it follows that x = y = z = 0. Therefore, if xyz = 0 then M is normal and unitarily

equivalent to V with p = 1, q = ω1, and r = ω2. Thus in this special case (iii) holds.

Therefore wemay assumewithout loss of generality that xyz �= 0. In this case the equations in (18)

show that there exists ξ ∈ C such that λ1 = ξ , λ2 = ξω1, and λ3 = ξω2.
If ξ = 0, then we are done because M is already of form V with p = x, q = y, and r = z. Thus, we

may assume

M =

⎛⎜⎜⎜⎝
ξ 0 x

y ξω1 0

0 z ξω2

⎞⎟⎟⎟⎠ ,

with ξ �= 0 and xyz �= 0.

We will show that there exists a matrix V of form (15) such that each of the seven corresponding

unitary invariants in Theorem 18 are equal for V and M. The associated matrices that are required for
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the trace calculations are computed below:

M2 =

⎛⎜⎜⎜⎝
ξ 2 xz −xξω1

−yξω2 ξ 2ω2 xy

zy −zξ ξ 2ω1

⎞⎟⎟⎟⎠ ,

M3 = I,

MM∗ =

⎛⎜⎜⎜⎝
|ξ |2 + |x|2 yξ xξω1

yξ |ξ |2 + |y|2 zξω1

xξω2 zξω2 |ξ |2 + |z|2

⎞⎟⎟⎟⎠ , (19)

M2M∗ =

⎛⎜⎜⎜⎝
ξ(|ξ |2 − |x|2ω1) yξ 2 + xzξω2 x(|z|2 − |ξ |2ω2)

y(|x|2 − |ξ |2ω2) ξ(|ξ |2ω1 − |y|2ω2) zξ 2ω2 + xyξω1

yzξ + xξ 2ω1 z(|y|2 − |ξ |2ω2) ξ(|ξ |2ω2 − |z|2)

⎞⎟⎟⎟⎠ , (20)

and finally M2(M∗)2 =
⎛⎜⎜⎝

|ξ |4 + |zx|2 + |ξx|2 (−yξ |ξ |2 − yξ |x|2 + xzξ
2
)ω1 −xξ |ξ |2 − xξ |z|2 + yzξ2

(−yξ |ξ |2 − yξ |x|2 + xzξ2)ω2 |ξ |4 + |xy|2 + |ξy|2 (−zξ |ξ |2 − zξ |y|2 + xyξ
2
)ω2

−xξ |ξ |2 − xξ |z|2 + yzξ
2

(−zξ |ξ |2 − zξ |y|2 + xyξ2)ω1 |ξ |4 + |yz|2 + |ξz|2

⎞⎟⎟⎠ .

(21)

Also,

V2 =

⎛⎜⎜⎜⎝
0 pr 0

0 0 pq

rq 0 0

⎞⎟⎟⎟⎠ ,

V3 = pqrI,

VV∗ =

⎛⎜⎜⎜⎝
|p|2 0 0

0 |q|2 0

0 0 |r|2

⎞⎟⎟⎟⎠ ,

V2V∗ =

⎛⎜⎜⎜⎝
0 0 p|r|2

q|p|2 0 0

0 r|q|2 0

⎞⎟⎟⎟⎠ ,

and

V2(V∗)2 =

⎛⎜⎜⎜⎝
|pr|2 0 0

0 |pq|2 0

0 0 |rq|2

⎞⎟⎟⎟⎠ .
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Also note that

Tr(V2(V∗)2VV∗) = |p|4|r|2 + |q|4|p|2 + |r|4|q|2.
No matter what values of p, q, and r are chosen for V , three of the unitary invariants for M and V

corresponding to (16a), (16b), and (16e) are automatically equal:

Tr(M) = ξ + ξω1 + ξω2 = 0 = Tr(V),

Tr(M2) = ξ 2 + ξ 2ω2 + ξ 2ω1 = 0 = Tr(V2),

and by assumption

Tr(M2M∗) = 0 = Tr(V2V∗).

Since

Tr(M2M∗) = ξ(−|x|2ω1 − |y|2ω2 − |z|2) = ξ

(
1

2
(|x|2 + |y|2 − 2|z|2) + i

2
(|y|2 − |x|2)

)
,

the assumption Tr(M2M∗) = 0 also implies that |y| = |z| = |x|. Since (17) implies xyz = 1 − ξ 3, it

follows that

|x|6 = |1 − ξ 3|2 = 1 − ξ 3 − ξ 3 + |ξ |6. (22)

The condition |y| = |x| = |z| also simplifies the calculation of the last trace involving M and

M∗, because when the diagonal entries of the product M2(M∗)2MM∗ are computed from (19) and

(21) with |x| replacing the values |z| and |y| everywhere, it turns out that each diagonal entry of

M2(M∗)2MM∗ is

(|ξ |2 + |x|2)(|ξ |4 + |ξx|2 + |x|4) − |ξx|2(|x|2 + |ξ |2)ω1 − |ξx|2(|x|2 + |ξ |2)ω2

+ξ
3
(1 − ξ 3)ω1 + ξ 3(1 − ξ

3
)ω2,

which simplifies to

(|ξ |2 + |x|2)(|ξ |4 + 2|ξx|2 + |x|4) + ξ
3
(1 − ξ 3)ω1 + ξ 3(1 − ξ

3
)ω2

= (|ξ |2 + |x|2)3 + ξ
3
(1 − ξ 3)ω1 + ξ 3(1 − ξ

3
)ω2.

Therefore

Tr(M2(M∗)2MM∗) = 3((|ξ |2 + |x|2)3 + ξ
3
(1 − ξ 3)ω1 + ξ 3(1 − ξ

3
)ω2)

= 3(|x|2 + |ξ |2)3 + 3|ξ |6 + 3ω1ξ
3 + 3ω2ξ

3. (23)

It is nowpossible to showthat thereexist valuesofp,q, and r thatmake the remaining four invariants

for V equal to those forM. To do so, form the polynomial

h(t) = t3 − 3(|ξ |2 + |x|2)t2 + 3(|ξ |4 + |ξx|2 + |x|4)t − 1.

The cubic polynomial h has local extreme values at the critical values |ξ |2 ± |ξx| + |x|2, which

are both positive, and h(0) = −1. In addition, h(|ξ |2 − |ξx| + |x|2) = −1 + (|ξ |3 + |x|3)2, which

is non-negative, and h(|ξ |2 + |ξx| + |x|2) = −1 + (|ξ |3 − |x|3)2, which is non-positive. Therefore

h must have a root between t = 0 and the critical value t = |ξ |2 − |ξx| + |x|2, another root be-
tween the two critical values, and (because h(t) goes to infinity as t goes to infinity) its third root
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greater than the critical value t = |ξ |2 + |ξx| + |x|2. If one of the extreme values is zero, then h has

a double root, but all roots are still positive. If these three positive roots of h are denoted u, v, and w,

then

t3 − 3(|ξ |2 + |x|2)t2 + 3(|ξ |4 + |ξx|2 + |x|4)t − 1 = (t − u)(t − v)(t − w)

= t3 − (u + v + w)t2

+(uv + uw + vw)t − uvw.

Therefore there exist positive numbers u, v and w (uniquely determined up to permutation) such

that

u+v+w = 3(|ξ |2 +|x|2), uvw = 1, and uv+uw+vw = 3
(
|ξ |4 + |ξx|2 + |x|4

)
. (24)

If p = √
u, q = √

v, and r = √
w, then these are exactly the trace identities needed to satisfy (16c),

(16d), and (16f), respectively. It follows that there exists V of form (15) such that the first six invariants

(16a) through (16f) hold. It remains to show our assumptions, now including equality of these first six

traces, imply (16g), i.e. that

Tr(M2(M∗)2MM∗) = Tr(V2(V∗)2VV∗)

as well. Fix any cube root of ξ 3 − 1 and let ρ = ξ 3

√
ξ 3 − 1, so ρ = ξ 3

√
ξ 3 − 1 = ξ

3
√

ξ
3 − 1 if the cube

root of ξ
3 − 1 is chosen consistently. Therefore ρρ = |ξ |2|x|2 and ρ3 + ρ3 = |ξ |6 + |x|6 − 1 by (22).

It is straightforward, although tedious, to check that u, v, and w defined by

u = |ξ |2 + |x|2 − ρ − ρ,

v = |ξ |2 + |x|2 − ω2ρ − ω1ρ,

w = |ξ |2 + |x|2 − ω1ρ − ω2ρ,

(25)

satisfy all the equations in (24), so these are the three positive roots of the polynomial h.

With these values determined, it follows that

u2 = (|ξ |2 + |x|2)2 − 2(ρ + ρ)(|ξ |2 + |x|2) + (ρ + ρ)2,

v2 = (|ξ |2 + |x|2)2 − 2(ω2ρ + ω1ρ)(|ξ |2 + |x|2) + (ω2ρ + ω1ρ)2,

w2 = (|ξ |2 + |x|2)2 − 2(ω1ρ + ω2ρ)(|ξ |2 + |x|2) + (ω1ρ + ω2ρ)2,

and

u2w = (|ξ |2 + |x|2)3 − (2(ρ + ρ) + ω1ρ + ω2ρ)(|ξ |2 + |x|2)2
+

(
2(ρ + ρ)(ω1ρ + ω2ρ) + (ρ + ρ)2

)
(|ξ |2 + |x|2) − (ρ + ρ)2(ω1ρ + ω2ρ),

v2u = (|ξ |2 + |x|2)3 − (2(ω2ρ + ω1ρ) + ρ + ρ)(|ξ |2 + |x|2)2
+

(
2(ρ + ρ)(ω2ρ + ω1ρ) + (ω2ρ + ω1ρ)2

)
(|ξ |2 + |x|2) − (ρ + ρ)(ω2ρ + ω1ρ)2,

w2v = (|ξ |2 + |x|2)3 − (2(ω1ρ + ω2ρ) + (ω2ρ + ω1ρ))(|ξ |2 + |x|2)2
+

(
2(ω1ρ + ω2ρ)(ω2ρ + ω1ρ) + (ω1ρ + ω2ρ)2

)
(|ξ |2 + |x|2)

−(ω2ρ + ω1ρ)(ω1ρ + ω2ρ)2.

Therefore the final invariant for V satisfies

Tr(V2(V∗)2VV∗) = u2w+v2u+w2v = 3(|ξ |2+|x|2)3+d2(|ξ |2+|x|2)2+d1(|ξ |2+|x|2)+d0,
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where

d2 = −3(ω2ρ + ω1ρ) − 3(ω1ρ + ω2ρ) − 3(ρ + ρ) = 0,

d1 = ((ω2ρ + ω1ρ) + (ω1ρ + ω2ρ) + (ρ + ρ))2 = 0,

and

d0 = −3ω1ρ
3 − 3ω2ρ

3.

Using (22) again,

Tr(V2(V∗)2VV∗) = 3(|ξ |2 + |x|2)3 − 3ω1ρ
3 − 3ω2ρ

3

= 3(|ξ |2 + |x|2)3 + 3|ξ |6 + 3ω1ξ
3 + 3ω2ξ

3 = Tr(M2(M∗)2MM∗).

The last equality follows from (23). This proves the equivalence of the last invariant (16g) for V and for

M. Therefore when p = √
u, q = √

v, and r = √
w are defined as in (25), all seven of the traces that

are needed to prove V and M are unitarily equivalent are equal. Therefore M is unitarily equivalent to

a matrix of the form (15).

This concludes the proof of (i) → (ii) → (iii) when M is a 3 × 3 matrix with minimal polynomial

z3 − 1.

For the general case of (i) → (ii), assume N is any nonzero 3 × 3 matrix whose numerical range

has threefold symmetry about the origin. Then the spectrum of N has threefold symmetry about

the origin by Proposition 17, and the spectrum therefore consists of points λ, λω1, λω2 for some

λ ∈ C.
If λ = 0 then N would have a triple eigenvalue, but we will show this is not possible. By Theo-

rem 4.1 from [9] along with our assumption that W(N) is a non-disk with threefold symmetry about

the origin, it follows that N is unitarily equivalent to, and can therefore be assumed to have the form

N =

⎛⎜⎜⎜⎝
0 x y

0 0 z

0 0 0

⎞⎟⎟⎟⎠ (26)

with xyz �= 0and |x|, |y|, |z|not all equal. In this caseN = H+iKwithH = N+N∗
2

andK = N−N∗
2i

. Since

W(N) has threefold symmetry about the origin, the support function pN(θ) has period 2π
3
. Recall that

pN(θ) is the maximum eigenvalue of the hermitian matrix Hθ = cos(θ)H + sin(θ)K . Since the trace

of Hθ is zero and the maximum eigenvalue of Hθ is the negative of the minimum eigenvalue of Hθ+π ,

the periodicity requirement for pN(θ) forces all three eigenvalues of Hθ to equal the corresponding

three eigenvalues of Hθ+ 2π
3
. Therefore

det(Hθ ) = det
(
Hθ+ 2π

3

)
for all θ . However, a straightforward computation shows that

det(Hθ ) = 1

4
�eiθ xyz.

This function of θ cannot have period 2π
3

if xyz �= 0 which must hold since xyz �= 0. Therefore if

W(N) has threefold symmetry then N cannot have a triple eigenvalue of 0.
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So we may assume λ �= 0 and therefore N = λM where the minimal polynomial of M is z3 − 1.

Clearly the set W(M) = 1
λ
W(N) also has threefold symmetry about the origin. By the M3 = I case,

this implies that Tr(M2M∗) = 0, so Tr(N2N∗) = |λ|2λTr(M2M∗) = 0.

For the general proof that (ii) implies (iii), assume N is a 3 × 3 matrix where Tr(N2N∗) = 0 and

σ(N) has threefold symmetry about the origin. In this case either N has a triple eigenvalue of zero

or else N = λM where λ �= 0 and the minimal polynomial of M is z3 − 1. If λ = 0 is a triple

eigenvalue, then N has the form (26). In this case it is easy to compute that Tr(N2N∗) = xyz. If

xyz = 0 then W(N) is a disk by Theorem 4.1 of [9], contradicting our assumption. So N = λM and

Tr(M2M∗) = 1

|λ|2λTr(N
2N∗) = 0. Therefore M is unitarily equivalent to some matrix V of the form

(15), but this implies N = λM is unitarily equivalent to λV , which is also of form (15). This concludes

the proof of the theorem. �

Example 20. For an example illustrating the conditions in the previous theorem, note that the matrix

M1 = 1 − i

2

⎛⎜⎜⎜⎝
1 1√

2
−1

2
√

2 0 2
√

2

1 − 1√
2

−1

⎞⎟⎟⎟⎠
is unitarily equivalent to the matrix⎛⎜⎜⎜⎝

0 0 1 − i

2 − 2i 0 0

0 1
2

− i
2

0

⎞⎟⎟⎟⎠ ,

soM1 satisfies part (iii) of the theorem, and

M2
1M

∗
1 =

⎛⎜⎜⎜⎝
1
4

− i
4

(2 − 2i)
√

2 − 1
4

+ i
4

(2 − 2i)
√

2 0 (2 − 2i)
√

2

1
4

− i
4

(−2 + 2i)
√

2 − 1
4

+ i
4

⎞⎟⎟⎟⎠ ,

so Tr(M2
1M

∗
1 ) = 0. In addition, the spectrum of M1 is

{
1 − i, ei

2π
3 (1 − i), ei

4π
3 (1 − i)

}
, so part (ii) of

the theorem holds. The plot of the boundary of W(M1) appears in Fig. 2.

Fig. 2. W(M1).
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Remark. A matrix M can satisfy Tr(M2M∗) = 0 without having numerical range with threefold

symmetry about the origin if σ(M) does not have threefold symmetry about the origin. For example,

the matrix

M =

⎛⎜⎜⎜⎝
0 −3 1

0 0 1

0 0 1

⎞⎟⎟⎟⎠
satisfies Tr(M2M∗) = 0 but σ(M) = {0, 0, 1} and W(M) does not have threefold symmetry about

the origin.
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