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1. Introduction

One way to study a compact, negatively curved Riemannian manifold is by looking at the isometric
action of the fundamental group on the universal cover. For instance, Dehn [14] proved that the
fundamental group of a hyperbolic surface has solvable word problem, giving an explicit algorithm.
The field of geometric group theory studies many types of finitely presented groups in a similar way:
using isometric actions on a metric space to study the group’s properties.

Two important classes of spaces in geometric group theory are δ-hyperbolic spaces and CAT(0)
spaces. Gromov [15] introduced δ-hyperbolic spaces as a generalization of negative curvature to
arbitrary metric spaces. Geodesic triangles in δ-hyperbolic spaces satisfy a “δ-thin” condition (that
is, they look like triangles in negative curvature, up to bounded error), and δ-hyperbolic spaces
share many global properties with negatively curved manifolds. Gromov also popularized the study
of CAT(0) spaces, which had been previously studied by Alexandrov [2] under a different name.

CAT(0) spaces are a generalization of nonpositive curvature from Riemannian manifolds to general
metric spaces, defined by comparing geodesic triangles with triangles in Euclidean space. Examples
of CAT(0) spaces include nonpositively curved Riemannian manifolds, Euclidean and hyperbolic
buildings, and trees. In contrast with δ-hyperbolic spaces, which share properties with negatively
curved manifolds only at large scales, CAT(0) spaces share many properties with nonpositively
curved Riemannian manifolds at all scales. One key difference from the Riemannian setting, however,
is that geodesics in CAT(0) spaces are not globally determined from a small segment.

CAT(0) geometry has been successfully applied to other areas. For instance, Agol [1] used CAT(0)
cube complexes to prove the virtual fibering and virtual Haken conjectures in 3-manifold theory.
Ontaneda [26] used smoothings of the Charney-Davis complex, similarly built from gluing CAT(0)
pieces, to construct many new examples of negatively curved Riemannian manifolds.

We are interested in using dynamical methods to study the geometry of CAT(0) spaces. This has
been a useful tool for studying the geometry of nonpositively curved Riemannian manifolds. In fact,
one of the breakthroughs in understanding the geometry of such manifolds was the application of
ergodic theory (i.e., measure-theoretic dynamics) to geometry. This led, for instance, to the proof of
rank rigidity for such manifolds. Ergodic theory is also a classical tool for understanding negatively
curved manifolds, used for instance in Mostow’s original proof [25] of Mostow rigidity for closed,
negatively curved manifolds. We hope that the application of these methods to CAT(0) spaces will
help us to understand their geometry better in a similar way.

1.1. CAT(0) Spaces. We recall a few properties of CAT(0) spaces (see [4] and [11]).
A CAT(0) space X is a uniquely geodesic metric space such that the distance between a pair of

points on any geodesic triangle4 in X is less than or equal to the distance between the corresponding
pair of points on a Euclidean comparison triangle—a triangle 4 in the Euclidean plane with the
same edge lengths as 4. One can similarly define CAT(−1) and CAT(1) spaces by comparison with
triangles in the hyperbolic plane H2 and the unit sphere S2 ⊂ R3, respectively.

Standing Hypothesis. Throughout this document, let Γ be a group acting properly discontinuously,
cocompactly, and by isometries on a proper, geodesically complete CAT(0) space X (proper meaning
closed metric balls in X are compact).
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A geodesic in X is an isometric embedding R→ X, while a geodesic ray is an isometric embedding
[0,∞)→ X. A subspace Y ⊂ X isometric to R× [0,∞) is called a flat half-plane; note that half-
planes are automatically convex. Call a geodesic in X rank one if its image does not bound a flat
half-plane in X. We call a CAT(0) space rank one if it contains a rank one geodesic, higher rank
if not. If a rank one geodesic is the axis of an isometry γ ∈ Γ, we call it a rank one axis. Also, a
subspace Y ⊂ X isometric to R× [0, R], R > 0, is called a flat strip of width R. Write SX for the
space of unit-speed parametrized geodesics in X.

CAT(0) spaces admitting a rank one axis have rich hyperbolic dynamics. On the other hand,
Ballmann and Buyalo [6] conjecture that all others are very special:

Conjecture 1 (Rank Rigidity). If X does not admit a rank one axis, then X is a higher rank
symmetric space or Euclidean building, or splits as a nontrivial product of CAT(0) spaces.

This conjecture is known to hold when X is a nonpositively curved Riemannian manifold (see
[4]), and when X is a CAT(0) cube complex ([12]).

The visual boundary ∂X of a CAT(0) space is the set of equivalence classes of asymptotic geodesic
rays. The standard topology is the visual (or cone) topology on ∂X.

One can define angles in X and ∂X by comparison with Euclidean space. The Tits metric dT
on ∂X is given by taking the infimum of lengths of paths between pairs of points in ∂X under the
angle metric ∠ on ∂X (the Tits metric may take value +∞); it measures the amount of asymptotic
flatness between points in the boundary. The topology induced on ∂X by the Tits metric is finer
(usually strictly finer) than the visual topology. We will write ∂TX for the Tits boundary of X—that
is, ∂X under the Tits metric dT .

If ξ, η are the endpoints of a geodesic, then dT (ξ, η) ≥ π. On the other hand, dT (ξ, η) > π if and
only if ξ, η are joined by a rank one geodesic in X. We remark also that the Tits metric is lower
semicontinuous with respect to the visual topology on ∂X.

1.2. Research Interests. We would like to better understand the geometry of X and the dynamics
of the Γ action. Ergodic properties have aided in the study of negatively curved manifolds; for
instance, Margulis [24] used mixing of the Bowen-Margulis measure to count the asymptotic growth
rate of the number of closed geodesics of bounded length. However, similar work has only recently
started for ergodic properties of CAT(0) spaces—largely due to the previous lack of a natural
invariant measure. In [32], we constructed a natural invariant measure on SX. In [29] and [31], we
established some results about higher rank CAT(0) spaces, making progress toward Rank Rigidity.
We would like to push these results further.

2. Past Research

CAT(0) spaces have different properties depending on whether they are rank one or higher rank.
We discuss results for each kind of space in turn.

2.1. Ergodic Theory of Rank One CAT(0) Spaces. We summarize our results in [32]. For
simplicity, we state the results assuming cocompactness of the Γ-action. However, many of these
results actually are shown in [32] without assuming cocompactness—only a non-elementary action
by Γ.

Standing Hypothesis. Throughout Section 2.1, we will assume X admits a rank one axis.

Patterson’s construction [28] gives a family of finite Borel measures, called Patterson-Sullivan
measures, on ∂X. We use these measures to construct a finite Borel measure (called the Bowen-
Margulis measure) on Γ\SX, the space of unit-speed parametrized geodesics of X modulo the
Γ-action. This measure has full support and is invariant under the geodesic flow.
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Bowen-Margulis measures were first introduced for compact, negatively curved Riemannian
manifolds, where Margulis ([24]) and Bowen ([9]) used different methods to construct measures
of maximal entropy for the geodesic flow. Bowen proved ([10]) both measures are equal; they are
now often called the Bowen-Margulis measure. Sullivan ([34] and [35]) established a third method
to obtain this measure (in constant negative curvature) using Patterson–Sullivan measures. For
CAT(0) spaces, we follow Sullivan’s approach to construct a generalized Bowen–Margulis measure,
as do Kaimanovich ([18]), Bourdon ([8]), Knieper ([20]), and Roblin ([33]) in other settings.

2.1.1. Dealing with Flat Strips. The trickiest part of the construction for CAT(0) spaces is getting
from a Borel measure on ∂X × ∂X to a Borel measure on SX. Here previous constructions of
Bowen–Margulis measures (e.g., for rank one, nonpositively curved manifolds, and for CAT(−1)
spaces) do not offer a way to deal with the possibility that every geodesic bounds a flat strip. In
rank one CAT(0) spaces, however, this is a potentially serious issue.

We therefore construct the Bowen–Margulis measure in two stages: first on (∂X × ∂X)× R, and
then on SX. The first stage allows us to use ergodic theory to prove the following structural result
about geodesically complete, cocompact, rank one CAT(0) spaces:

Theorem 2. Almost every pair of points in ∂X is joined by a rank one geodesic in X that does not
bound a flat strip.

This result allows us to define the Bowen–Margulis measure on SX.

2.1.2. Dynamical Results. Ergodicity follows by the classical Hopf argument [17].

Theorem 3. The Bowen–Margulis measure on Γ\SX is ergodic.

Finally, we identify precisely when the Bowen–Margulis measure is mixing under the geodesic
flow. For compact, rank one, nonpositively curved Riemannian manifolds, it is always mixing by
Babillot [3]. However, there are examples of CAT(0) spaces for which the Bowen–Margulis measure
is not mixing—trees of integer edge lengths. By considering the local behavior of cross-ratios at the
links of points, we prove that such trees are the only such non-mixing examples, up to rescaling.
This characterization of mixing is new, even for CAT(−1) spaces. Here is the full theorem.

Theorem 4. Assume X admits a rank one axis. The following are equivalent:

(1) The Bowen-Margulis measure is not mixing under the geodesic flow on Γ\SX.
(2) The length spectrum is arithmetic—that is, the set of all hyperbolic translation lengths of Γ

must lie in some discrete subgroup cZ of R.
(3) There is some c ∈ R such that every cross-ratio lies in cZ.
(4) There is some c > 0 such that X is isometric to a tree with all edge lengths in cZ.

We remark that relating mixing to the length spectrum is standard (see [13] and [33]).

2.2. Higher Rank CAT(0) Spaces. We now discuss some work we have done on higher rank
CAT(0) spaces. We begin by clarifying which spaces we are investigating.

We split the Rank Rigidity Conjecture for CAT(0) spaces into three cases:

(1) The Tits diameter of ∂X is > π.
(2) The Γ-action on ∂X is minimal.
(3) The Tits diameter of ∂X equals π, and Γ does not act minimally on ∂X.

In the first two cases, the Rank Rigidity Conjecture asserts that X has a rank one axis; it is
known [4] that any space satisfying both conditions 1 and 2 has a rank one axis. In the third case,
the conjecture asserts that X is a higher rank symmetric space or Euclidean building, or a product;
by Leeb [22], it would suffice to prove that ∂TX is a spherical building or join.
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Some of the key methods in proving rank rigidity for manifolds (in particular, using the Liouville
measure to get recurrence, and proving the Angle Lemma) do not seem to extend to CAT(0) spaces.
However, Guralnik and Swenson [16] recently developed a new tool for studying Case 3.

2.2.1. CAT(0) Boundary Actions. By Leeb [22], one can prove rigidity in Case 3 by understanding
the action of Γ on ∂X. We will call a subset K ⊂ ∂TX a round sphere if it is isometric to the
standard unit sphere Sn in Rn+1 with n = dim ∂TX; round spheres exist by Kleiner [19].

Guralnik and Swenson [16] construct certain “folding maps,” 1-Lipschitz projections of the whole
boundary onto a round sphere. This offers a way to study the dynamics of the boundary action by
using spherical geometry to describe the folded image of the closed, invariant sets of ∂X. Note that
we have many closed, invariant sets by non-minimality of the Γ-action on ∂X in Case 3.

2.2.2. Results. We now briefly describe two results obtained by studying closed, invariant sets via
spherical geometry.

The first theorem (Theorem 5) extends two previous results that detect splittings of X by looking
at radii of closed, invariant sets in ∂X. It was known that X splits as a product X = Y ×R if there
is either (1) a closed, invariant set A ⊂ ∂X with radius < π/2 [27, proof of Theorem 23], or (2) a
Tits-closed, invariant, π-convex set A ⊂ ∂X with radius ≤ π/2 [7, Proposition 4.2]. In contrast,
Theorem 5 allows us to detect general products, not just suspensions. Moreover, the theorem can
be extended to hold in the case that X is not geodesically complete; the conclusion is then that a
closed, convex, quasi-dense subset Y of X splits as a product.

Theorem 5. [29] Suppose A ⊂ ∂X is a nonempty, closed, invariant set of radius ≤ π/2. Then X
splits as a nontrivial product of CAT(0) spaces.

The core idea of the proof is that for any set A on a sphere K, we can decompose K as a spherical
join K = A⊥ ∗A⊥⊥, and if A has radius π/2 then A⊥ coincides with the set of circumcenters of A.
Transferring information about ∂X to K and back is achieved using an extension of Guralnik and
Swenson’s folding construction to mimic the situation where some cocompact flat has boundary K.

The second theorem is a special case of rank rigidity in Case 3. Ballmann and Brin [5] proved a
similar result for piecewise-smooth 2-complexes. However, our setting is much more general. We
also hope the methods will generalize better to higher dimensions.

Theorem 6. [31] Suppose dim(∂TX) = 1 and diam(∂TX) = π. Then either Γ acts minimally on
∂X, or X is a higher rank symmetric space or Euclidean building, or a nontrivial product.

The proof of Theorem 6 is summarized as follows: We show that some closed, invariant set A
intersects a certain round sphere (circle) K only finitely many times. This highly restricts where
geodesics from A can enter K. We show that ∂TX must therefore consist entirely of circles with
highly restricted branching, from which we conclude that ∂TX is a spherical building or join.

3. Future Research

3.1. Some Special Cases of Rank Rigidity. We aim to make progress on some more cases
of Case 3 of the Rank Rigidity Conjecture by continuing to investigate the projections of closed
invariant sets ∂X onto round spheres via folding maps. The tools from [16] and [27] seem powerful
enough to eventually prove the Rank Rigidity Conjecture for a large number of CAT(0) spaces in
Case 3 via Leeb’s theorem.

One goal is to prove some higher dimensional version of Theorem 6. Currently, we can only
describe a few restrictions on where geodesics from a closed, invariant set in ∂X can enter a given
round sphere; we have not yet been able to develop the kind of precise statements we did in the
one-dimensional case that allowed us to prove Theorem 6.

Another goal is to extend a result of Lytchak [23]:
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Theorem 7 (Lytchak). Suppose ∂TX contains a proper, nonempty, Tits-closed subset of ∂TX that
contains all its own antipodes. If ∂TX is geodesically complete, then X is a higher rank symmetric
space or Euclidean building, or a nontrivial product.

This theorem provides a powerful means to establish rigidity, but unfortunately the conditions
under which ∂TX is geodesically complete remain unclear. Under certain conditions (like Theorem
6) we can prove this, but in general the problem looks intractable. However, we can prove Theorem
7 with “geodesically complete” replaced by the condition that for every pair p, q ∈ ∂TX, we have a
sequence of geodesic rays based at p that pass arbitrarily close to q. We hope to prove that ∂TX
satisfies this condition whenever diam(∂TX) = π and ∂TX is not a spherical join.

3.2. More Ergodic Properties of CAT(0) Spaces. The ergodic properties of the Bowen–
Margulis measure for compact, nonpositively curved Riemannian manifolds are very rich. We
would like to investigate to what extent they hold for cocompact CAT(0) spaces.

Knieper [21] showed the Bowen–Margulis measure on a compact, nonpositively-curved, rank one
Riemannian manifold is the unique measure of maximal entropy. We can prove the Bowen–Margulis
measure for a cocompact CAT(0) space, under a virtually torsion-free action, maximizes entropy.
We expect Knieper’s methods can be adapted to prove the measure of maximal entropy is unique.

We can establish precise asymptotic bounds on the growth rate of the number of closed geodesics
for compact locally CAT(0) spaces, as Margulis [24] did for compact, negatively curved manifolds.
To be precise, let Pt be the number of parallel classes of (oriented) closed geodesics of length ≤ t
in a compact locally CAT(0) space X such that the universal cover admits a rank one axis; then

lim
t→∞

Pt/
eht

ht = 1, where h is the entropy of the geodesic flow (which equals the critical exponent in

the Patterson–Sullivan construction on the universal cover). This result is currently being written
up [30]. Where the measure of maximal entropy is unique, we expect to be able to extend this result
to the non-cocompact case.
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