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If S has finite volume, then

#Gc(L) ∼ eδL
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where δ- topological entropy of geodesic flow
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If K = f (L), what is the asymptotic growth of Gc(L,K ) as
L→∞?
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For an arbitrary hyperbolic surface S,

#Gc(L, 0) ∼ c(S)L6g−6+2n

for c(S) a constant depending only on the geometry of S.

S - genus g , n punctures
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K = 0: Idea of proof

In each orbit:

s(L, γ) := #ModS · γ ∩ Gc(L)

Then Mirzakhani shows

s(L, γ) ∼ cγdSL6g−6+2n

(This part is hard!)

Number of orbits: Genus g =⇒ 1 + bg2 c orbits of simple
closed curves.
(Not so hard)

Therefore,
#Gc(L, 0) ∼ cSL6g−6+2n
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K = 1, 2, 3 . . . and other fixed K?

Gc(L, 1) :

The growth rate

#Gc(L,K ) ∼ cK (S)L6g−6+2n

has recently been shown by

– Mirzakhani for all K , if S hyperbolic
– Erlandsson-Souto extended this to S negatively curved or

flat, and other situations
– Previously, asymptotics for some K or some S by Rivin,

Erlandsson-Souto
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What is cS(K )?

Again, Mirzakhani’s approach: cut Gc(L,K ) into ModS orbits.

In each orbit: If i(γ, γ) = K , get

s(L, γ) ∼ cγdSL6g−6+2n

where dS depends only on S, not K !
(This part is really hard!)

Count orbits: Let

O(·,K ) = {ModS · γ | i(γ, γ) ≤ K}

This is a finite set!
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Therefore,
#Gc(L,K ) ∼ cS(K )L6g−6+2n

for
cS(K ) = dS

∑
O(·,K)

cγ

Suppose K = f (L).

Moral

Asymptotic growth ← Asymptotic growth
of #Gc(L,K ) of #O(·,K )
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Counting ModS orbits of closed geodesics
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Bounds on number of orbits

No asymptotic growth of #O(·,K ) is yet known, but get bounds:

Theorem (S-)

For any S,

1

12
2

√
K
12 ≤ #O(·,K ) ≤ edS

√
K log dS

√
K

where dS depends only on the topology of S.

Allows us to estimate cS(K )

Bounds rather far apart: we dig deeper!
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We cut Gc(L,K ) into ModS orbits.

Definition

O(L,K ) = {ModS · γ | ModS · γ ∩ Gc(L,K ) 6= ∅}

So, orbits that actually contain length L curves!
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Keeping track of length in orbits

Not all orbits have curves of length L!

Theorem (Basmajian, Gaster, Aougab-Gaster-Patel-S.)

Suppose γ shortest in ModS · γ and i(γ, γ) = K , then

c1
√

K ≤ l(γ) ≤ c2K

where c1, c2 depend only on geometry of S. These bounds are
tight!

Thus: O(L,K ) = O(·,K ) only when L ≥ c2K .



Notation and Background Counting curves Counting orbits Length of shortest curve

Keeping track of length in orbits

Not all orbits have curves of length L!

Theorem (Basmajian, Gaster, Aougab-Gaster-Patel-S.)

Suppose γ shortest in ModS · γ and i(γ, γ) = K , then

c1
√

K ≤ l(γ) ≤ c2K

where c1, c2 depend only on geometry of S. These bounds are
tight!

Thus: O(L,K ) = O(·,K ) only when L ≥ c2K .



Notation and Background Counting curves Counting orbits Length of shortest curve

Keeping track of length in orbits

Not all orbits have curves of length L!

Theorem (Basmajian, Gaster, Aougab-Gaster-Patel-S.)

Suppose γ shortest in ModS · γ and i(γ, γ) = K , then

c1
√

K ≤ l(γ) ≤ c2K

where c1, c2 depend only on geometry of S. These bounds are
tight!

Thus: O(L,K ) = O(·,K ) only when L ≥ c2K .



Notation and Background Counting curves Counting orbits Length of shortest curve

Keeping track of length in orbits

Get tighter bounds on #O(L,K ):

Theorem (S-)

On any S,

#O(L,K ) ≤ min

{
e
dS
√
K log

(
cS

L√
K
+cS

)
, edS

√
K log dS

√
K

}
where cS depends on metric, dS only on topology of S.
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Keeping track of length in orbits

What is the typical shortest curve?

Theorem (Lalley)

Let S be a closed surface. Choosing γL ∈ Gc(L) at random for
each L,

i(γL, γL) ∼ κ2L2 almost surely

where κ depends only on the geometry of S.

Conjecture

This is evidence for:

#O(
1

κ

√
K ,K ) ∼ #O(·,K )



Notation and Background Counting curves Counting orbits Length of shortest curve

Keeping track of length in orbits

What is the typical shortest curve?

Theorem (Lalley)

Let S be a closed surface. Choosing γL ∈ Gc(L) at random for
each L,

i(γL, γL) ∼ κ2L2 almost surely

where κ depends only on the geometry of S.

Conjecture

This is evidence for:

#O(
1

κ

√
K ,K ) ∼ #O(·,K )



Notation and Background Counting curves Counting orbits Length of shortest curve

Keeping track of length in orbits

Back to counting curves

Our conjecture implies

c1ec1
√
K ≤ #O(·,K ) ≤ c2ec2

√
K

for c1, c2 depending on the geometry of S.

Get much tighter
bounds on #Gc(L,K ):

c ′1ec1
√
KL6g−6+2n ≤ #Gc(L,K ) ≤ c ′2ec2

√
KL6g−6+2n

We should understand shortest curves in ModS orbits better!
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Curve lengths in Teichmüller space: New work
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Two questions

Let γ ∈ Gc . If φ ∈ ModS , note

lX (γ) = lφ·X (φ · γ)

Question (Minimize in thick part)

Find a metric Y so that γ is as short as possible.

Question (Minimize everywhere)

Fix a metric X . If γ′ ∈ ModS · γ is shortest, what is lX (γ′)?
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Theorem (Aougab, Gaster, Patel, S-)

Given γ with i(γ, γ) = K , we construct metric Y on S so that

lY (γ) ≤ cS
√

K

and inj(Y ) ≥ 1√
K

.

Have: cS depends only on topology of S, inj(Y ) -

injectivity radius.

Using Lenzhen-Rafi-Tao, this implies:

Corollary

If γ is shortest curve in ModS · γ for metric any X , then

lX (γ) ≤ cXK
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Further applications model:

Can construct many families {γK} where

lX (γK ) = O(
√
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(generic curves)

and where
lX (γK ) = O(K )

(worst case scenario)

Given any metric X , curve γ, can bound lX (γ) from below.
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Goal: relate l(γ) and i(γ, γ) to properties of c(γ).
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Length

Choose curves lengths for Π, get metric X . Then,

l(γ) � cX l(c(γ))

Relationship depends on X .
NB. l(c(γ)) can be estimated from its combinatorics.
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Combinatorics of c(γ)

Intermediate step: cut c(γ) into pieces:

Choose seam points on seam edges

Cut c(γ) into τ -arcs and β-arcs

Each arc has a twisting number

Revised goal: Relate l(γ) and i(γ, γ) to twisting numbers!



Notation and Background Counting curves Counting orbits Length of shortest curve

Combinatorics of c(γ)

Intermediate step: cut c(γ) into pieces:

Choose seam points on seam edges

Cut c(γ) into τ -arcs and β-arcs

Each arc has a twisting number

Revised goal: Relate l(γ) and i(γ, γ) to twisting numbers!



Notation and Background Counting curves Counting orbits Length of shortest curve

Combinatorics of c(γ)

Intermediate step: cut c(γ) into pieces:

Choose seam points on seam edges

Cut c(γ) into τ -arcs and β-arcs

Each arc has a twisting number

Revised goal: Relate l(γ) and i(γ, γ) to twisting numbers!



Notation and Background Counting curves Counting orbits Length of shortest curve

Combinatorics of c(γ)

Intermediate step: cut c(γ) into pieces:

Choose seam points on seam edges

Cut c(γ) into τ -arcs and β-arcs

Each arc has a twisting number

Revised goal: Relate l(γ) and i(γ, γ) to twisting numbers!



Notation and Background Counting curves Counting orbits Length of shortest curve

Combinatorics of c(γ)

Intermediate step: cut c(γ) into pieces:

Choose seam points on seam edges

Cut c(γ) into τ -arcs and β-arcs

Each arc has a twisting number

Revised goal: Relate l(γ) and i(γ, γ) to twisting numbers!



Notation and Background Counting curves Counting orbits Length of shortest curve

Combinatorics of c(γ)

Intermediate step: cut c(γ) into pieces:

Choose seam points on seam edges

Cut c(γ) into τ -arcs and β-arcs

Each arc has a twisting number

Revised goal: Relate l(γ) and i(γ, γ) to twisting numbers!



Notation and Background Counting curves Counting orbits Length of shortest curve

Twisting numbers, length and intersection

Given lengths of pants curves, estimate l(c(γ)) by twisting
numbers.
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If τi , τj have twisting numbers ti , tj , then they contribute
roughly min{ti , tj} to intersection.
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Twisting numbers, length and intersection

If βi , βj have twisting numbers bi , bj , then they contribute
roughly |bi − bj | to intersection.
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Use twisting numbers to relate length and intersection number
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Counting orbits

To bound #O(L,K ), take one pants decomposition from each
ModS orbit.

Count c(γ) by

Each c(γ) determined by its combinatorics

Bound possible twist numbers using L,K

Any set of twist numbers {t1, . . . , tn} and {b1, . . . , bm} ↔
finite number of c(γ).
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Examples of curves

Can construct γ whose

length is minimized in thick part of Teichmüller space

length is minimized in thin part of Teichmüller space
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