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v€ege

Non-simple, primitive
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NB: Geodesics are unique in their free homotopy class.

So, geodesics <+ free homotopy classes
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Counting non-simple closed geodesics
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Counting with respect to length

Theorem (Margulis)

If S has finite volume, then

el

#G(L) ~ 5L

where §- topological entropy of geodesic flow

f(L) ~g(L) if
lim @ =1
L—o0 g(L)

NB: S hyperbolic = § = 1.
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Counting with respect to length

Aside:
Lattice counting problem
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Counting with respect to length and intersection number

G(LK)={vegG [ I(v) < Li(v,7) <K}

~ € Go(L,4) v € G(L,5)
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Counting with respect to length and intersection number

G(LK)={vegG [ I(v) < Li(v,7) <K}

If K = f(L), what is the asymptotic growth of G(L, K) as
L—o0?
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Theorem (Mirzakhani)

For an arbitrary hyperbolic surface S,

#gC(L’ 0) ~ C(S)Lﬁg—6+2n

for c(S) a constant depending only on the geometry of S.
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K=0

G°(L,0) — simple closed curves

Theorem (Mirzakhani)

For an arbitrary hyperbolic surface S,

#gC(L’ 0) ~ C(S)Lﬁg—6+2n

for c(S) a constant depending only on the geometry of S.

S - genus g, n punctures
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K = 0: Idea of proof

Let Mods - mapping class group of S.
@ Modgs acts on G€ and preserves self-intersection!
@ Get orbits, Modg - 7v:
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o Number of orbits: Genus g = 1+ | 4] orbits of simple
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K = 0: Idea of proof

@ In each orbit:
s(L,7) := #Mods -y N G°(L)

Then Mirzakhani shows

S(L, ’7) ~ C’de L6g—6+2n
(This part is hard!)

o Number of orbits: Genus g = 1+ | 4] orbits of simple

closed curves.
(Not so hard)

Therefore,
#gC(L’ 0) ~ Cs L6g76+2n
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K =1,2,3. .. and other fixed K?

The growth rate
#G(L, K) ~ cx(S)Lo8 02"

has recently been shown by

— Mirzakhani for all K, if S hyperbolic

— Erlandsson-Souto extended this to S negatively curved or
flat, and other situations

— Previously, asymptotics for some K or some S by Rivin,
Erlandsson-Souto
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Summary

Arbitrary K

Growth like & Growth like L88~6+27
Exponential Polynomial

Problem
Interpolate between these extremes with K = f(L).
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What is cs(K)?

Again, Mirzakhani's approach: cut G°(L, K) into Modgs orbits.
@ In each orbit: If i(y,7v) = K, get

s(L,7) ~ ¢ dsL%8~0+2"

where ds depends only on S, not K!
(This part is really hard!)

o Count orbits: Let

O(,K) = {Mods -~ | i(v,7) < K}

This is a finite set!
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Suppose K = f(L).
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What is cs(K)?

Therefore,

for

Suppose K = f(L).

Asymptotic growth <+ Asymptotic growth
of #gC(L7 K) of #O(aK)
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Counting Modg orbits of closed geodesics
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Bounds on number of orbits

TNA
Mods - v € O(-,4) S @

No asymptotic growth of #O(-, K) is yet known, but get bounds:

Theorem (S-)
For any S,

%2 i < #0(-,K) < edsVKlogdsvVK

where ds depends only on the topology of S.

@ Allows us to estimate cs(K)
@ Bounds rather far apart: we dig deeper!
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Keeping track of length in orbits

1A%
Mods -y € O(+,4) = @

We cut G¢(L, K) into Mods orbits.

Definition

O(L, K) = {Mods - v | Mods - YN G(L, K) # 0}

So, orbits that actually contain length L curves!
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Theorem (Basmajian, Gaster, Aougab-Gaster-Patel-S.)

Suppose 7y shortest in Mods -~ and i(7,v) = K, then
avK < I(7) < K

where c1, ¢ depend only on geometry of S. These bounds are
tight!
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Keeping track of length in orbits

Not all orbits have curves of length L!

Theorem (Basmajian, Gaster, Aougab-Gaster-Patel-S.)

Suppose 7y shortest in Mods -~ and i(7,v) = K, then
avK < I(7) < K

where c1, ¢ depend only on geometry of S. These bounds are
tight!

Thus: O(L,K) = O(+, K) only when L > oK.
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Keeping track of length in orbits

Get tighter bounds on #O(L, K):

Theorem (S-)
On any S,

£O(L, K) < min {edsﬁ og (¢ f+es) edsmogdsﬁ}

where cs depends on metric, ds only on topology of S.
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Keeping track of length in orbits

What is the typical shortest curve?

Theorem (Lalley)

Let S be a closed surface. Choosing v, € G°(L) at random for
each L,

i(yL,yL) ~ k2L? almost surely

where k depends only on the geometry of S.
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Keeping track of length in orbits

What is the typical shortest curve?

Theorem (Lalley)

Let S be a closed surface. Choosing v, € G°(L) at random for
each L,

i(yL,yL) ~ k2L? almost surely

where k depends only on the geometry of S.

Conjecture

| A\

This is evidence for:

#O( VK, K) ~ #0(- K)
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Keeping track of length in orbits

Back to counting curves

Our conjecture implies
clecl‘/R <#0(+,K) < czeczﬁ

for c1, c» depending on the geometry of S. Get much tighter
bounds on #G°(L, K):

C{eqx/RL6g—6+2n § #gC(L’ K) S CéeCQ\/RL6g—6+2n

We should understand shortest curves in Modg orbits better!



Length of shortest curve
®00

Curve lengths in Teichmiiller space: New work
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Two questions

Let v € G°. If ¢ € Modg, note

Ix(7) = lp-x(¢-7)

Question (Minimize in thick part)

Find a metric Y so that ~ is as short as possible.

Question (Minimize everywhere)

Fix a metric X. If v/ € Mods -~y is shortest, what is Ix(")?
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Length of shortest curve
ooe

Theorem (Aougab, Gaster, Patel, S-)

Given ~ with i(v,) = K, we construct metric Y on S so that
Iy(7) < csVK

and inj(Y) > ﬁ Have: cs depends only on topology of S, inj(Y) -

injectivity radius.

Using Lenzhen-Rafi-Tao, this implies:

If ~v is shortest curve in Mods - v for metric any X, then

Ix(7) < exK




The combinatorial model
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Further applications model:

e Can construct many families {~yx} where
Ix(7k) = O(VK)

(generic curves)
@ and where
Ix(vk) = O(K)
(worst case scenario)

e Given any metric X, curve v, can bound /x(y) from below.
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We find the metric using a combinatorial model for curves on
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Ingredients: Output: curve c(7)
@ Geodesic y @ Piecewise geodesic
@ Pants decomposition 1 of & composed of
o Cut pairs of pants along @ Arcs along pants curves

matching seams



We find the metric using a combinatorial model for curves on
surfaces. (Also used to bound #O(L, K)).

N

Ingredients: Output: curve c(7)
@ Geodesic y @ Piecewise geodesic
@ Pants decomposition 1 of & composed of

o Cut pairs of pants along @ Arcs along pants curves

matching seams @ Arcs along seams
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Choose curves lengths for I1, get metric X. Then,

I(7) =< exI(c(v))

Relationship depends on X.
NB. /(c(7)) can be estimated from its combinatorics.
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Combinatorics of ¢(7)

Intermediate step: cut c(v) into pieces:

@ Choose seam points on seam edges
e Cut ¢(7) into T-arcs and

@ Each arc has a twisting number

Revised goal: Relate /() and i(v,~) to twisting numbers!



Twisting numbers, length and intersection

@ Given lengths of pants curves, estimate /(c(y)) by twisting
numbers.

logy
+
=

N

c




Twisting numbers, length and intersection

e If 7;,7; have twisting numbers t;, t;, then they contribute
roughly min{t;, t;} to intersection.
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o If 7;, B; have twisting numbers t;, b;, then they contribute
roughly t; to intersection.




Twisting numbers, length and intersection

e If 3;, B; have twisting numbers b;, b;, then they contribute
roughly |b; — bj| to intersection.
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Optimal metric

To build a metric X on S where /(y) < cxVK:
@ Choose a good pants decomposition
@ Choose lengths of pants curves

@ Use twisting numbers to relate length and intersection number
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Counting orbits

To bound #0O(L, K), take one pants decomposition from each
Mods orbit. Count c(7y) by

e Each c(v) determined by its combinatorics
@ Bound possible twist numbers using L, K

@ Any set of twist numbers {t1,...,t,} and {b1,...,bn} <
finite number of c(v).



Examples of curves

Can construct « whose
@ length is minimized in thick part of Teichmiiller space

@ length is minimized in thin part of Teichmiiller space
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Length minimized in thick part
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