Counting curves

Counting orbits

Length of shortest curve

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Applications of a combinatorial model for curves

Jenya Sapir

University of Illinois at Urbana-Champaign

March 22, 2016

Notation and Background ●○	Counting curves	Counting orbits	Length of shortest curve
Notation			
Notation and Ba	ckground		

• \mathcal{S} - surface, \mathcal{P} - pair of pants

Negatively curved (usually hyperbolic), geodesic boundary

Notation and Background

- ${\mathcal S}$ surface, ${\mathcal P}$ pair of pants
- $\bullet \ \mathcal{G}^{c}$ closed geodesics

Non-simple, primitive

Notation and Background ○●	Counting curves	Counting orbits	Length of shortest curve
Background			
Notation and Ba	ackground		

NB: Geodesics are *unique* in their free homotopy class.

NB: Geodesics are *unique* in their free homotopy class.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

NB: Geodesics are unique in their free homotopy class.

So, geodesics \leftrightarrow free homotopy classes

Notation and Background	Counting curves •00000000000	Counting orbits	Length of shortest curve
History			

Counting non-simple closed geodesics

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Notation and Background	Counting curves 00000000000	Counting orbits	Length of shortest curve
History			

$$\mathcal{G}^{c}(L) = \{ \gamma \in \mathcal{G}^{c} \mid I(\gamma) \leq L \}$$

Notation and Background	Counting curves	Counting orbits	Length of shortest curve
History			

$$\mathcal{G}^{c}(L) = \{ \gamma \in \mathcal{G}^{c} \mid I(\gamma) \leq L \}$$

Theorem (Margulis)

If S has finite volume, then

$$\#\mathcal{G}^{c}(L)\sim rac{e^{\delta L}}{\delta L}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where $\delta\text{-}$ topological entropy of geodesic flow

Notation and Background	Counting curves	Counting orbits 0000000	Length of shortest curve
Listen.			

Theorem (Margulis)

If S has finite volume, then

$$\#\mathcal{G}^{c}(L)\sim rac{e^{\delta L}}{\delta L}$$

where $\delta\text{-}$ topological entropy of geodesic flow

$$f(L) \sim g(L)$$
 if
 $\lim_{L \to \infty} \frac{f(L)}{g(L)} = 1$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Notation and Background	Counting curves	Counting orbits 0000000	Length of shortest curve
Listen.			

Theorem (Margulis)

If S has finite volume, then

$$\#\mathcal{G}^{c}(L)\sim rac{e^{\delta L}}{\delta L}$$

where $\delta\text{-}$ topological entropy of geodesic flow

$$f(L) \sim g(L)$$
 if
 $\lim_{L \to \infty} \frac{f(L)}{g(L)} = 1$

NB: S hyperbolic $\implies \delta = 1$.

Notation	and	Background

Counting curves

Counting orbits

Length of shortest curve

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

History

Counting with respect to length

Aside: Lattice counting problem

Notation and Background	Counting curves	Counting orbits	Length of shortest curve
History			

Counting with respect to length and intersection number

$\mathcal{G}^{c}(L, K) = \{ \gamma \in \mathcal{G}^{c} \mid I(\gamma) \leq L, i(\gamma, \gamma) \leq K \}$

Notation and Background	Counting curves	Counting orbits	Length of shortest curve
History			

Counting with respect to length and intersection number

$\mathcal{G}^{c}(L, \mathcal{K}) = \{ \gamma \in \mathcal{G}^{c} \mid I(\gamma) \leq L, i(\gamma, \gamma) \leq \mathcal{K} \}$

Notation and Background	Counting curves	Counting orbits	Length of shortest curve
History			

Counting with respect to length and intersection number

$\mathcal{G}^{c}(L, K) = \{ \gamma \in \mathcal{G}^{c} \mid I(\gamma) \leq L, i(\gamma, \gamma) \leq K \}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Question

If K = f(L), what is the asymptotic growth of $\mathcal{G}^{c}(L, K)$ as $L \to \infty$?

Notation and Background	Counting curves	Counting orbits 0000000	Length of shortest curve
History			
K = 0			

$\mathcal{G}^{c}(L,0)$ – simple closed curves

Notation and Background	Counting curves	Counting orbits 0000000	Length of shortest curve
History			
K = 0			

$\mathcal{G}^{c}(L,0)$ – simple closed curves

Theorem (Mirzakhani)

For an arbitrary hyperbolic surface S,

$$\#\mathcal{G}^{c}(L,0) \sim c(\mathcal{S})L^{6g-6+2n}$$

for c(S) a constant depending only on the geometry of S.

Notation and Background	Counting curves	Counting orbits 0000000	Length of shortest curve
History			
K = 0			

$\mathcal{G}^{c}(L,0)$ – simple closed curves

Theorem (Mirzakhani)

For an arbitrary hyperbolic surface S,

$$\#\mathcal{G}^{c}(L,0) \sim c(\mathcal{S})L^{6g-6+2n}$$

for c(S) a constant depending only on the geometry of S.

S - genus g, n punctures

Notation and Background	Counting curves	Counting orbits 0000000	Length of shortest curve
History			
K = 0 Idea of	proof		

Let $Mod_{\mathcal{S}}$ - mapping class group of \mathcal{S} .

Notation and Background	Counting curves	Counting orbits	Length of shortest curve
History			
K = 0: Idea of	proof		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let $\mathsf{Mod}_{\mathcal{S}}$ - mapping class group of \mathcal{S} .

 $\bullet \ \operatorname{Mod}_{\mathcal{S}}$ acts on \mathcal{G}^c

Notation and Background	Counting curves	Counting orbits 0000000	Length of shortest curve
History			
K = 0 Idea of	proof		

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let $Mod_{\mathcal{S}}$ - mapping class group of \mathcal{S} .

• Mod_S acts on \mathcal{G}^c and preserves self-intersection!

- Mod_S acts on \mathcal{G}^c and preserves self-intersection!
- Get orbits, $Mod_{\mathcal{S}} \cdot \gamma$:

- Mod_S acts on \mathcal{G}^c and preserves self-intersection!
- Get orbits, $Mod_{\mathcal{S}} \cdot \gamma$:

- Mod_S acts on \mathcal{G}^c and preserves self-intersection!
- Get orbits, $Mod_{\mathcal{S}} \cdot \gamma$:

- Mod_S acts on \mathcal{G}^c and preserves self-intersection!
- Get orbits, $Mod_{\mathcal{S}} \cdot \gamma$:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Notation and Background	Counting curves	Counting orbits	Length of shortest curve
History			
K = 0 Idea of	proof		

$$s(L,\gamma) := \# \mathsf{Mod}_{\mathcal{S}} \cdot \gamma \cap \mathcal{G}^{c}(L)$$

Notation and Background	Counting curves	Counting orbits	Length of shortest curve
History			
K = 0: Idea of pro	oof		

$$s(L,\gamma) := \# \mathsf{Mod}_{\mathcal{S}} \cdot \gamma \cap \mathcal{G}^{c}(L)$$

Then Mirzakhani shows

$$s(L,\gamma) \sim c_{\gamma} d_{\mathcal{S}} L^{6g-6+2n}$$

Notation and Background	Counting curves	Counting orbits	Length of shortest curve
History			
K = 0: Idea of	proof		

$$s(L,\gamma) := \# \mathsf{Mod}_{\mathcal{S}} \cdot \gamma \cap \mathcal{G}^{c}(L)$$

Then Mirzakhani shows

$$s(L,\gamma) \sim c_{\gamma} d_{\mathcal{S}} L^{6g-6+2n}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

(This part is hard!)

Notation and Background	Counting curves	Counting orbits 0000000	Length of shortest curve
History			
K = 0: Idea of	proof		

$$s(L,\gamma) := \# \mathsf{Mod}_{\mathcal{S}} \cdot \gamma \cap \mathcal{G}^{c}(L)$$

Then Mirzakhani shows

$$s(L,\gamma) \sim c_{\gamma} d_{\mathcal{S}} L^{6g-6+2n}$$

(This part is hard!)

• Number of orbits: Genus $g \implies 1 + \lfloor \frac{g}{2} \rfloor$ orbits of simple closed curves.

Notation and Background	Counting curves	Counting orbits	Length of shortest curve
History			
K = 0: Idea of	proof		

$$s(L,\gamma) := \# \mathsf{Mod}_{\mathcal{S}} \cdot \gamma \cap \mathcal{G}^{c}(L)$$

Then Mirzakhani shows

$$s(L,\gamma) \sim c_{\gamma} d_{\mathcal{S}} L^{6g-6+2n}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(This part is hard!)

• Number of orbits: Genus $g \implies 1 + \lfloor \frac{g}{2} \rfloor$ orbits of simple closed curves. (Not so hard)

Notation and Background	Counting curves	Counting orbits	Length of shortest curve
History			
K = 0: Idea of	proof		

$$s(L,\gamma) := \# \mathsf{Mod}_{\mathcal{S}} \cdot \gamma \cap \mathcal{G}^{c}(L)$$

Then Mirzakhani shows

$$s(L,\gamma) \sim c_{\gamma} d_{\mathcal{S}} L^{6g-6+2n}$$

(This part is hard!)

• Number of orbits: Genus $g \implies 1 + \lfloor \frac{g}{2} \rfloor$ orbits of simple closed curves. (Not so hard)

Therefore,

$$\#\mathcal{G}^{c}(L,0) \sim c_{\mathcal{S}}L^{6g-6+2n}$$

Notation and Background	Counting curves	Counting orbits	Length of shortest curve
History			
K = 1, 2, 3	and other fixe	ed <i>K</i> ?	

 $\mathcal{G}^{c}(L,1)$:

The growth rate

$$\#\mathcal{G}^{\mathsf{c}}(\mathsf{L},\mathsf{K})\sim \mathsf{c}_{\mathsf{K}}(\mathcal{S})\mathsf{L}^{\mathsf{6g-6+2n}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

has recently been shown by

Notation and Background	Counting curves	Counting orbits	Length of shortest curve
History			
K = 1, 2, 3	. and other fixe	ed <i>K</i> ?	

 $\mathcal{G}^{c}(L,1)$:

The growth rate

$$\#\mathcal{G}^{c}(L,K) \sim c_{K}(\mathcal{S})L^{6g-6+2n}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

has recently been shown by - Mirzakhani for all K, if S hyperbolic

Notation and Background	Counting curves	Counting orbits	Length of shortest curve
History			
K = 1, 2, 3 .	. and other fixe	ed <i>K</i> ?	

 $\mathcal{G}^{c}(L,1)$:

The growth rate

$$\#\mathcal{G}^{c}(L,K) \sim c_{K}(\mathcal{S})L^{6g-6+2n}$$

has recently been shown by

– Mirzakhani for all K, if S hyperbolic

– Erlandsson-Souto extended this to S negatively curved or flat, and other situations

Notation and Background	Counting curves	Counting orbits	Length of shortest curve
History			
K = 1, 2, 3 .	. and other fixe	ed <i>K</i> ?	

 $\mathcal{G}^{c}(L,1)$:

The growth rate

$$\#\mathcal{G}^{c}(L,K) \sim c_{K}(\mathcal{S})L^{6g-6+2n}$$

has recently been shown by

– Mirzakhani for all K, if S hyperbolic

– Erlandsson-Souto extended this to ${\cal S}$ negatively curved or flat, and other situations

- Previously, asymptotics for some K or some S by Rivin, Erlandsson-Souto

Notation and Background	Counting curves	Counting orbits	Length of shortest cu
History			
Summary			

Arbitrary K

K fixed

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>
Notation and Background	Counting curves	Counting orbits	Length of shortest
History			
Summary			

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Notation	and	Background

Counting curves

Counting orbits

Length of shortest curve

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Summary

History

Notation and Background	Counting curves	Counting orbits	Length of shortest curve
History			
Summary			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Notation and Background	Counting curves	Counting orbits	Length of shortest curve
History			
What is $c_{\mathcal{S}}(K)$?			

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Again, Mirzakhani's approach: cut $\mathcal{G}^{c}(L, K)$ into $Mod_{\mathcal{S}}$ orbits.

 $s(L,\gamma)$

$$s(L,\gamma) \sim c_{\gamma} d_{\mathcal{S}} L^{6g-6+2n}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where $d_{\mathcal{S}}$ depends only on \mathcal{S} , not K!

$$s(L,\gamma)\sim c_{\gamma}d_{\mathcal{S}}L^{6g-6+2n}$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

where d_S depends only on S, not K! (*This part is really hard*!)

$$s(L,\gamma) \sim c_{\gamma} d_{\mathcal{S}} L^{6g-6+2n}$$

where d_S depends only on S, not K! (*This part is really hard*!)

• Count orbits: Let

$$\mathcal{O}(\cdot, \mathsf{K}) = \{ \mathsf{Mod}_{\mathcal{S}} \cdot \gamma \mid i(\gamma, \gamma) \leq \mathsf{K} \}$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

$$s(L,\gamma) \sim c_{\gamma} d_{\mathcal{S}} L^{6g-6+2n}$$

where d_S depends only on S, not K! (*This part is really hard*!)

• Count orbits: Let

$$\mathcal{O}(\cdot, \mathsf{K}) = \{\mathsf{Mod}_{\mathcal{S}} \cdot \gamma \mid i(\gamma, \gamma) \leq \mathsf{K}\}$$

This is a finite set!

Notation and Background	Counting curves	Counting orbits	Length of shortest curve
History			
What is $c_{\mathcal{S}}(K)$?			

Therefore,

$$\#\mathcal{G}^{c}(L,K) \sim c_{\mathcal{S}}(K)L^{6g-6+2n}$$

for

$$c_{\mathcal{S}}(K) = d_{\mathcal{S}} \sum_{O(\cdot,K)} c_{\gamma}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Notation and Background	Counting curves 0000000000●	Counting orbits 0000000	Length of shortest curve
History			
What is $c_{\mathcal{S}}(K)$?			

Therefore,

$$\#\mathcal{G}^{c}(L,K) \sim c_{\mathcal{S}}(K)L^{6g-6+2n}$$

for

$$c_{\mathcal{S}}(\mathcal{K}) = d_{\mathcal{S}} \sum_{O(\cdot,\mathcal{K})} c_{\gamma}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Suppose K = f(L).

Notation and Background	Counting curves 0000000000●	Counting orbits 0000000	Length of shortest curve
History			
What is $c_{\mathcal{S}}(K)$?			

Therefore,

$$\#\mathcal{G}^{c}(L,K) \sim c_{\mathcal{S}}(K)L^{6g-6+2n}$$

for

$$c_{\mathcal{S}}(\mathcal{K}) = d_{\mathcal{S}} \sum_{O(\cdot,\mathcal{K})} c_{\gamma}$$

Suppose K = f(L).

Moral

 $\begin{array}{rcl} \text{Asymptotic growth} & \leftarrow & \text{Asymptotic growth} \\ \text{of } \# \mathcal{G}^c(L, K) & & \text{of } \# \mathcal{O}(\cdot, K) \end{array}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Notation and Background	Counting curves	Counting orbits •••••••	Length of shortest curve
Bounds on number of orbits			

Counting $\mathsf{Mod}_\mathcal{S}$ orbits of closed geodesics

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Notation and Background 00 Counting curves

Counting orbits

Length of shortest curve

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Bounds on number of orbits

 $\operatorname{Mod}_{\mathcal{S}} \cdot \gamma \in \mathcal{O}(\cdot, 4)$

00	00000000000000000000000000000000000000	00000000000000000000000000000000000000
Bounds on number of orbits		
($\mathrm{Mod}_{\mathcal{S}}\cdot\gamma\in\mathcal{O}(\cdot,4)$	

No asymptotic growth of $\#\mathcal{O}(\cdot, K)$ is yet known, but get bounds:

・ロト・日本・モト・モート ヨー うへで

Notation and Background	Counting curves	Counting orbits ○●○○○○○	Length of shortest curve
Bounds on number of orbits			
Me	$\mathrm{pd}_{\mathcal{S}}\cdot\gamma\in\mathcal{O}(\cdot,4)$		
No asymptotic grow	wth of $\#\mathcal{O}(\cdot, K)$ is	yet known, but ge	t bounds:

Theorem (S-) For any S, $\frac{1}{12} 2^{\sqrt{\frac{K}{12}}} \leq \#\mathcal{O}(\cdot, K) \leq e^{d_S \sqrt{K} \log d_S \sqrt{K}}$ where d_S depends only on the topology of S.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Notation and Background	Counting curves	Counting orbits ○●○○○○○	Length of shortest curve
Bounds on number of orbits			
M	$\operatorname{Iod}_{\mathcal{S}} \cdot \gamma \in \mathcal{O}(\cdot, 4)$		

No asymptotic growth of $\#\mathcal{O}(\cdot, K)$ is yet known, but get bounds:

Theorem (S-) For any S, $\frac{1}{12}2^{\sqrt{\frac{K}{12}}} \le \#\mathcal{O}(\cdot, K) \le e^{d_S\sqrt{K}\log d_S\sqrt{K}}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where $d_{\mathcal{S}}$ depends only on the topology of \mathcal{S} .

• Allows us to estimate $c_{\mathcal{S}}(K)$

Notation and Background	Counting curves	Counting orbits ○●○○○○○	Length of shortest curve
Bounds on number of orbits			
	$\operatorname{od}_{\mathcal{S}} \cdot \gamma \in \mathcal{O}(\cdot, 4)$		

No asymptotic growth of $\#\mathcal{O}(\cdot, K)$ is yet known, but get bounds:

Theorem (S-)

For any S,

$$\frac{1}{12}2^{\sqrt{\frac{K}{12}}} \leq \#\mathcal{O}(\cdot,K) \leq e^{d_{\mathcal{S}}\sqrt{K}\log d_{\mathcal{S}}\sqrt{K}}$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ りへぐ

where $d_{\mathcal{S}}$ depends only on the topology of \mathcal{S} .

- Allows us to estimate $c_{\mathcal{S}}(K)$
- Bounds rather far apart: we dig deeper!

Notation	and	Background

Counting curves

Counting orbits

Length of shortest curve

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Keeping track of length in orbits

We cut $\mathcal{G}^{c}(L, K)$ into $Mod_{\mathcal{S}}$ orbits.

Keeping track of length in orbits			
Notation and Background	Counting curves	Counting orbits	Len

 $\operatorname{Mod}_{\mathcal{S}} \cdot \gamma \in \mathcal{O}(\cdot, 4)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

We cut $\mathcal{G}^{c}(L, K)$ into Mod_S orbits.

Definition

$$\mathcal{O}(L, K) = \{\mathsf{Mod}_{\mathcal{S}} \cdot \gamma \mid \mathsf{Mod}_{\mathcal{S}} \cdot \gamma \cap \mathcal{G}^{c}(L, K) \neq \emptyset\}$$

So, orbits that actually contain length L curves!

Notation and Background	Counting curves	Counting orbits	Length of shortest curve
Keeping track of length in orbits			

Not all orbits have curves of length L!

Notation and Background	Counting curves	Counting orbits	Length of shortest curve
		000000	
Keeping track of length in orbits			

Not all orbits have curves of length L!

Theorem (Basmajian, Gaster, Aougab-Gaster-Patel-S.)

Suppose γ shortest in $Mod_{S} \cdot \gamma$ and $i(\gamma, \gamma) = K$, then

 $c_1\sqrt{K} \leq l(\gamma) \leq c_2K$

where c_1 , c_2 depend only on geometry of S. These bounds are tight!

Notation and Background	Counting curves	Counting orbits	Length of shortest curve
		000000	
Keeping track of length in orbits			

Not all orbits have curves of length *L*!

Theorem (Basmajian, Gaster, Aougab-Gaster-Patel-S.)

Suppose γ shortest in $Mod_{S} \cdot \gamma$ and $i(\gamma, \gamma) = K$, then

 $c_1\sqrt{K} \leq l(\gamma) \leq c_2K$

where c_1 , c_2 depend only on geometry of S. These bounds are tight!

Thus: $\mathcal{O}(L, K) = \mathcal{O}(\cdot, K)$ only when $L \ge c_2 K$.

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

Notation and Background	Counting curves	Counting orbits	Length of shortest curve
Keeping track of length in orbits			

Get tighter bounds on $\#\mathcal{O}(L, K)$:

Theorem (S-)

On any S,

$$\#\mathcal{O}(L,K) \leq \min\left\{e^{d_{\mathcal{S}}\sqrt{K}\log\left(c_{\mathcal{S}}\frac{L}{\sqrt{K}}+c_{\mathcal{S}}\right)}, e^{d_{\mathcal{S}}\sqrt{K}\log d_{\mathcal{S}}\sqrt{K}}\right\}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

where c_S depends on metric, d_S only on topology of S.

What is the typical shortest curve?

Theorem (Lalley)

Let S be a closed surface. Choosing $\gamma_L \in \mathcal{G}^c(L)$ at random for each L,

 $i(\gamma_L, \gamma_L) \sim \kappa^2 L^2$ almost surely

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

where κ depends only on the geometry of S.

 Notation and Background
 Counting curves
 Counting orbits
 Length of shortest curve

 oo
 oo
 oo
 oo
 oo

 Keeping track of length in orbits

What is the typical shortest curve?

Theorem (Lalley)

Let S be a closed surface. Choosing $\gamma_L \in \mathcal{G}^c(L)$ at random for each L,

$$i(\gamma_L,\gamma_L)\sim\kappa^2 L^2$$
 almost surely

where κ depends only on the geometry of S.

Conjecture

This is evidence for:

$$\#\mathcal{O}(rac{1}{\kappa}\sqrt{K},K)\sim\#\mathcal{O}(\cdot,K)$$

Notation and Background	Counting curves	Counting orbits ○○○○○○●	Length of shortest curve
Keeping track of length in orbits			
Back to counting	g curves		

$$c_1 e^{c_1 \sqrt{K}} \leq \# \mathcal{O}(\cdot, K) \leq c_2 e^{c_2 \sqrt{K}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

for c_1, c_2 depending on the geometry of S.

Notation and Background	Counting curves	Counting orbits ○○○○○○●	Length of shortest curve
Keeping track of length in orbits			
Back to countin	g curves		

$$c_1 e^{c_1 \sqrt{K}} \leq \# \mathcal{O}(\cdot, K) \leq c_2 e^{c_2 \sqrt{K}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

for c_1, c_2 depending on the geometry of S. Get much tighter bounds on $\#\mathcal{G}^c(L, K)$:

Notation and Background	Counting curves	Counting orbits ○○○○○○●	Length of shortest curve
Keeping track of length in orbits			
Back to countir			

$$c_1 e^{c_1 \sqrt{K}} \leq \# \mathcal{O}(\cdot, K) \leq c_2 e^{c_2 \sqrt{K}}$$

for c_1, c_2 depending on the geometry of S. Get much tighter bounds on $\#\mathcal{G}^c(L, K)$:

$$c_1'e^{c_1\sqrt{K}}L^{6g-6+2n} \leq \#\mathcal{G}^c(L,K) \leq c_2'e^{c_2\sqrt{K}}L^{6g-6+2n}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Notation and Background	Counting curves	Counting orbits ○○○○○○●	Length of shortest curve
Keeping track of length in orbits			
Back to countin			

$$c_1 e^{c_1 \sqrt{K}} \leq \# \mathcal{O}(\cdot, K) \leq c_2 e^{c_2 \sqrt{K}}$$

for c_1, c_2 depending on the geometry of S. Get much tighter bounds on $\#\mathcal{G}^c(L, K)$:

$$c_1'e^{c_1\sqrt{K}}L^{6g-6+2n} \leq \#\mathcal{G}^c(L,K) \leq c_2'e^{c_2\sqrt{K}}L^{6g-6+2n}$$

We should understand shortest curves in Mod_S orbits better!

Notation	and	Background

Counting curves

Counting orbits

Length of shortest curve

Curve lengths in Teichmüller space: New work

Notation and Background	Counting curves	Counting orbits 0000000	Length of shortest curve
Two questions			

Let $\gamma \in \mathcal{G}^{c}$. If $\phi \in \mathsf{Mod}_{\mathcal{S}}$, note

$$I_{X}(\gamma) = I_{\phi \cdot X}(\phi \cdot \gamma)$$

Notation and Background	Counting curves	Counting orbits	Length of shortest curve
Two questions			

Let $\gamma \in \mathcal{G}^{c}$. If $\phi \in \mathsf{Mod}_{\mathcal{S}}$, note

$$I_{X}(\gamma) = I_{\phi \cdot X}(\phi \cdot \gamma)$$

Question (Minimize in thick part)

Find a metric Y so that γ is as short as possible.

Question (Minimize everywhere)

Fix a metric X. If $\gamma' \in Mod_{S} \cdot \gamma$ is shortest, what is $I_X(\gamma')$?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Notation and Background	Counting curves	Cor

Counting orbits

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem (Aougab, Gaster, Patel, S-)

Given γ with $i(\gamma, \gamma) = K$, we construct metric Y on S so that

$$l_Y(\gamma) \le c_S \sqrt{K}$$

and $inj(Y) \geq \frac{1}{\sqrt{K}}$.

Notation	and	Background

Counting curves

Counting orbits

Length of shortest curve

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Theorem (Aougab, Gaster, Patel, S-)

Given γ with $i(\gamma, \gamma) = K$, we construct metric Y on S so that

$$l_Y(\gamma) \le c_S \sqrt{K}$$

and $inj(Y) \ge \frac{1}{\sqrt{K}}$. Have: c_S depends only on topology of S, inj(Y) - injectivity radius.

Notation	and	Background

Counting curves

Theorem (Aougab, Gaster, Patel, S-)

Given γ with $i(\gamma, \gamma) = K$, we construct metric Y on S so that

$$I_Y(\gamma) \leq c_S \sqrt{K}$$

and $inj(Y) \ge \frac{1}{\sqrt{K}}$. Have: c_S depends only on topology of S, inj(Y) - injectivity radius.

Using Lenzhen-Rafi-Tao, this implies:

Corollary

If γ is shortest curve in $\mathsf{Mod}_{\mathcal{S}}\cdot\gamma$ for metric any X, then

 $l_X(\gamma) \leq c_X K$

・ロット 4回ッ 4回ッ 4回ッ 4日ッ
Notation	and	Background

Counting orbits

Length of shortest curve

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The combinatorial model

Notation and Background	Counting curves	Counting orbits	Length of shortest curve

Further applications model:

• Can construct many families $\{\gamma_K\}$ where

 $I_X(\gamma_K) = O(\sqrt{K})$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(generic curves)

Notation and Background	Counting curves	Counting orbits	Length of shortest curve

Further applications model:

• Can construct many families $\{\gamma_K\}$ where

$$I_X(\gamma_K) = O(\sqrt{K})$$

(generic curves)

and where

$$I_X(\gamma_K) = O(K)$$

(worst case scenario)

• Given any metric X, curve γ , can bound $I_X(\gamma)$ from below.

lotation and Background	Counting curves	Counting orbits	Length of shortest curve

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

We find the metric using a combinatorial model for curves on surfaces.

Counting curves

Counting orbits

Length of shortest curve

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We find the metric using a combinatorial model for curves on surfaces. (Also used to bound $\#\mathcal{O}(L, K)$).

Counting curves

Counting orbits

Length of shortest curve

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We find the metric using a combinatorial model for curves on surfaces. (Also used to bound $\#\mathcal{O}(L, K)$).

Counting curves

Counting orbits

Length of shortest curve

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We find the metric using a combinatorial model for curves on surfaces. (Also used to bound $\#\mathcal{O}(L, K)$).

Ingredients:

Counting curves

Counting orbits

Length of shortest curve

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

We find the metric using a combinatorial model for curves on surfaces. (Also used to bound $\#\mathcal{O}(L, K)$).

Ingredients:

 \bullet Geodesic γ

Counting curves

Counting orbits

Length of shortest curve

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

We find the metric using a combinatorial model for curves on surfaces. (Also used to bound $\#\mathcal{O}(L, K)$).

Ingredients:

- $\bullet~{\rm Geodesic}~\gamma$
- Pants decomposition Π of ${\mathcal S}$

Counting curves

Counting orbits

Length of shortest curve

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

We find the metric using a combinatorial model for curves on surfaces. (Also used to bound $\#\mathcal{O}(L, K)$).

Ingredients:

- \bullet Geodesic γ
- Pants decomposition Π of ${\mathcal S}$
- Cut pairs of pants along matching seams

Counting orbits

Length of shortest curve

We find the metric using a combinatorial model for curves on surfaces. (Also used to bound $\#\mathcal{O}(L, K)$).

Ingredients:

- \bullet Geodesic γ
- Pants decomposition Π of ${\mathcal S}$
- Cut pairs of pants along matching seams

Output: curve $c(\gamma)$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Counting orbits

Length of shortest curve

We find the metric using a combinatorial model for curves on surfaces. (Also used to bound $\#\mathcal{O}(L, K)$).

Ingredients:

- $\bullet~{\rm Geodesic}~\gamma$
- Pants decomposition Π of ${\mathcal S}$
- Cut pairs of pants along matching seams

Output: curve $c(\gamma)$

• Piecewise geodesic composed of

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Counting orbits

Length of shortest curve

We find the metric using a combinatorial model for curves on surfaces. (Also used to bound $\#\mathcal{O}(L, K)$).

Ingredients:

- \bullet Geodesic γ
- Pants decomposition Π of ${\mathcal S}$
- Cut pairs of pants along matching seams

Output: curve $c(\gamma)$

- Piecewise geodesic composed of
- Arcs along pants curves

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Counting orbits

Length of shortest curve

We find the metric using a combinatorial model for curves on surfaces. (Also used to bound $\#\mathcal{O}(L, K)$).

Ingredients:

- $\bullet~{\rm Geodesic}~\gamma$
- Pants decomposition Π of ${\mathcal S}$
- Cut pairs of pants along matching seams

Output: curve $c(\gamma)$

- Piecewise geodesic composed of
- Arcs along pants curves

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Arcs along seams

Counting orbits

Length of shortest curve

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Goal: relate $I(\gamma)$ and $i(\gamma, \gamma)$ to properties of $c(\gamma)$.

Notation	and	Background

Counting orbits

Length of shortest curve

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Length

Notation	and	Background

Counting orbits

Length of shortest curve

Length

Choose curves lengths for Π , get metric X.

Notation	and	Background

Counting orbits

Length of shortest curve

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Length

Choose curves lengths for Π , get metric X. Then,

 $I(\gamma) \asymp c_X I(c(\gamma))$

Notation	and	Background

Counting orbits

Length of shortest curve

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Length

Choose curves lengths for Π , get metric X. Then,

$$l(\gamma) \asymp c_X l(c(\gamma))$$

Relationship depends on X. **NB.** $I(c(\gamma))$ can be estimated from its combinatorics.

Counting curves

Counting orbits

Length of shortest curve

Combinatorics of $c(\gamma)$

Intermediate step: cut $c(\gamma)$ into pieces:

Notation and Background $\circ\circ$

Counting curves

Counting orbits

Length of shortest curve

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Combinatorics of $c(\gamma)$

Intermediate step: cut $c(\gamma)$ into pieces:

Counting curves

Counting orbits

Length of shortest curve

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Combinatorics of $c(\gamma)$

Intermediate step: cut $c(\gamma)$ into pieces:

• Choose seam points on seam edges

Counting curves

Counting orbits

Length of shortest curve

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Combinatorics of $c(\gamma)$

Intermediate step: cut $c(\gamma)$ into pieces:

- Choose seam points on seam edges
- Cut $c(\gamma)$ into τ -arcs and β -arcs

Counting curves

Counting orbits

Length of shortest curve

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Combinatorics of $c(\gamma)$

Intermediate step: cut $c(\gamma)$ into pieces:

- Choose seam points on seam edges
- Cut $c(\gamma)$ into τ -arcs and β -arcs
- Each arc has a twisting number

Counting curves

Counting orbits

Length of shortest curve

Combinatorics of $c(\gamma)$

Intermediate step: cut $c(\gamma)$ into pieces:

- Choose seam points on seam edges
- Cut $c(\gamma)$ into τ -arcs and β -arcs
- Each arc has a twisting number

Revised goal: Relate $I(\gamma)$ and $i(\gamma, \gamma)$ to twisting numbers!

Counting orbits

Length of shortest curve

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Twisting numbers, length and intersection

Given lengths of pants curves, estimate *l*(*c*(γ)) by twisting numbers.

Counting curves

Counting orbits

Length of shortest curve

Twisting numbers, length and intersection

 If τ_i, τ_j have twisting numbers t_i, t_j, then they contribute roughly min{t_i, t_j} to intersection.

Counting curves

Counting orbits

Length of shortest curve

Twisting numbers, length and intersection

 If τ_i, β_j have twisting numbers t_i, b_j, then they contribute roughly t_i to intersection.

Counting curves

Counting orbits

Length of shortest curve

Twisting numbers, length and intersection

• If β_i, β_j have twisting numbers b_i, b_j , then they contribute roughly $|b_i - b_j|$ to intersection.

Notation and Background 00	Counting curves	Counting orbits	Length of shortest curve

Optimal metric

To build a metric X on S where $I(\gamma) \leq c_X \sqrt{K}$:

Notation	and	Background

Counting orbits

Length of shortest curve

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Optimal metric

To build a metric X on S where $I(\gamma) \leq c_X \sqrt{K}$:

• Choose a good pants decomposition

Notation	and	Background

Counting orbits

Length of shortest curve

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Optimal metric

To build a metric X on S where $I(\gamma) \leq c_X \sqrt{K}$:

- Choose a good pants decomposition
- Choose lengths of pants curves

Notation	and	Background

Counting orbits

Length of shortest curve

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Optimal metric

To build a metric X on S where $I(\gamma) \leq c_X \sqrt{K}$:

- Choose a good pants decomposition
- Choose lengths of pants curves
- Use twisting numbers to relate length and intersection number

Notation and Background	Counting curves	Counting orbits 0000000	Length of shortest curve
Counting orbits			

To bound #O(L, K), take one pants decomposition from each Mod_S orbit.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Notation and Background	Counting curves	Counting orbits 0000000	Length of shortest curve
Counting orbits			

To bound $\#\mathcal{O}(L, K)$, take one pants decomposition from each Mod_S orbit. Count $c(\gamma)$ by

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Notation and Background	Counting curves	Counting orbits 0000000	Length of shortest curve

Counting orbits

To bound $\#\mathcal{O}(L, K)$, take one pants decomposition from each Mod_S orbit. Count $c(\gamma)$ by

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Each $c(\gamma)$ determined by its combinatorics
Notation and Background 00	Counting curves	Counting orbits	Length of shortest curve

Counting orbits

To bound $\#\mathcal{O}(L, K)$, take one pants decomposition from each Mod_S orbit. Count $c(\gamma)$ by

- Each $c(\gamma)$ determined by its combinatorics
- Bound possible twist numbers using *L*, *K*

Notation and Background 00	Counting curves	Counting orbits	Length of shortest curve

Counting orbits

To bound $\#\mathcal{O}(L, K)$, take one pants decomposition from each Mod_S orbit. Count $c(\gamma)$ by

- Each $c(\gamma)$ determined by its combinatorics
- Bound possible twist numbers using L, K
- Any set of twist numbers $\{t_1, \ldots, t_n\}$ and $\{b_1, \ldots, b_m\} \leftrightarrow$ finite number of $c(\gamma)$.

Notation and Background 00 Counting curves

Counting orbits

Length of shortest curve

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Examples of curves

Can construct γ whose

- length is minimized in thick part of Teichmüller space
- length is minimized in thin part of Teichmüller space

Counting curves

Counting orbits

Length of shortest curve

Length minimized in thick part

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Counting curves

Counting orbits

Length of shortest curve

Length minimized in thick part

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Counting curves

Counting orbits

Length of shortest curve

Length minimized in thick part

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Counting curves

Counting orbits

Length of shortest curve

Length minimized in thin part

Counting curves

Counting orbits

Length of shortest curve

Length minimized in thin part

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Counting curves

Counting orbits

Length of shortest curve

Length minimized in thin part

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 のへぐ