Applications of a combinatorial model for curves

Jenya Sapir
University of Illinois at Urbana-Champaign

March 22, 2016

Notation

Notation and Background

- \mathcal{S} - surface, \mathcal{P} - pair of pants

Negatively curved (usually hyperbolic), geodesic boundary

Notation

Notation and Background

- \mathcal{S} - surface, \mathcal{P} - pair of pants
- \mathcal{G}^{c} - closed geodesics

Non-simple, primitive

Background

Notation and Background

NB: Geodesics are unique in their free homotopy class.

Background

Notation and Background

NB: Geodesics are unique in their free homotopy class.

Background

Notation and Background

NB: Geodesics are unique in their free homotopy class.

So, geodesics \leftrightarrow free homotopy classes

Counting non-simple closed geodesics

Counting with respect to length

$$
\mathcal{G}^{c}(L)=\left\{\gamma \in \mathcal{G}^{c} \mid I(\gamma) \leq L\right\}
$$

Counting with respect to length

$$
\mathcal{G}^{c}(L)=\left\{\gamma \in \mathcal{G}^{c} \mid I(\gamma) \leq L\right\}
$$

Theorem (Margulis)

If \mathcal{S} has finite volume, then

$$
\# \mathcal{G}^{c}(L) \sim \frac{e^{\delta L}}{\delta L}
$$

where δ - topological entropy of geodesic flow

History

Counting with respect to length

Theorem (Margulis)

If \mathcal{S} has finite volume, then

$$
\# \mathcal{G}^{c}(L) \sim \frac{e^{\delta L}}{\delta L}
$$

where δ - topological entropy of geodesic flow

$$
\begin{aligned}
& f(L) \sim g(L) \text { if } \\
& \lim _{L \rightarrow \infty} \frac{f(L)}{g(L)}=1
\end{aligned}
$$

History

Counting with respect to length

Theorem (Margulis)

If \mathcal{S} has finite volume, then

$$
\# \mathcal{G}^{c}(L) \sim \frac{e^{\delta L}}{\delta L}
$$

where δ - topological entropy of geodesic flow

$$
\begin{aligned}
& f(L) \sim g(L) \text { if } \\
& \lim _{L \rightarrow \infty} \frac{f(L)}{g(L)}=1
\end{aligned}
$$

NB: \mathcal{S} hyperbolic $\Longrightarrow \delta=1$.

Counting with respect to length

Aside:
Lattice counting problem

Counting with respect to length and intersection number

$$
\mathcal{G}^{c}(L, K)=\left\{\gamma \in \mathcal{G}^{c} \mid I(\gamma) \leq L, i(\gamma, \gamma) \leq K\right\}
$$

Counting with respect to length and intersection number

$$
\mathcal{G}^{c}(L, K)=\left\{\gamma \in \mathcal{G}^{c} \mid I(\gamma) \leq L, i(\gamma, \gamma) \leq K\right\}
$$

$\gamma \in \mathcal{G}^{c}(L, 4)$

$\gamma \in \mathcal{G}^{c}(L, 5)$

Counting with respect to length and intersection number

$$
\mathcal{G}^{c}(L, K)=\left\{\gamma \in \mathcal{G}^{c} \mid I(\gamma) \leq L, i(\gamma, \gamma) \leq K\right\}
$$

$\gamma \in \mathcal{G}^{c}(L, 4)$

$\gamma \in \mathcal{G}^{c}(L, 5)$

Question

If $K=f(L)$, what is the asymptotic growth of $\mathcal{G}^{c}(L, K)$ as
$L \rightarrow \infty$?

$\mathcal{G}^{\mathcal{C}}(L, 0)$ - simple closed curves

$\mathcal{G}^{C}(L, 0)$ - simple closed curves

Theorem (Mirzakhani)

For an arbitrary hyperbolic surface \mathcal{S},

$$
\# \mathcal{G}^{c}(L, 0) \sim c(\mathcal{S}) L^{6 g-6+2 n}
$$

for $c(\mathcal{S})$ a constant depending only on the geometry of \mathcal{S}.

$\mathcal{G}^{C}(L, 0)$ - simple closed curves

Theorem (Mirzakhani)

For an arbitrary hyperbolic surface \mathcal{S},

$$
\# \mathcal{G}^{c}(L, 0) \sim c(\mathcal{S}) L^{6 g-6+2 n}
$$

for $c(\mathcal{S})$ a constant depending only on the geometry of \mathcal{S}.
\mathcal{S} - genus g, n punctures

$K=0$: Idea of proof

Let $\operatorname{Mod}_{\mathcal{S}}$ - mapping class group of \mathcal{S}.

$K=0$: Idea of proof

Let $\operatorname{Mod}_{\mathcal{S}}$ - mapping class group of \mathcal{S}.

- $\operatorname{Mod}_{\mathcal{S}}$ acts on \mathcal{G}^{c}

$K=0$: Idea of proof

Let $\operatorname{Mod}_{\mathcal{S}}$ - mapping class group of \mathcal{S}.

- $\operatorname{Mod} \mathcal{S}_{\mathcal{S}}$ acts on \mathcal{G}^{c} and preserves self-intersection!

$K=0$: Idea of proof

Let $\operatorname{Mod}_{\mathcal{S}}$ - mapping class group of \mathcal{S}.

- $\operatorname{Mod} \mathcal{S}_{\mathcal{S}}$ acts on \mathcal{G}^{c} and preserves self-intersection!
- Get orbits, $\operatorname{Mod}_{\mathcal{S}} \cdot \gamma$:

$K=0$: Idea of proof

Let $\operatorname{Mod}_{\mathcal{S}}$ - mapping class group of \mathcal{S}.

- $\operatorname{Mod} \mathcal{S}_{\mathcal{S}}$ acts on \mathcal{G}^{c} and preserves self-intersection!
- Get orbits, $\operatorname{Mod}_{\mathcal{S}} \cdot \gamma$:

$K=0$: Idea of proof

Let $\operatorname{Mod}_{\mathcal{S}}$ - mapping class group of \mathcal{S}.

- $\operatorname{Mod} \mathcal{S}_{\mathcal{S}}$ acts on \mathcal{G}^{c} and preserves self-intersection!
- Get orbits, $\operatorname{Mod}_{\mathcal{S}} \cdot \gamma$:

$K=0$: Idea of proof

Let $\operatorname{Mod}_{\mathcal{S}}$ - mapping class group of \mathcal{S}.

- $\operatorname{Mod} \mathcal{S}_{\mathcal{S}}$ acts on \mathcal{G}^{c} and preserves self-intersection!
- Get orbits, $\operatorname{Mod}_{\mathcal{S}} \cdot \gamma$:

$K=0$: Idea of proof

- In each orbit:

$$
s(L, \gamma):=\# \operatorname{Mod}_{\mathcal{S}} \cdot \gamma \cap \mathcal{G}^{c}(L)
$$

$K=0$: Idea of proof

- In each orbit:

$$
s(L, \gamma):=\# \operatorname{Mod}_{\mathcal{S}} \cdot \gamma \cap \mathcal{G}^{c}(L)
$$

Then Mirzakhani shows

$$
s(L, \gamma) \sim c_{\gamma} d_{\mathcal{S}} L^{6 g-6+2 n}
$$

$K=0$: Idea of proof

- In each orbit:

$$
s(L, \gamma):=\# \operatorname{Mod}_{\mathcal{S}} \cdot \gamma \cap \mathcal{G}^{c}(L)
$$

Then Mirzakhani shows

$$
s(L, \gamma) \sim c_{\gamma} d_{\mathcal{S}} L^{6 g-6+2 n}
$$

(This part is hard!)

$K=0:$ Idea of proof

- In each orbit:

$$
s(L, \gamma):=\# \operatorname{Mod}_{\mathcal{S}} \cdot \gamma \cap \mathcal{G}^{c}(L)
$$

Then Mirzakhani shows

$$
s(L, \gamma) \sim c_{\gamma} d_{\mathcal{S}} L^{6 g-6+2 n}
$$

(This part is hard!)

- Number of orbits: Genus $g \Longrightarrow 1+\left\lfloor\frac{g}{2}\right\rfloor$ orbits of simple closed curves.

$K=0:$ Idea of proof

- In each orbit:

$$
s(L, \gamma):=\# \operatorname{Mod}_{\mathcal{S}} \cdot \gamma \cap \mathcal{G}^{c}(L)
$$

Then Mirzakhani shows

$$
s(L, \gamma) \sim c_{\gamma} d_{\mathcal{S}} L^{6 g-6+2 n}
$$

(This part is hard!)

- Number of orbits: Genus $g \Longrightarrow 1+\left\lfloor\frac{g}{2}\right\rfloor$ orbits of simple closed curves.
(Not so hard)

$K=0$: Idea of proof

- In each orbit:

$$
s(L, \gamma):=\# \operatorname{Mod}_{\mathcal{S}} \cdot \gamma \cap \mathcal{G}^{c}(L)
$$

Then Mirzakhani shows

$$
s(L, \gamma) \sim c_{\gamma} d_{\mathcal{S}} L^{6 g-6+2 n}
$$

(This part is hard!)

- Number of orbits: Genus $g \Longrightarrow 1+\left\lfloor\frac{g}{2}\right\rfloor$ orbits of simple closed curves.
(Not so hard)
Therefore,

$$
\# \mathcal{G}^{c}(L, 0) \sim c_{\mathcal{S}} L^{6 g-6+2 n}
$$

$K=1,2,3 \ldots$ and other fixed K ?

$$
\mathcal{G}^{c}(L, 1):
$$

The growth rate

$$
\# \mathcal{G}^{c}(L, K) \sim c_{K}(\mathcal{S}) L^{6 g-6+2 n}
$$

has recently been shown by

$K=1,2,3 \ldots$ and other fixed K ?

$$
\mathcal{G}^{c}(L, 1):
$$

The growth rate

$$
\# \mathcal{G}^{c}(L, K) \sim c_{K}(\mathcal{S}) L^{6 g-6+2 n}
$$

has recently been shown by

- Mirzakhani for all K, if S hyperbolic

$K=1,2,3 \ldots$ and other fixed K ?

$$
\mathcal{G}^{c}(L, 1):
$$

The growth rate

$$
\# \mathcal{G}^{c}(L, K) \sim c_{K}(\mathcal{S}) L^{6 g-6+2 n}
$$

has recently been shown by

- Mirzakhani for all K, if S hyperbolic
- Erlandsson-Souto extended this to S negatively curved or flat, and other situations

$K=1,2,3 \ldots$ and other fixed K ?

$$
\mathcal{G}^{c}(L, 1):
$$

The growth rate

$$
\# \mathcal{G}^{c}(L, K) \sim c_{K}(\mathcal{S}) L^{6 g-6+2 n}
$$

has recently been shown by

- Mirzakhani for all K, if S hyperbolic
- Erlandsson-Souto extended this to S negatively curved or flat, and other situations
- Previously, asymptotics for some K or some S by Rivin, Erlandsson-Souto

Summary

Arbitrary K

K fixed

Summary

Arbitrary K

K fixed

Growth like $\frac{e^{L}}{L}$
Growth like $L^{6 g-6+2 n}$

Summary

Arbitrary K

K fixed
Growth like $\frac{e^{L}}{L}$ Exponential

Growth like $L^{6 g-6+2 n}$ Polynomial

Summary

Arbitrary K

Growth like $\frac{e^{L}}{L}$ Exponential

K fixed

Growth like $L^{6 g-6+2 n}$ Polynomial

Problem

Interpolate between these extremes with $K=f(L)$.

What is $c_{S}(K)$?

Again, Mirzakhani's approach: cut $\mathcal{G}^{\mathcal{C}}(L, K)$ into $\operatorname{Mod}_{\mathcal{S}}$ orbits.

What is $c_{S}(K)$?

Again, Mirzakhani's approach: cut $\mathcal{G}^{c}(L, K)$ into $\operatorname{Mod}_{\mathcal{S}}$ orbits.

- In each orbit: If $i(\gamma, \gamma)=K$, get

$$
s(L, \gamma)
$$

What is $c_{S}(K) ?$

Again, Mirzakhani's approach: cut $\mathcal{G}^{c}(L, K)$ into $\operatorname{Mod}_{\mathcal{S}}$ orbits.

- In each orbit: If $i(\gamma, \gamma)=K$, get

$$
s(L, \gamma) \sim c_{\gamma} d_{\mathcal{S}} L^{6 g-6+2 n}
$$

where $d_{\mathcal{S}}$ depends only on \mathcal{S}, not K !

What is $c_{S}(K) ?$

Again, Mirzakhani's approach: cut $\mathcal{G}^{c}(L, K)$ into $\operatorname{Mod}_{\mathcal{S}}$ orbits.

- In each orbit: If $i(\gamma, \gamma)=K$, get

$$
s(L, \gamma) \sim c_{\gamma} d_{\mathcal{S}} L^{6 g-6+2 n}
$$

where $d_{\mathcal{S}}$ depends only on \mathcal{S}, not K !
(This part is really hard!)

What is $c_{S}(K)$?

Again, Mirzakhani's approach: cut $\mathcal{G}^{c}(L, K)$ into $\operatorname{Mod}_{\mathcal{S}}$ orbits.

- In each orbit: If $i(\gamma, \gamma)=K$, get

$$
s(L, \gamma) \sim c_{\gamma} d_{\mathcal{S}} L^{6 g-6+2 n}
$$

where $d_{\mathcal{S}}$ depends only on \mathcal{S}, not K !
(This part is really hard!)

- Count orbits: Let

$$
\mathcal{O}(\cdot, K)=\left\{\operatorname{Mod}_{\mathcal{S}} \cdot \gamma \mid i(\gamma, \gamma) \leq K\right\}
$$

What is $c_{S}(K)$?

Again, Mirzakhani's approach: cut $\mathcal{G}^{c}(L, K)$ into $\operatorname{Mod}_{\mathcal{S}}$ orbits.

- In each orbit: If $i(\gamma, \gamma)=K$, get

$$
s(L, \gamma) \sim c_{\gamma} d_{\mathcal{S}} L^{6 g-6+2 n}
$$

where $d_{\mathcal{S}}$ depends only on \mathcal{S}, not K !
(This part is really hard!)

- Count orbits: Let

$$
\mathcal{O}(\cdot, K)=\left\{\operatorname{Mod}_{\mathcal{S}} \cdot \gamma \mid i(\gamma, \gamma) \leq K\right\}
$$

This is a finite set!

What is $c_{S}(K)$?

Therefore,

$$
\# \mathcal{G}^{c}(L, K) \sim c_{\mathcal{S}}(K) L^{6 g-6+2 n}
$$

for

$$
c_{\mathcal{S}}(K)=d_{\mathcal{S}} \sum_{O(\cdot, K)} c_{\gamma}
$$

What is $c_{S}(K)$?

Therefore,

$$
\# \mathcal{G}^{c}(L, K) \sim c_{\mathcal{S}}(K) L^{6 g-6+2 n}
$$

for

$$
c_{\mathcal{S}}(K)=d_{\mathcal{S}} \sum_{O(\cdot, K)} c_{\gamma}
$$

Suppose $K=f(L)$.

What is $c_{S}(K) ?$

Therefore,

$$
\# \mathcal{G}^{c}(L, K) \sim c_{\mathcal{S}}(K) L^{6 g-6+2 n}
$$

for

$$
c_{\mathcal{S}}(K)=d_{\mathcal{S}} \sum_{O(\cdot, K)} c_{\gamma}
$$

Suppose $K=f(L)$.
Moral
Asymptotic growth \leftarrow Asymptotic growth of $\# \mathcal{G}^{c}(L, K)$ of $\# \mathcal{O}(\cdot, K)$

Counting Mod \mathcal{S} orbits of closed geodesics

No asymptotic growth of $\# \mathcal{O}(\cdot, K)$ is yet known, but get bounds:

No asymptotic growth of $\# \mathcal{O}(\cdot, K)$ is yet known, but get bounds:

Theorem (S-)

For any \mathcal{S},

$$
\frac{1}{12} 2^{\sqrt{\frac{K}{12}}} \leq \# \mathcal{O}(\cdot, K) \leq e^{d_{\mathcal{S}} \sqrt{K} \log d_{\mathcal{S}} \sqrt{K}}
$$

where $d_{\mathcal{S}}$ depends only on the topology of \mathcal{S}.

No asymptotic growth of $\# \mathcal{O}(\cdot, K)$ is yet known, but get bounds:

Theorem (S-)

For any \mathcal{S},

$$
\frac{1}{12} 2^{\sqrt{\frac{K}{12}}} \leq \# \mathcal{O}(\cdot, K) \leq e^{d_{\mathcal{S}} \sqrt{K} \log d_{\mathcal{S}} \sqrt{K}}
$$

where $d_{\mathcal{S}}$ depends only on the topology of \mathcal{S}.

- Allows us to estimate $c_{\mathcal{S}}(K)$

No asymptotic growth of $\# \mathcal{O}(\cdot, K)$ is yet known, but get bounds:

Theorem (S-)

For any \mathcal{S},

$$
\frac{1}{12} 2^{\sqrt{\frac{K}{12}}} \leq \# \mathcal{O}(\cdot, K) \leq e^{d_{\mathcal{S}} \sqrt{K} \log d_{\mathcal{S}} \sqrt{K}}
$$

where $d_{\mathcal{S}}$ depends only on the topology of \mathcal{S}.

- Allows us to estimate $c_{\mathcal{S}}(K)$
- Bounds rather far apart: we dig deeper!

We cut $\mathcal{G}^{c}(L, K)$ into $\operatorname{Mod}_{\mathcal{S}}$ orbits.

We cut $\mathcal{G}^{c}(L, K)$ into Mod $_{\mathcal{S}}$ orbits.

Definition

$$
\mathcal{O}(L, K)=\left\{\operatorname{Mod}_{\mathcal{S}} \cdot \gamma \mid \operatorname{Mod}_{\mathcal{S}} \cdot \gamma \cap \mathcal{G}^{c}(L, K) \neq \emptyset\right\}
$$

So, orbits that actually contain length L curves!

Not all orbits have curves of length L!

Not all orbits have curves of length L!

Theorem (Basmajian, Gaster, Aougab-Gaster-Patel-S.)

Suppose γ shortest in $\operatorname{Mod}_{\mathcal{S}} \cdot \gamma$ and $i(\gamma, \gamma)=K$, then

$$
c_{1} \sqrt{K} \leq I(\gamma) \leq c_{2} K
$$

where c_{1}, c_{2} depend only on geometry of \mathcal{S}. These bounds are tight!

Not all orbits have curves of length L!

Theorem (Basmajian, Gaster, Aougab-Gaster-Patel-S.)

Suppose γ shortest in $\operatorname{Mod}_{\mathcal{S}} \cdot \gamma$ and $i(\gamma, \gamma)=K$, then

$$
c_{1} \sqrt{K} \leq I(\gamma) \leq c_{2} K
$$

where c_{1}, c_{2} depend only on geometry of \mathcal{S}. These bounds are tight!

Thus: $\mathcal{O}(L, K)=\mathcal{O}(\cdot, K)$ only when $L \geq c_{2} K$.

Get tighter bounds on $\# \mathcal{O}(L, K)$:

Theorem (S-)

On any \mathcal{S},

$$
\# \mathcal{O}(L, K) \leq \min \left\{e^{d_{\mathcal{S}} \sqrt{K} \log \left(c_{\mathcal{S}} \frac{L}{\sqrt{K}}+c_{\mathcal{S}}\right)}, e^{d_{\mathcal{S}} \sqrt{K} \log d_{\mathcal{S}} \sqrt{K}}\right\}
$$

where $c_{\mathcal{S}}$ depends on metric, $d_{\mathcal{S}}$ only on topology of \mathcal{S}.

Keeping track of length in orbits

What is the typical shortest curve?

Theorem (Lalley)

Let \mathcal{S} be a closed surface. Choosing $\gamma_{L} \in \mathcal{G}^{c}(L)$ at random for each L,

$$
i\left(\gamma_{L}, \gamma_{L}\right) \sim \kappa^{2} L^{2} \text { almost surely }
$$

where κ depends only on the geometry of \mathcal{S}.

What is the typical shortest curve?

Theorem (Lalley)

Let \mathcal{S} be a closed surface. Choosing $\gamma_{L} \in \mathcal{G}^{c}(L)$ at random for each L,

$$
i\left(\gamma_{L}, \gamma_{L}\right) \sim \kappa^{2} L^{2} \text { almost surely }
$$

where κ depends only on the geometry of \mathcal{S}.

Conjecture
This is evidence for:

$$
\# \mathcal{O}\left(\frac{1}{\kappa} \sqrt{K}, K\right) \sim \# \mathcal{O}(\cdot, K)
$$

Back to counting curves

Our conjecture implies

$$
c_{1} e^{c_{1} \sqrt{K}} \leq \# \mathcal{O}(\cdot, K) \leq c_{2} e^{c_{2} \sqrt{K}}
$$

for c_{1}, c_{2} depending on the geometry of \mathcal{S}.

Back to counting curves

Our conjecture implies

$$
c_{1} e^{c_{1} \sqrt{K}} \leq \# \mathcal{O}(\cdot, K) \leq c_{2} e^{c_{2} \sqrt{K}}
$$

for c_{1}, c_{2} depending on the geometry of \mathcal{S}. Get much tighter bounds on $\# \mathcal{G}^{c}(L, K)$:

Back to counting curves

Our conjecture implies

$$
c_{1} e^{c_{1} \sqrt{K}} \leq \# \mathcal{O}(\cdot, K) \leq c_{2} e^{c_{2} \sqrt{K}}
$$

for c_{1}, c_{2} depending on the geometry of \mathcal{S}. Get much tighter bounds on $\# \mathcal{G}^{c}(L, K)$:

$$
c_{1}^{\prime} e^{c_{1} \sqrt{K}} L^{6 g-6+2 n} \leq \# \mathcal{G}^{c}(L, K) \leq c_{2}^{\prime} e^{c_{2} \sqrt{K}} L^{6 g-6+2 n}
$$

Back to counting curves

Our conjecture implies

$$
c_{1} e^{c_{1} \sqrt{K}} \leq \# \mathcal{O}(\cdot, K) \leq c_{2} e^{c_{2} \sqrt{K}}
$$

for c_{1}, c_{2} depending on the geometry of \mathcal{S}. Get much tighter bounds on $\# \mathcal{G}^{c}(L, K)$:

$$
c_{1}^{\prime} e^{c_{1} \sqrt{K}} L^{6 g-6+2 n} \leq \# \mathcal{G}^{c}(L, K) \leq c_{2}^{\prime} e^{c_{2} \sqrt{K}} L^{6 g-6+2 n}
$$

We should understand shortest curves in $\operatorname{Mod}_{\mathcal{S}}$ orbits better!

Curve lengths in Teichmüller space: New work

Two questions

Let $\gamma \in \mathcal{G}^{c}$. If $\phi \in \operatorname{Mod}_{\mathcal{S}}$, note

$$
I_{X}(\gamma)=I_{\phi \cdot x}(\phi \cdot \gamma)
$$

Two questions

Let $\gamma \in \mathcal{G}^{c}$. If $\phi \in \operatorname{Mod}_{\mathcal{S}}$, note

$$
I_{X}(\gamma)=I_{\phi \cdot x}(\phi \cdot \gamma)
$$

Question (Minimize in thick part)

Find a metric Y so that γ is as short as possible.

Question (Minimize everywhere)
Fix a metric X. If $\gamma^{\prime} \in$ Mod $_{\mathcal{S}} \cdot \gamma$ is shortest, what is $I_{X}\left(\gamma^{\prime}\right)$?

Theorem (Aougab, Gaster, Patel, S-)

Given γ with $i(\gamma, \gamma)=K$, we construct metric Y on \mathcal{S} so that

$$
I_{Y}(\gamma) \leq c_{\mathcal{S}} \sqrt{K}
$$

and $\operatorname{inj}(Y) \geq \frac{1}{\sqrt{K}}$.

Theorem (Aougab, Gaster, Patel, S-)

Given γ with $i(\gamma, \gamma)=K$, we construct metric Y on \mathcal{S} so that

$$
I_{Y}(\gamma) \leq c_{\mathcal{S}} \sqrt{K}
$$

and $\operatorname{inj}(Y) \geq \frac{1}{\sqrt{K}}$. Have: $c_{\mathcal{S}}$ depends only on topology of $\mathcal{S}, \operatorname{inj}(Y)$ injectivity radius.

Theorem (Aougab, Gaster, Patel, S-)

Given γ with $i(\gamma, \gamma)=K$, we construct metric Y on \mathcal{S} so that

$$
I_{Y}(\gamma) \leq c_{\mathcal{S}} \sqrt{K}
$$

and $\operatorname{inj}(Y) \geq \frac{1}{\sqrt{K}}$. Have: $c_{\mathcal{S}}$ depends only on topology of $\mathcal{S}, \operatorname{inj}(Y)$ injectivity radius.

Using Lenzhen-Rafi-Tao, this implies:
Corollary
If γ is shortest curve in $\operatorname{Mod}_{\mathcal{S}} \cdot \gamma$ for metric any X, then

$$
I_{X}(\gamma) \leq c_{X} K
$$

The combinatorial model

Further applications model:

- Can construct many families $\left\{\gamma_{K}\right\}$ where

$$
I_{x}\left(\gamma_{K}\right)=O(\sqrt{K})
$$

(generic curves)

Further applications model:

- Can construct many families $\left\{\gamma_{K}\right\}$ where

$$
I_{X}\left(\gamma_{K}\right)=O(\sqrt{K})
$$

(generic curves)

- and where

$$
I_{X}\left(\gamma_{K}\right)=O(K)
$$

(worst case scenario)

- Given any metric X, curve γ, can bound $I_{X}(\gamma)$ from below.

We find the metric using a combinatorial model for curves on surfaces.

We find the metric using a combinatorial model for curves on surfaces. (Also used to bound $\# \mathcal{O}(L, K)$).

We find the metric using a combinatorial model for curves on surfaces. (Also used to bound $\# \mathcal{O}(L, K)$).

We find the metric using a combinatorial model for curves on surfaces. (Also used to bound $\# \mathcal{O}(L, K)$).

Ingredients:

We find the metric using a combinatorial model for curves on surfaces. (Also used to bound $\# \mathcal{O}(L, K)$).

Ingredients:

- Geodesic γ

We find the metric using a combinatorial model for curves on surfaces. (Also used to bound $\# \mathcal{O}(L, K)$).

Ingredients:

- Geodesic γ
- Pants decomposition Π of \mathcal{S}

We find the metric using a combinatorial model for curves on surfaces. (Also used to bound $\# \mathcal{O}(L, K)$).

Ingredients:

- Geodesic γ
- Pants decomposition Π of \mathcal{S}
- Cut pairs of pants along matching seams

We find the metric using a combinatorial model for curves on surfaces. (Also used to bound $\# \mathcal{O}(L, K)$).

Ingredients:

- Geodesic γ
- Pants decomposition Π of \mathcal{S}
- Cut pairs of pants along matching seams

Output: curve $c(\gamma)$

We find the metric using a combinatorial model for curves on surfaces. (Also used to bound $\# \mathcal{O}(L, K)$).

Ingredients:

- Geodesic γ
- Pants decomposition Π of \mathcal{S}
- Cut pairs of pants along matching seams

Output: curve $c(\gamma)$

- Piecewise geodesic composed of

We find the metric using a combinatorial model for curves on surfaces. (Also used to bound $\# \mathcal{O}(L, K)$).

Ingredients:

- Geodesic γ
- Pants decomposition Π of \mathcal{S}
- Cut pairs of pants along matching seams

Output: curve $c(\gamma)$

- Piecewise geodesic composed of
- Arcs along pants curves

We find the metric using a combinatorial model for curves on surfaces. (Also used to bound $\# \mathcal{O}(L, K)$).

Ingredients:

- Geodesic γ
- Pants decomposition Π of \mathcal{S}
- Cut pairs of pants along matching seams

Output: curve $c(\gamma)$

- Piecewise geodesic composed of
- Arcs along pants curves
- Arcs along seams

Goal: relate $I(\gamma)$ and $i(\gamma, \gamma)$ to properties of $c(\gamma)$.

Length

Length

Choose curves lengths for Π, get metric X.

Length

Choose curves lengths for Π, get metric X. Then,

$$
I(\gamma) \asymp c_{X} I(c(\gamma))
$$

Length

Choose curves lengths for Π, get metric X. Then,

$$
I(\gamma) \asymp c_{X} I(c(\gamma))
$$

Relationship depends on X.
NB. $I(c(\gamma))$ can be estimated from its combinatorics.

Combinatorics of $c(\gamma)$

Intermediate step: cut $c(\gamma)$ into pieces:

Combinatorics of $c(\gamma)$

Intermediate step: cut $c(\gamma)$ into pieces:

Combinatorics of $c(\gamma)$

Intermediate step: cut $c(\gamma)$ into pieces:

- Choose seam points on seam edges

Combinatorics of $c(\gamma)$

Intermediate step: cut $c(\gamma)$ into pieces:

- Choose seam points on seam edges
- Cut $c(\gamma)$ into τ-arcs and β-arcs

Combinatorics of $c(\gamma)$

Intermediate step: cut $c(\gamma)$ into pieces:

- Choose seam points on seam edges
- Cut $c(\gamma)$ into τ-arcs and β-arcs
- Each arc has a twisting number

Combinatorics of $c(\gamma)$

Intermediate step: cut $c(\gamma)$ into pieces:

- Choose seam points on seam edges
- Cut $c(\gamma)$ into τ-arcs and β-arcs
- Each arc has a twisting number

Revised goal: Relate $I(\gamma)$ and $i(\gamma, \gamma)$ to twisting numbers!

Twisting numbers, length and intersection

- Given lengths of pants curves, estimate $I(c(\gamma))$ by twisting numbers.

Twisting numbers, length and intersection

- If τ_{i}, τ_{j} have twisting numbers t_{i}, t_{j}, then they contribute roughly $\min \left\{t_{i}, t_{j}\right\}$ to intersection.

Twisting numbers, length and intersection

- If τ_{i}, β_{j} have twisting numbers t_{i}, b_{j}, then they contribute roughly t_{i} to intersection.

Twisting numbers, length and intersection

- If β_{i}, β_{j} have twisting numbers b_{i}, b_{j}, then they contribute roughly $\left|b_{i}-b_{j}\right|$ to intersection.

Optimal metric

To build a metric X on \mathcal{S} where $I(\gamma) \leq c_{X} \sqrt{K}$:

Optimal metric

To build a metric X on \mathcal{S} where $I(\gamma) \leq c_{X} \sqrt{K}$:

- Choose a good pants decomposition

Optimal metric

To build a metric X on \mathcal{S} where $I(\gamma) \leq c_{X} \sqrt{K}$:

- Choose a good pants decomposition
- Choose lengths of pants curves

Optimal metric

To build a metric X on \mathcal{S} where $I(\gamma) \leq c_{X} \sqrt{K}$:

- Choose a good pants decomposition
- Choose lengths of pants curves
- Use twisting numbers to relate length and intersection number

Counting orbits

To bound $\# \mathcal{O}(L, K)$, take one pants decomposition from each $\operatorname{Mod}_{\mathcal{S}}$ orbit.

Counting orbits

To bound $\# \mathcal{O}(L, K)$, take one pants decomposition from each $\operatorname{Mod}_{\mathcal{S}}$ orbit. Count $c(\gamma)$ by

Counting orbits

To bound $\# \mathcal{O}(L, K)$, take one pants decomposition from each $\operatorname{Mod}_{\mathcal{S}}$ orbit. Count $c(\gamma)$ by

- Each $c(\gamma)$ determined by its combinatorics

Counting orbits

To bound $\# \mathcal{O}(L, K)$, take one pants decomposition from each $\operatorname{Mod}_{\mathcal{S}}$ orbit. Count $c(\gamma)$ by

- Each $c(\gamma)$ determined by its combinatorics
- Bound possible twist numbers using L, K

Counting orbits

To bound $\# \mathcal{O}(L, K)$, take one pants decomposition from each $\operatorname{Mod}_{\mathcal{S}}$ orbit. Count $c(\gamma)$ by

- Each $c(\gamma)$ determined by its combinatorics
- Bound possible twist numbers using L, K
- Any set of twist numbers $\left\{t_{1}, \ldots, t_{n}\right\}$ and $\left\{b_{1}, \ldots, b_{m}\right\} \leftrightarrow$ finite number of $c(\gamma)$.

Examples of curves

Can construct γ whose

- length is minimized in thick part of Teichmüller space
- length is minimized in thin part of Teichmüller space

Length minimized in thick part

Length minimized in thick part

Length minimized in thick part

Length minimized in thin part

Length minimized in thin part

Length minimized in thin part

