Objects	Geodesic currents	Intersection number	Structure	Idea of proof	Questions
			000000	00	

A projection from filling currents to Teichmuller space

Jenya Sapir

Binghamton University

Joint work with Sebastian Hensel

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Objects	Geodesic currents	Intersection number	Structure	Idea of proof	Questions
•	000	00	000000	00	0
Geodes	sic currents o	on a surface <i>S</i>	;		

Let S be a surface of genus $g \ge 2$, no boundary or punctures. Fix a hyperbolic metric X_0 .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Objects	Geodesic currents	Intersection number	Structure	Idea of proof	Questions
•	000		000000	00	0

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• Geodesics on S

Objects •	Geodesic currents	Intersection number	Structure 000000	Idea of proof 00	Questions 0

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- ${\scriptstyle \bullet}$ Geodesics on S
- Measured laminations $\mathcal{ML}(S)$

Objects •	Geodesic currents	Intersection number	Structure 000000	Idea of proof 00	Questions 0

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Geodesics on S
- Measured laminations $\mathcal{ML}(S)$
- Teichmuller space $\mathcal{T}(S)$

Objects	Geodesic currents	Intersection number	Structure	ldea of proof	Questions
•	000	00	000000	00	0

- Geodesics on S
- Measured laminations $\mathcal{ML}(S)$
- Teichmuller space $\mathcal{T}(S)$

... and many more. Unified by space of **geodesic currents**.

Objects	Geodesic currents	Intersection number	Structure	Idea of proof	Questions
O	•00	00	000000	00	0
Geode	esic currents				

Identify
$$\tilde{X}_0 = \mathbb{H}^2$$
.

Objects	Geodesic currents	Intersection number	Structure	ldea of proof	Questions
O	●00	00	000000	00	0
Geode	sic currents				

Identify $\tilde{X}_0 = \mathbb{H}^2$.

 $ilde{\mathcal{G}}$ - set of geodesics on \mathbb{H}^2

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

0 •0	o	00	000000	00	O
Goodosic	curronte				

Identify $\tilde{X}_0 = \mathbb{H}^2$.

 $ilde{\mathcal{G}}$ - set of geodesics on \mathbb{H}^2

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Have $\pi_1(S)$ action on $\tilde{\mathcal{G}}$.

Objects	Geodesic currents	Intersection number	Structure	ldea of proof	Questions
O	○●○		000000	00	0
Geode	sic currents				

Definition (Bonahon '86:) A geodesic current on S is a Borel, $\pi_1(S)$ -invariant measure on $\tilde{\mathcal{G}}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Objects	Geodesic currents	Intersection number	Structure	ldea of proof	Questions
0	○●○		000000	00	0
Geode	sic currents				

Definition (Bonahon '86:) A geodesic current on S is a Borel, $\pi_1(S)$ -invariant measure on $\tilde{\mathcal{G}}$

 $\mathcal{C}(S)$ - space of geodesic currents.

Objects	Geodesic currents	Intersection number	Structure	ldea of proof	Questions
0	○●○		000000	00	0
Geode	sic currents				

Definition (Bonahon '86:) A geodesic current on S is a Borel, $\pi_1(S)$ -invariant measure on $\tilde{\mathcal{G}}$

 $\mathcal{C}(S)$ - space of geodesic currents. Independent of choice of X_0 .

Objects	Geodesic currents	Intersection number	Structure	ldea of proof	Questions
O		00	000000	00	0

Geodesic currents

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example: Closed geodesics $\mathcal{G}^c \subset \mathcal{C}(S)$

Objects	Geodesic currents	Intersection number	Structure	ldea of proof	Questions
0		00	000000	00	0

Geodesic currents

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example: Closed geodesics $\mathcal{G}^c \subset \mathcal{C}(S)$

- Take γ on X_0
- \bullet Lift to $\tilde{\gamma}$ on \mathbb{H}^2
- μ_{γ} Dirac measure on $\tilde{\gamma} \subset \tilde{\mathcal{G}}$

Objects	Geodesic currents	Intersection number	Idea of proof	Questions
		•0		

Objects	Geodesic currents	Intersection number		Idea of proof	Questions
	000	••	000000	00	

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• Consider geometric intersection number on \mathcal{G}^c

Objects	Geodesic currents	Intersection number	Structure	ldea of proof	Questions
O	000	●0	000000	00	0

- Consider geometric intersection number on \mathcal{G}^c
- Extend bilinearly on weighted multicurves: If $\alpha, \beta, \gamma \in \mathcal{G}^c$, c > 0,

Objects	Geodesic currents	Intersection number	Structure	ldea of proof	Questions
O	000	●0	000000	00	0

- Consider geometric intersection number on \mathcal{G}^c
- Extend bilinearly on weighted multicurves: If $\alpha, \beta, \gamma \in \mathcal{G}^c$, c > 0,

$$i(c\alpha + \beta, \gamma) = ci(\alpha, \gamma) + i(\beta, \gamma)$$

Objects	Geodesic currents	Intersection number	Structure	ldea of proof	Questions
O	000	●0	000000	00	0

- Consider geometric intersection number on \mathcal{G}^c
- Extend bilinearly on weighted multicurves: If $\alpha, \beta, \gamma \in \mathcal{G}^c$, c > 0,

$$i(c\alpha + \beta, \gamma) = ci(\alpha, \gamma) + i(\beta, \gamma)$$

• Bonahon: The set $\mathbb{R}_+\mathcal{G}^c$ is dense in $\mathcal{C}(S)$!

Objects	Geodesic currents	Intersection number	Structure	ldea of proof	Questions
O	000	●0	000000	00	0

- Consider geometric intersection number on \mathcal{G}^c
- Extend bilinearly on weighted multicurves: If $\alpha, \beta, \gamma \in \mathcal{G}^c$, c > 0,

$$i(c\alpha + \beta, \gamma) = ci(\alpha, \gamma) + i(\beta, \gamma)$$

• Bonahon: The set $\mathbb{R}_+\mathcal{G}^c$ is dense in $\mathcal{C}(S)$!

Objects	Geodesic currents	Intersection number	Structure	Idea of proof	Questions
0	000	●○	000000	00	0

- Consider geometric intersection number on \mathcal{G}^c
- Extend bilinearly on weighted multicurves: If $\alpha, \beta, \gamma \in \mathcal{G}^c$, c > 0,

$$i(c\alpha + \beta, \gamma) = ci(\alpha, \gamma) + i(\beta, \gamma)$$

- Bonahon: The set $\mathbb{R}_+\mathcal{G}^c$ is dense in $\mathcal{C}(S)$!
- Bonahon: Intersection number extends *continuously* to all of $\mathcal{C}(S)$

Objects	Geodesic currents	Intersection number	Structure	ldea of proof	Questions
O	000	●○	000000	00	0

- Consider geometric intersection number on \mathcal{G}^c
- Extend bilinearly on weighted multicurves: If $\alpha, \beta, \gamma \in \mathcal{G}^c$, c > 0,

$$i(c\alpha + \beta, \gamma) = ci(\alpha, \gamma) + i(\beta, \gamma)$$

- Bonahon: The set $\mathbb{R}_+\mathcal{G}^c$ is dense in $\mathcal{C}(S)$!
- Bonahon: Intersection number extends *continuously* to all of $\mathcal{C}(S)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Symmetric
- Bilinear
- Mapping class group invariant

Objects	Geodesic currents	Intersection number	Structure	ldea of proof	Questions
O	000		000000	00	0

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let $\gamma \in \mathcal{G}$, $Y \in \mathcal{T}(S)$.

Objects	Geodesic currents	Intersection number	Structure	Idea of proof	Questions
0	000		000000	00	0

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let $\gamma \in \mathcal{G}$, $Y \in \mathcal{T}(S)$. Currents: $\mu_{\gamma}, \mu_{Y} \in \mathcal{C}(S)$.

Objects	Geodesic currents	Intersection number	Structure	ldea of proof	Questions
O	000		000000	00	0

Let $\gamma \in \mathcal{G}$, $Y \in \mathcal{T}(S)$. Currents: $\mu_{\gamma}, \mu_{Y} \in \mathcal{C}(S)$. Then,

$$i(\mu_{\gamma},\mu_{Y}) = \ell_{Y}(\gamma)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Objects	Geodesic currents	Intersection number	Structure	ldea of proof	Questions
0	000		000000	00	0

Let $\gamma \in \mathcal{G}$, $Y \in \mathcal{T}(S)$. Currents: $\mu_{\gamma}, \mu_{Y} \in \mathcal{C}(S)$. Then,

$$i(\mu_{\gamma},\mu_{Y}) = \ell_{Y}(\gamma)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Intersection gives geodesic length!

Objects	Geodesic currents	Intersection number	Structure	Idea of proof	Questions
O	000		000000	00	0

Let $\gamma \in \mathcal{G}$, $Y \in \mathcal{T}(S)$. Currents: $\mu_{\gamma}, \mu_{Y} \in \mathcal{C}(S)$. Then,

$$i(\mu_{\gamma},\mu_{Y}) = \ell_{Y}(\gamma)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Intersection gives geodesic length! Same holds when Y is any metric on S.

Objects	Geodesic currents	Intersection number	Structure	ldea of proof	Questions
O	000		•00000	00	0
Struct	ure of $\mathbb{P}\mathcal{C}(S)$)			

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Let $\mathbb{P}C(S) = C(S)/\mathbb{R}_+$.

Objects	Geodesic currents	Intersection number	Structure	Idea of proof	Questions
0	000	00	•00000	00	0
Struct	ure of $\mathbb{P}C(S)$				

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Let $\mathbb{P}C(S) = C(S)/\mathbb{R}_+$. Bonahon showed:

• $\mathbb{P}\mathcal{C}(S)$ is compact

Objects	Geodesic currents	Intersection number	Structure	Idea of proof	Questions
0	000		•00000	00	0
Structu	ure of $\mathbb{P}C(S)$				

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Let $\mathbb{P}C(S) = C(S)/\mathbb{R}_+$. Bonahon showed:

- $\mathbb{P}\mathcal{C}(S)$ is compact
- $\mathcal{T}(S) \hookrightarrow \mathbb{P}\mathcal{C}(S)$

Objects	Geodesic currents	Intersection number	Structure	Idea of proof	Questions
0	000	00	•00000	00	0
Struct	ure of $\mathbb{P}\mathcal{C}(S)$)			

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Let $\mathbb{P}C(S) = C(S)/\mathbb{R}_+$. Bonahon showed:

- $\mathbb{P}C(S)$ is compact
- $\mathcal{T}(S) \hookrightarrow \mathbb{P}\mathcal{C}(S)$
- $\partial \mathcal{T}(S) = \mathbb{P}\mathcal{ML}(S)$

Objects	Geodesic currents	Intersection number	Structure	Idea of proof	Questions
O	000		•00000	00	0
Struct	ure of $\mathbb{D}\mathcal{C}(S)$				

Let $\mathbb{P}C(S) = C(S)/\mathbb{R}_+$. Bonahon showed:

- $\mathbb{P}C(S)$ is compact
- $\mathcal{T}(S) \hookrightarrow \mathbb{P}\mathcal{C}(S)$
- $\partial \mathcal{T}(S) = \mathbb{P}\mathcal{ML}(S) \leftarrow$ Thurston compactification

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Objects	Geodesic currents	Intersection number	Structure	Idea of proof	Questions
O	000		•00000	00	0
Struct	ure of $\mathbb{D}\mathcal{C}(S)$				

Let $\mathbb{P}C(S) = C(S)/\mathbb{R}_+$. Bonahon showed:

• $\mathbb{P}C(S)$ is compact

•
$$\mathcal{T}(S) \hookrightarrow \mathbb{P}\mathcal{C}(S)$$

• $\partial \mathcal{T}(S) = \mathbb{P}\mathcal{ML}(S) \leftarrow$ Thurston compactification

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

What about the rest of $\mathbb{PC}(S)$?

Objects	Geodesic currents	Intersection number	Structure	ldea of proof	Questions
0	000	00	0●0000	00	0

Structure of $\mathbb{P}\overline{\mathcal{C}(S)}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

A current μ is filling if $i(\mu, \nu) > 0$ for all $\nu \in \mathcal{C}(S)$.

Objects	Geodesic currents	Intersection number	Structure	Idea of proof	Questions
O	000	00	0●0000	00	0

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A current μ is filling if $i(\mu, \nu) > 0$ for all $\nu \in C(S)$. Examples: filling curves,

Objects	Geodesic currents	Intersection number	Structure	Idea of proof	Questions
O	000	00	0●0000	00	0

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A current μ is filling if $i(\mu, \nu) > 0$ for all $\nu \in C(S)$. Examples: filling curves, all metrics

Objects	Geodesic currents	Intersection number	Structure	ldea of proof	Questions
0	000	00	0●0000	00	0

A current μ is filling if $i(\mu, \nu) > 0$ for all $\nu \in C(S)$. Examples: filling curves, all metrics

 $\mathcal{C}_{fill}(S)$ - filling currents.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Objects	Geodesic currents	Intersection number	Structure	ldea of proof	Questions
0	000	00	0●0000	00	0

A current μ is filling if $i(\mu, \nu) > 0$ for all $\nu \in C(S)$. Examples: filling curves, all metrics

> $C_{fill}(S)$ - filling currents. $\mathbb{P}C_{fill}(S)$ - filling projective currents.

> > ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Objects	Geodesic currents	Intersection number	Structure	Idea of proof	Questions
O	000	00	0●0000	00	0

A current μ is filling if $i(\mu, \nu) > 0$ for all $\nu \in C(S)$. Examples: filling curves, all metrics

> $C_{fill}(S)$ - filling currents. $\mathbb{P}C_{fill}(S)$ - filling projective currents.

Burger-lozzi-Parreau-Pozzetti '19: non-filling projective currents are closed in $\mathbb{PC}(S)$.

0 00	00	00000	
Structuro	of $\mathbb{D}\mathcal{C}(S)$		

A current μ is filling if $i(\mu, \nu) > 0$ for all $\nu \in C(S)$. Examples: filling curves, all metrics

> $C_{fill}(S)$ - filling currents. $\mathbb{P}C_{fill}(S)$ - filling projective currents.

Burger-lozzi-Parreau-Pozzetti '19: non-filling projective currents are closed in $\mathbb{PC}(S)$.

Objects	Geodesic currents	Intersection number	Structure	Idea of proof	Questions
0		00	0●0000	00	0
~					

A current μ is filling if $i(\mu, \nu) > 0$ for all $\nu \in C(S)$. Examples: filling curves, all metrics

> $C_{fill}(S)$ - filling currents. $\mathbb{P}C_{fill}(S)$ - filling projective currents.

Burger-lozzi-Parreau-Pozzetti '19: non-filling projective currents are closed in $\mathbb{PC}(S)$.

Objects	Geodesic currents	Intersection number	Structure	Idea of proof	Questions
O	000	00	00000	00	0
Projec	tions to $\mathcal{T}(S)$	5)			

A point $X \in \mathcal{T}(S)$ is the length minimizer of $\mu \in \mathcal{C}(S)$ iff

$$i(X,\mu) \leq i(Y,\mu)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

for all $Y \in \mathcal{T}(S)$.

Objects	Geodesic currents	Intersection number	Structure	ldea of proof	Questions
O	000	00	00●000	00	0
Projec	tions to $\mathcal{T}(S)$	5)			

A point $X \in \mathcal{T}(S)$ is the length minimizer of $\mu \in \mathcal{C}(S)$ iff

$$i(X,\mu) \leq i(Y,\mu)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

for all $Y \in \mathcal{T}(S)$.

Remark: X only depends on the projective class of μ !

Objects	Geodesic currents	Intersection number	Structure	ldea of proof	Questions
O	000	00	00●000	00	0
Projec	tions to $\mathcal{T}(S)$	5)			

A point $X \in \mathcal{T}(S)$ is the length minimizer of $\mu \in \mathcal{C}(S)$ iff

$$i(X,\mu) \leq i(Y,\mu)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

for all $Y \in \mathcal{T}(S)$.

Remark: X only depends on the projective class of μ !

Objects	Geodesic currents	Intersection number	Structure	Idea of proof	Questions
0	000	00	000●00	00	0
Drojoc	tions to $\tau(c)$	2)			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Kerckhoff: If $\mu, \nu \in \mathcal{ML}(S)$, $\mu + \nu \in \mathcal{C}_{fill}(S)$,

IUJECTIONS

Objects O	Geodesic currents 000	Intersection number 00	Structure 000●00	ldea of proof 00	Questions 0
Droio	stions to $\tau(c)$	2)			
Projec	ctions to 7 (S				

 \mathcal{I}

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Kerckhoff: If $\mu, \nu \in \mathcal{ML}(S)$, $\mu + \nu \in \mathcal{C}_{fill}(S)$, then for all $t \in (0, 1)$, $t\mu + (1-t)\nu$

Objects O	Geodesic currents 000	Intersection number 00	Structure 000●00	ldea of proof 00	Questions 0
Droio	stions to $\tau(c)$	2)			
Projec	ctions to 7 (S				

 $(1-t)\nu$

 ν

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 $\mathbb{P}\mathcal{C}(S)$

Kerckhoff: If $\mu, \nu \in \mathcal{ML}(S)$, $\mu + \nu \in \mathcal{C}_{fill}(S)$, then for all $t \in (0, 1),$

$$t\mu + (1-t)\nu$$

has a unique length minimizer X_t .

Objects	Geodesic currents	Intersection number	Structure	ldea of proof	Questions
O	000	00	000●00	00	0
Proiec	tions to $\mathcal{T}(S)$	5)			

Kerckhoff: If $\mu, \nu \in \mathcal{ML}(S)$, $\mu + \nu \in C_{fill}(S)$, then for all $t \in (0, 1)$,

$$t\mu + (1-t)\nu$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

has a unique length minimizer X_t . Line of minima $t \to X_t$ is a continuous, proper map.

Objects	Geodesic currents	Intersection number	Structure	Idea of proof	Questions
O	000	00	0000●0	00	0
D :	. ~ (

Projections to $\mathcal{T}(S)$

Theorem (Hensel-S)

Objects	Geodesic currents	Intersection number	Structure	Idea of proof	Questions
O		00	0000●0	00	0
Projec	tions to $\mathcal{T}(S)$	5)			

Theorem (Hensel-S)

There is a map $\pi : \mathbb{P}C_{fill}(S) \to \mathcal{T}(S)$ sending $[\mu]$ to its length minimizer that is

• Continuous

Objects	Geodesic currents	Intersection number	Structure	Idea of proof	Questions
0	000	00	0000●0	00	0
D .		~\			

Projections to $\mathcal{T}(S)$

Theorem (Hensel-S)

- Continuous
- Proper

Objects	Geodesic currents	Intersection number	Structure	Idea of proof	Questions
0	000	00	0000●0	00	0
D .		~\			

Projections to $\mathcal{T}(S)$

Theorem (Hensel-S)

- Continuous
- Proper
- Identity on $\mathcal{T}(S)$

Objects	Geodesic currents	Intersection number	Structure	Idea of proof	Questions
0	000	00	0000●0	00	0
Ducier	τ	-)			

Projections to $\mathcal{T}(S)$.

Theorem (Hensel-S)

- Continuous
- Proper
- Identity on $\mathcal{T}(S)$
- Mapping class group invariant

Objects	Geodesic currents	Intersection number	Structure	Idea of proof	Questions
O	000	00	00000●	00	0
Projec	tions to $\mathcal{T}(\mathbf{S})$	5)			

Theorem (Hensel-S)

There is a continuous, proper, Mod(S)-invariant map $\pi : \mathbb{P}C_{fill}(S) \to \mathcal{T}(S)$ sending $[\mu]$ to its length minimizer.

Objects	Geodesic currents	Intersection number	Structure	Idea of proof	Questions
O	000	00	00000●	00	0
Projec	tions to $\mathcal{T}(\mathbf{S})$	5)			

Theorem (Hensel-S)

There is a continuous, proper, Mod(S)-invariant map $\pi : \mathbb{P}C_{fill}(S) \to \mathcal{T}(S)$ sending $[\mu]$ to its length minimizer. On the other hand, if $[\mu]$ is non-filling, it has no length minimizer in X.

Objects	Geodesic currents	Intersection number	Structure	ldea of proof	Questions
0	000	00	000000	●○	0
Idea o	f proof: Prop	perness			

Extend inequalities for closed curves:

Objects	Geodesic currents	Intersection number	Structure	ldea of proof	Questions
O	000	00	000000	●0	0
ldea o	of proof: Prop	perness			

Extend inequalities for closed curves:

• Collar lemma: For $\mu \in \mathcal{C}(S)$, α - simple, $X \in \mathcal{T}(S)$,

 $i(\mu, \alpha) \mathsf{Col}_X(\alpha) \leq i(\mu, X)$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Objects	Geodesic currents	Intersection number	Structure	ldea of proof	Questions
O	000	00	000000	●0	0
ldea o	f proof: Prop	perness			

Extend inequalities for closed curves:

• Collar lemma: For $\mu \in \mathcal{C}(S)$, α - simple, $X \in \mathcal{T}(S)$,

 $i(\mu, \alpha) \mathsf{Col}_X(\alpha) \leq i(\mu, X)$

• Minimal length bound:

$$i(\mu, \pi(\mu)) \leq c\sqrt{i(\mu, \mu)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Take $c = 4\sqrt{2\chi(S)}$ by Aougab-Souto.

Objects	Geodesic currents	Intersection number	Structure	ldea of proof	Questions
O	000	00	000000	⊙●	0
ldea o	f proof				

Existence: Wolpert: Given $\mu \in C(S)$, the function

$$\ell_{\mu}:\mathcal{T}(\mathcal{S})
ightarrow\mathbb{R} \ X\mapsto i(\mu,X)$$

is strictly convex with respect to Weil-Petersson metric on $\mathcal{T}(S)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Objects	Geodesic currents	Intersection number	Structure	ldea of proof	Questions
0	000		000000	⊙●	0
ldea o	f proof				

Existence: Wolpert: Given $\mu \in C(S)$, the function

$$\ell_{\mu}:\mathcal{T}(\mathcal{S})
ightarrow\mathbb{R} \ X\mapsto i(\mu,X)$$

is strictly convex with respect to Weil-Petersson metric on $\mathcal{T}(S)$.

Identity on $\mathcal{T}(S)$ **:** Bonahon:

$$i(X,X) = 2\pi |\chi(S)| < i(X,Y)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

for all $Y \in \mathcal{T}(S)$.

Objects	Geodesic currents	Intersection number	Structure	ldea of proof	Questions
O	000	00	000000	⊙●	0
ldea o	f proof				

Existence: Wolpert: Given $\mu \in C(S)$, the function

$$\ell_{\mu}:\mathcal{T}(\mathcal{S})
ightarrow\mathbb{R} \ X\mapsto i(\mu,X)$$

is strictly convex with respect to Weil-Petersson metric on $\mathcal{T}(S)$.

Identity on $\mathcal{T}(S)$ **:** Bonahon:

$$i(X,X) = 2\pi |\chi(S)| < i(X,Y)$$

for all $Y \in \mathcal{T}(S)$.

Mapping class group invariant: $i(\cdot, \cdot)$ is invariant

Objects	Geodesic currents	Intersection number	Structure	ldea of proof	Questions
O	000	00	000000	00	•
Quest	ions				

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Given $\pi : \mathbb{P}\mathcal{C}_{fill}(S) \to \mathcal{T}(S)$, have $\pi^{-1}(X)$ is compact.

Question: What can we say about points in $\pi^{-1}(X)$?

Objects	Geodesic currents	Intersection number	Structure	ldea of proof	Questions
O	000		000000	00	•
Questi	ons				

Given $\pi : \mathbb{P}\mathcal{C}_{fill}(S) \to \mathcal{T}(S)$, have $\pi^{-1}(X)$ is compact.

Question: What can we say about points in $\pi^{-1}(X)$?

• Quantify how do the functions

$$i(\mu, \cdot)$$
 and $i(\pi(\mu), \cdot)$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

relate?

Objects	Geodesic currents	Intersection number	Structure	ldea of proof	Questions
O	000		000000	00	•
Questi	ons				

Given $\pi : \mathbb{P}\mathcal{C}_{fill}(S) \to \mathcal{T}(S)$, have $\pi^{-1}(X)$ is compact.

Question: What can we say about points in $\pi^{-1}(X)$?

• Quantify how do the functions

$$i(\mu, \cdot)$$
 and $i(\pi(\mu), \cdot)$

・ロト・日本・日本・日本・日本・日本・日本

relate? (For suitable normalization of $\mu \in [\mu]$.)