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Geodesic currents on a surface S

Let S be a surface of genus g ≥ 2, no boundary or punctures. Fix
a hyperbolic metric X0.

Geodesics on S

Measured laminations ML(S)

Teichmuller space T (S)

... and many more.

Unified by space of geodesic currents.
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Intersection number for geodesic currents

Consider geometric intersection number on Gc

Extend bilinearly on weighted multicurves: If α, β, γ ∈ Gc ,
c > 0,

i(cα + β, γ) = ci(α, γ) + i(β, γ)

Bonahon: The set R+Gc is dense in C(S)!

Bonahon: Intersection number extends continuously to all of
C(S)

Symmetric
Bilinear
Mapping class group invariant
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Intersection number unifies structures

Let γ ∈ G, Y ∈ T (S).

Currents: µγ , µY ∈ C(S). Then,

i(µγ , µY ) = `Y (γ)

Intersection gives geodesic length!
Same holds when Y is any metric on S .
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Let PC(S) = C(S)/R+.

Bonahon showed:

PC(S) is compact

T (S) ↪→ PC(S)

∂T (S) = PML(S) ← Thurston compactification

What about the rest of PC(S)?
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A current µ is filling if i(µ, ν) > 0 for all ν ∈ C(S).

Examples: filling curves, all metrics

Cfill (S) - filling currents.
PCfill (S) - filling projective currents.

Burger-Iozzi-Parreau-Pozzetti ’19: non-filling projective currents
are closed in PC(S).
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A point X ∈ T (S) is the length minimizer of µ ∈ C(S) iff

i(X , µ) ≤ i(Y , µ)

for all Y ∈ T (S).

Remark: X only depends on the projective class of µ!
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Kerckhoff: If µ, ν ∈ML(S), µ+ ν ∈ Cfill (S),

then for all
t ∈ (0, 1),

tµ+ (1− t)ν

has a unique length minimizer Xt .
Line of minima t → Xt is a continuous, proper map.
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minimizer that is
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Proper

Identity on T (S)

Mapping class group invariant
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On the other hand, if [µ] is non-filling, it has no length minimizer
in X .
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Idea of proof: Properness

Extend inequalities for closed curves:

Collar lemma: For µ ∈ C(S), α - simple, X ∈ T (S),

i(µ, α)ColX (α) ≤ i(µ,X )

Minimal length bound:

i(µ, π(µ)) ≤ c
√

i(µ, µ)

Take c = 4
√

2χ(S) by Aougab-Souto.
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Idea of proof

Existence: Wolpert: Given µ ∈ C(S), the function

`µ : T (S)→ R
X 7→ i(µ,X )

is strictly convex with respect to Weil-Petersson metric on T (S).

Identity on T (S): Bonahon:

i(X ,X ) = 2π|χ(S)| < i(X ,Y )

for all Y ∈ T (S).

Mapping class group invariant: i(·, ·) is invariant
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Questions

Given π : PCfill (S)→ T (S), have π−1(X ) is compact.

Question: What can we say about points in π−1(X )?

Quantify how do the functions

i(µ, ·) and i(π(µ), ·)

relate? (For suitable normalization of µ ∈ [µ].)
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