## Counting Theorems

## Non-Simple Geodesics on Surfaces

## Birman-Series Type Theorem

1 Previous Results

| 1 Previous Results |  | 1 The Original Theorem |
| :---: | :---: | :---: |
| $S$ - surface <br> $\mathcal{G}^{c}$ - set of closed geodesics <br> $l(\gamma)$ - geodesic length <br> $i(\gamma, \gamma)$ - self-intersection number | 1 Combinatorial Model on Arbitrary Surfaces <br> Reduce to pairs of pants. <br> 2 Model on Pairs of Pants | $\mathcal{G}$ - set of complete geodesics $\mathcal{S}_{K}=\{\gamma \in \mathcal{G} \mid i(\gamma, \gamma) \leq K\}$ <br> $\mathcal{T}_{K}$ - points on some geodesic in $S_{K}$ <br> NB: Since most complete geodesics have infinitely many self-intersections, the geodesics in $S_{K}$ should be thought of as almost simple. |
|  |  | Theorem 1 (Birman-Series) Let $S$ be a hyperbolic surface. Then $T_{K}$ is nowhere dense and has Hausdorff dimension 1. |
| Theorem 1 (Margulis) Let $S$ be a closed, negatively curved surface. Then $\# \mathcal{G}^{c}(L)=\frac{e^{\delta L}}{\delta L} \quad A \sim B \text { if } \lim _{L \rightarrow \infty} \frac{A}{B}=1$ <br> where $\delta$ is the topological entropy of the geodesic flow. <br> NB: If $S$ is hyperbolic, then $\delta=1$. |  |  |
| $\mathcal{G}^{c}(L, K)=\left\{\gamma \in \mathcal{G}^{c} \mid l(\gamma) \leq L, i(\gamma, \gamma) \leq K\right\}$ | $\gamma \rightarrow w(\gamma)=b_{1} s_{1} \ldots b_{n} s_{n}$ <br> $b_{i}$ on $\partial \mathcal{P}, s_{i}$ - seam of $\mathcal{P}$. <br> - $\gamma \rightarrow w(\gamma)$ is $1-1$ <br> - $l(\gamma) \asymp\|w(\gamma)\|$ <br> - Relationship between $i(\gamma, \gamma)$ and $w(\gamma)$ : $n^{2}, \sum_{i=1}^{n}\left\|b_{i}\right\| \lesssim i(\gamma, \gamma) \lesssim \sum_{i=1}^{n} i\left\|b_{i}\right\|$ | Question 1 For what families $\mathcal{G}^{\prime} \subset \mathcal{G}$ of complete geodesics with infinitely many self-intersections do the conclusions of Birman-Series hold? |
|  |  | On, eg, closed $S$, points on $\gamma \in \mathcal{G}$ dense. |
| Question 1 Suppose $K=K(L)$ is a function of $L$. What can be said about the asymptotic growth of $\# \mathcal{G}^{c}(L, K)$ ? | 2 For Pairs of Pants <br> $\mathcal{P}$ - hyperbolic pair of pants with geodesic boundary | $\gamma_{l=\left.\gamma\right\|_{\left[-\frac{1}{2}, \frac{1}{2}\right]}}^{\substack{\text { Look at } \gamma \in \mathcal{G} \text { s.t. } \\ i\left(\gamma_{l}, \gamma_{l}\right) \lesssim \epsilon l^{2}}}$ |
| Theorem 2 (Mirzakhani) Let $S$ be a hyperbolic genus $g$ surface with $n$ punctures. Then $\# \mathcal{G}^{c}(L, 0) \sim c(S) L^{6 g-6+2 n}$ <br> where $c(S)$ is a constant depending only on the geometry of $S$. | Theorem (S) On a pair of pants $\mathcal{P}$, $e^{c \sqrt{K}} \leq \# \mathcal{G}^{c}(L, K) \leq \min \left\{e^{c \sqrt{K} \log \frac{L}{K}}, e^{c^{\prime} \sqrt{K} \log c^{\prime} \sqrt{K}}\right\}$ <br> $L, K$ compete <br> where $c$ depends on the geometry of $\mathcal{P}$, and $c \rightarrow 0$ as the lengths of $\partial \mathcal{P}$ go to infinity, and $c^{\prime}$ is a universal constant. <br> Corollary $\begin{aligned} (\mathbf{S}) \text { If } K=K(L) \text { is s.t. } K & =o\left(L^{2}\right) \text {, then } \\ \# \mathcal{G}^{c}(L, K) & =o\left(\# \mathcal{G}^{c}(L)\right) \end{aligned}$ | almost always. <br> $\gamma_{l}$ in nbhd of $S$ |
|  |  | $\begin{gathered} \mathcal{G}_{\epsilon}=\left\{\gamma \in \mathcal{G} \left\lvert\, \limsup _{\substack{l \rightarrow \infty}} \frac{i\left(\gamma_{l}, \gamma_{l}\right)}{l^{2}}<\epsilon\right.\right\} \\ \mathcal{F}_{\epsilon} \text { - set of points on some } \gamma \in \mathcal{G} \end{gathered}$ |
|  |  |  |
| Theorem 3 (Rivin) Let $S$ be a hyperbolic genus $g$ surface with $n$ punctures Then $\# \mathcal{G}^{c}(L, 1) \sim c^{\prime}(S) L^{6 g-6+2 n}$ <br> where $c^{\prime}(S)$ is a constant depending only on the geometry of $S$. | $K \approx L^{2}$ <br> Theorem 4 (Lalley) Let $S$ be a closed hyperbolic surface. Choose $\gamma_{L} \in \mathcal{G}^{c}(L)$ at random for each $L \in \mathbb{N}$. Then $\lim _{L \rightarrow \infty} \frac{i\left(\gamma_{L}, \gamma_{L}\right)}{L^{2}}=\kappa$ <br> for almost any choice of sequence $\left\{\gamma_{L}\right\}$, where $\kappa$ depends only on the geometry of $S$. | Theorem 2 (S) On $\mathcal{P}$, $\mathcal{F}_{\epsilon}$ has Hausdorff dimension $\mu(\epsilon)$ where $\lim _{\epsilon \rightarrow 0} \mu(\epsilon)=$ 1. In particular, $F_{0}$ has Hausdorff dimension 1. |
|  |  | But, $\mathcal{F}_{\epsilon}$ is not nowhere dense. In fact, it can have positive Lebesgue measure. $\mathcal{F}$ - set of points on some $\gamma \in \mathcal{G}$ |
|  |  | Proposition 3 (S) If $\mathcal{F}_{\epsilon}^{c}$ denotes the closure of $\mathcal{F}_{\epsilon}$ in $\mathcal{P}$, then $\mathcal{F}_{\epsilon}^{c}=\mathcal{F}$ <br> Approximate - by - |
| Question 2 For fixed $L$ and $K$, what are the best bounds for \#G $\mathcal{G}^{c}(L, K)$ ? | Theorem 5 (Basmajian) Let $S$ be a hyperbolic surface. Then $i(\gamma, \gamma) \leq \lambda l(\gamma)^{2}$ <br> for any $\gamma \in \mathcal{G}^{c}$, where $\lambda$ depends only on the geometry of $S$. | $\begin{array}{ll}\text { More regularity: } & \mathcal{G}_{\epsilon}(L)=\left\{\gamma \in \mathcal{G}_{\epsilon} \mid i\left(\gamma_{l}, \gamma_{l}\right)<5 \epsilon l^{2}, \forall l \geq L\right\} \\ & \mathcal{F}_{\epsilon}(L) \text { - set of points on some } \gamma \in \mathcal{G}_{\epsilon}(L) .\end{array}$ |
| NB: Trivial upper and lower bounds are $0 \leq \# \mathcal{G}^{c}(L, K) \leq \# \mathcal{G}^{c}(L)$. |  |  |
| Consequence of Athreya-Bufetov-Eskin-Mirzakhani + Basmajian + others: <br> Proposition 1 On a hyperbolic genus g surface with $n$ punctures, | 3 For an Arbitary Surface | Theorem 4 (S) There is an $\epsilon_{0}$ s.t. $\forall \epsilon<\epsilon_{0}, \mathcal{F}_{\epsilon}(L)$ is nowhere dense for all $L$. |
|  | Conjecture On an arbitrary surface $S$, $\# \mathcal{G}^{c}(L, K) \leq \min \left\{e^{c L}, e^{K^{3 / 4} \log q(K, L)}\right\}$ <br> where $q(K, L)$ is a rational function in $K$ and $L$ and $c$ is a constant depending only on the geometry of $S$. | 3 For an Arbitary Surface |
| $\# \mathcal{G}^{c}(L, K) \asymp f(K) L^{6 g-+2 n}$ $A \asymp B \text { if } \frac{1}{c} B \leq A \leq c B$ <br> where $f(K)$ is the number of Mod $_{g}$ orbits in $\mathcal{G}^{c}(L, K)$. |  | Conjecture 1 On an arbitrary surface, the Birman-Series theorem holds when $i\left(\gamma_{l}, \gamma_{l}\right)=o\left(l^{3 / 4}\right)$ |

