Counting Theorems

Previous Results

S - surface \mathcal{G}^c - set of closed geodesics $l(\gamma)$ - geodesic length $i(\gamma, \gamma)$ - self-intersection number

 $\mathcal{G}^{c}(L) = \{ \gamma \in \mathcal{G}^{c} \mid l(\gamma) \leq L \}$

Theorem 1 (Margulis) Let S be a closed, negatively curved surface. Then

$$\#\mathcal{G}^c(L) = \frac{e^{\delta L}}{\delta L}$$

where δ is the topological entropy of the geodesic flow.

NB: If S is hyperbolic, then $\delta = 1$.

 $\mathcal{G}^{c}(L,K) = \{ \gamma \in \mathcal{G}^{c} \mid l(\gamma) \leq L, i(\gamma,\gamma) \leq K \}$

Question 1 Suppose K = K(L) is a function of L. What can be said about the asymptotic growth of $\#\mathcal{G}^{c}(L,K)$?

Theorem 2 (Mirzakhani) Let S be a hyperbolic genus g surface with n punctures. Then $#\mathcal{G}^c(L,0) \sim c(S)L^{6g-6+2n}$

where c(S) is a constant depending only on the geometry of S.

Theorem 3 (Rivin) Let S be a hyperbolic genus g surface with n punctures. Then

$$#\mathcal{G}^{c}(L,1) \sim c'(S)L^{6g-6+2n}$$

where c'(S) is a constant depending only on the geometry of S.

Question 2 For fixed L and K, what are the best <u>bounds</u> for $\#\mathcal{G}^{c}(L,K)$?

NB: Trivial upper and lower bounds are $0 \le \# \mathcal{G}^c(L, K) \le \# \mathcal{G}^c(L)$.

Consequence of Athreya-Bufetov-Eskin-Mirzakhani + Basmajian + others:

Proposition 1 On a hyperbolic genus g surface with n punctures,

$$#\mathcal{G}^c(L,K) \asymp f(K)L^{6g-+2n}$$

where f(K) is the number of Mod_q orbits in $\mathcal{G}^c(L, K)$.

