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ORBITS OF NON-SIMPLE CLOSED CURVES ON A SURFACE

JENYA SAPIR

Abstract. The mapping class group of a surface S acts on the set of closed
geodesics on S. This action preserves self-intersection number. In this paper,
we count the orbits of curves with at most K self-intersections, for each K ≥ 1.
(The case when K = 0 is already known.) We also restrict our count to those
orbits that contain geodesics of length at most L, for each L > 0. This result
complements a recent result of Mirzakhani, which gives the asymptotic growth
of the number of closed geodesics of length at most L in a single mapping
class group orbit. Furthermore, we develop a new, combinatorial approach to
studying geodesics on surfaces, which should be of independent interest.

1. Introduction

1.1. The main question. Let S be a compact genus g surface with n boundary
components, and let X be a hyperbolic metric on S. Define Gc to be the set of
closed geodesics on S. Let

Gc(L,K) = {γ ∈ Gc | l(γ) ≤ L, i(γ, γ) ≤ K}
be the set of closed geodesics of length at most L, with at most K self-intersections,
where l(γ) is the length of γ in X and i(γ, γ) is its geometric self-intersection
number.

We are motivated by the following question about the size of Gc(L,K):

Question 1. If K = K(L) is a function of L, what can be said about the asymptotic
growth of #Gc(L,K) as L goes to infinity?

For a history of results related to this question, see Section 2.1.
Mirzakhani provides an answer whenK is constant in [Mir16], using the following

method. Let ModS be the mapping class group of S. Because geodesics are unique
in their free homotopy class (by, e.g. [FM12, Proposition 1.4]) we have that ModS
acts on Gc. Let ModS · γ denote the orbit of γ ∈ Gc. If

s(L, γ) = #{γ′ ∈ ModS · γ | l(γ′) ≤ L}
then Mirzakhani shows that

s(L, γ) ∼ nγnXL6g−6+2n

where nγ is a constant depending only on ModS ·γ, and nX is a constant depending

only on the metric X [Mir16]. Note that we write A(L) ∼ B(L) if limL→∞
A
B

= 1.
All closed geodesics in the same orbit have the same number of self-intersections.

So it makes sense to consider the set

O(·,K) = {ModS · γ | γ ∈ Gc, i(γ, γ) ≤ K}
Even though there are infinitely many closed geodesics with at mostK self-intersections,
they fall into finitely many ModS orbits. So it turns out that O(·,K) is a finite
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set. This fact is well known, but we include a quick explanation in Section 2.3 for
completeness.

When K is constant, Mirzakhani gets asymptotic growth for Gc(L,K) by sum-
ming over all orbits in O(·,K). In particular,

#Gc(L,K) ∼ cK · nXL6g−6+2n

where

cK =
∑

O(·,K)

nγ

Knowing the asymptotic growth of cK asK goes to infinity would give a complete
answer to Question 1. This would require us to find the asymptotic growth of
#O(·,K) as K goes to infinity, but this is not yet known.

1.2. Main results. In this paper, we give bounds on #O(·,K). We get the fol-
lowing result as a corollary to Theorems 1.2 and 1.3 below:

Theorem 1.1. For all K ≥ 1,

1

12
2
√

K
12 ≤ #O(·,K) ≤ edS

√
K log dS

√
K

where dS is a constant depending only on S.

This gives bounds on the constant cK above.
Note that the size of O(·, 0) is well-known. For example, if S is a closed genus g

surface, we have

#O(·, 0) = ⌊g
2
⌋+ 1

See, for example, [FM12, Section 1.3] for a complete proof, and Section 2.3 of this
paper for the main idea of why this is true.

For arbitrary K, we break down the set O(·,K) further. If we choose L small
enough, then not all orbits ModS ·γ contain a curve of length at most L (see Section
2.4). So we define

O(L,K) = {ModS · γ ∈ O(·,K) | ∃γ′ ∈ ModS · γ, l(γ′) ≤ L}

That is, this is the set of orbits ModS · γ where all curves have at most K self-
intersections, and at least one curve has length at most L.

Then we bound #O(L,K) as follows:

Theorem 1.2. For each L,K > 0,

#O(L,K) ≤ min

{

e
dS

√
K log

(

dX
L√
K

+dX

)

, edS
√
K log dS

√
K

}

where dS is a constant depending only on S and dX is a constant depending only
on X.

Moreover, we can deduce a lower bound on #O(L,K) from our previous work.
In our previous paper [Sap15b], we give a lower bound on the size of Gc(L,K) for
a pair of pants. Since the ModS stabilizer of a pair of pants inside a surface S is
finite, this gives us the following lower bound on O(L,K) for an arbitrary surface:
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Theorem 1.3 (Corollary of Theorem 1.1 in [Sap15b]). Let S be any surface. If
L ≥ 8lX and K ≥ 12, we have that

#O(L,K) ≥ 1

12
min{2

1

8lX
L
, 2
√

K
12 }

where lX is a constant that depends only on the metric X.

1.3. Other results of interest. We develop a combinatorial model for curves
on surfaces, and use this model to prove Theorem 1.2. Given any γ ∈ Gc and
any pants decomposition Π of the surface S we get a word wΠ(γ) that can be
represented by a piecewise geodesic curve on S that winds around the pants curves
and takes the shortest possible path between pants curves (see Figure 3 and Section
3.) We can approximate the length and self-intersection number of γ from the work
wΠ(γ). This allows us to translate geometric questions about curves on surfaces
into combinatorial problems.

This model already has applications going beyond the scope of the current paper.
For example, it was used by Aougab, Gaster, Patel and the author to show that for
any γ ∈ Gc, there is a hyperbolic metricX so that if i(γ, γ) = K, then lX(γ) ≤ c

√
K,

where c is a constant depending only on the surface S [AGPS16]. Moreover, the

injectivity radius of X is bounded below by d/
√
K, where, again, d depends only

on S. For a closed surface, both the upper bound on length and the lower bound
on the injectivity radius are sharp.

Another result of interest is that each γ ∈ Gc has a preferred pants decomposition
in the following sense. We show that for any γ ∈ Gc, one may choose a pants
decomposition as follows:

Proposition 1.4. Let γ ∈ Gc with i(γ, γ) = K ≥ 1. Then there exists a pants
decomposition Π so that

i(γ,Π) ≤ cS
√
K

where the constant cS depends only on the topology of S.
Here i(γ,Π) denotes the total number of intersections between γ and each curve

in Π. An interesting further question is to find an optimal bound on the constant
cS .

Note that if Π is a generic pants decomposition of S, then the best we can say
is that i(γ,Π) ≤ l(γ)l(Π), where l(Π) is the total length of all curves in Π. Thus,
the pants decompositions found in this proposition are, indeed, special.

2. Background and idea of proof

2.1. Prior work on Question 1. The problem of counting the number of closed
geodesics on a hyperbolic, and more generally, a negatively curved surface, has
been studied extensively. We will briefly summarize the history here. For a more
detailed summary, see [Sap15b].

If Gc(L) is the set of closed geodesics of length at most L, then by work of Huber
[Hub59], Margulis [Mar70], and many others,

#Gc(L) ∼ eδL

δL

where δ is the topological entropy of the geodesic flow on S. See [MS04] for an
excellent history of this result for various types of surfaces.
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Question 1 has also been studied extensively, especially for finite K. When
K = 0, the fact that the number of simple closed curves grows polynomially in L
was shown in [BS85], and that the growth is on the order of L6g−6+2n was shown
in [Ree81, Riv01]. The fact that #Gc(L, 0) grows asymptotically on the order
of L6g−6+2n was shown by Mirzakhani in [Mir08]. When K = 1, the asymptotic
growth of #Gc(L,K) was shown by Rivin in [Riv12]. ForK fixed, Erlandsson-Souto
showed that Mirzakhani’s asymptotics for Gc(L,K) on a hyperbolic metric imply
the same asymptotic growth (with different constants) in any negatively curved or
flat metric. (In fact, their results give these same asymptotics when the length of
a curve is measured using any geodesic current.) The author has given explicit
bounds on #Gc(L,K) in terms of both L and K in [Sap15b, Sap15a].

2.2. A complementary result on the number of orbits. In our work, we fix
a surface S and bound #O(·,K) on S. A complementary approach is to fix K,
and consider the set O(·,K) on surfaces Sg of genus g, as g goes to infinity. To
distinguish the setting, let Og(·,K) be the set of orbits of curves with exactly K
self-intersections on a genus g surface. In this case, Cahn, Fanoni and Petri have
shown that

#Og(·,K) ∼ CK

gK+1

(K + 1)!

([CFP16].) It should be noted that the dependence of the upper bound in Theorem
1.2 on g is on the order of ee

g

, so our results are far from optimal in genus. On
the other hand, the constant CK in [CFP16] is related to automorphisms of ribbon
graphs, and is not explicit in K.

2.3. Why #O(·,K) is finite. A very coarse bound on #O(·,K) can be obtained
from the following observation. Take any closed geodesic γ on S, so that i(γ, γ) ≤
K. We can treat γ as a 4-valent graph on S. This graph has at most K vertices and
2K edges. By an Euler characteristic argument, γ has at most K complimentary
regions in S.

Thus, cutting S along γ gives us at most K subsurfaces with boundary. The
boundary of each subsurface is composed of at most 4K geodesic edges. Further-
more, the topological type of each subsurface is bounded by the topology of S,
in the sense that the total genus and number of totally geodesic boundaries of the
subsurfaces is bounded by the genus and number of boundary components of S. We
can recover the ModS orbit of γ by gluing these subsurfaces back together. In fact,
the collection of subsurfaces, together with a gluing pattern, uniquely determines
the orbit ModS · γ.

There are finitely many possible collections of subsurfaces that satisfy the above
conditions, namely that their topology is bounded by the topology of S, and that
the total number of edges in their boundary is bounded above by 4K. The number
of ways to pair off 4K edges is on the order of (2K)2K . So this observation implies
that #O(L,K) is finite. Note that it gives an order of growth that is much worse
than the one in Theorem 1.2 for large K.

On the other hand, when K = 0, this argument shows that

#O(·, 0) = ⌊g
2
⌋+ 1

and it can be used to get an accurate count for small K, as well.
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2.4. The shortest curve in a ModS orbit. We claim above that if L is small
enough, then not all orbits in O(·,K) contain curves of length at most L. To see
why this is true, we should understand the length of the shortest curve in a ModS
orbit. Let γshort denote the shortest curve in ModS · γ.

If γ is simple, then l(γshort) is well understood. In particular, it cannot be shorter
than the injectivity radius of X , denoted rX . On the other hand, all hyperbolic
surfaces, regardless of metric, have a simple closed curve shorter than the Bers’
constant, ǫb [Bus10, Chapter 5.1]. This fact generalizes to the shortest curve in
each ModS orbit of simple closed curves. So if ModS · γ ∈ O(·, 0), then

rX ≤ l(γshort) ≤ ǫ′b

where ǫ′b is Bers’ constant for ModS orbits of simple closed curves. In particular,
O(L, 0) = O(·, 0) whenever L ≥ ǫ′b.

However, the length of the shortest closed curve with K self-intersections grows
with K. In particular, if i(γ, γ) = K, then there are constants c1 and c2 depending
only on X so that

c1
√
K ≤ l(γshort) ≤ c2K

where there are examples of curves that satisfy both the upper and lower bounds
[Bas13, Mal, Gas15, AGPS16].

Basmajian shows the lower bound, and proves that it is tight, in [Bas13]. The
fact that l(γshort) ≤ c2K is shown in [AGPS16]. Another, simpler, method to show
this upper bound was communicated to us by Malestein [Mal]. It is to homotope γ
to a rose with at most K petals, and apply elements of ModS to make the rose as
short as possible. Finally, Gaster gives a family of curves on pairs of pants whose
length grows linearly with self-intersection [Gas15], which proves that the upper
bound is tight.

So if i(γ, γ) = K, the orbit ModS ·γ will appear in O(L,K) for L between c1
√
K

and c2K.

2.5. Further questions. The lower bound on l(γshort) is generic in the following
sense. Lalley shows that if we choose a curve γL length at most L at random among
all such curves, then i(γL, γL) ∼ κ(l(γ))2 almost surely, as L goes to infinity [Lal96].
So if we choose an orbit ModS · γ by choosing a closed geodesic γ of length at most
L at random, then l(γshort) would fall in the lower range of the scale that goes from

c1
√

i(γ, γ) to c2i(γ, γ).
It would be interesting to know whether this is generic behavior if we choose at

random among all orbits of curves with K self-intersections, rather than among all
curves of length at most L.

Question 2. Is it true that lim
K→∞

#O(κ
√
K,K)

#O(·,K)
= 1?

An affirmative answer to this question would lead to an interesting conclusion.
Note that when L = κ

√
K, the upper and lower bounds given by Theorems 1.2 and

1.3 give

c1e
c1

√
K ≤ #O(κ

√
K,K) ≤ c2e

c2
√
K

for two constants c1, c2 depending on the geometry of S. So an affirmative answer

would indicate that the asymptotic growth of #O(·,K) should be of the form ec
√
K ,

as well.
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We can generalize Question 2 as follows. Given any metric X , the function

ℓX : ModS · γ 7→ l(γshort)

can be thought of as a function

ℓ : M(S)×O → R

where M(S) is the moduli space of S and O is the set of all ModS orbits of
geodesics. This function sends a pair (Y,ModS · γ) to the length of the shortest
curve in ModS ·γ in any lift of Y to Teichmüller space. Note that despite the choice
we must make, this function is still well-defined. In [AGPS16], we show that for each

orbit ModS ·γ, there is some point Y (γ) ∈ M(S) where ℓ(Y,ModS ·γ) ≤ c
√

i(γ, γ).
Assume that Y (γ) is such a point with the largest injectivity radius. Then we can
ask:

Question 3. As K goes to infinity, how is the set MK = {Y (γ) | i(γ, γ) ≤ K}
distributed in M(S)?

In particular, the answer to Question 2 is positive if MK clusters in the thick
part of M(S) as K goes to infinity. The answer to this question would also be
interesting if it turned out that MK is distributed according to some measure on
M(S).
2.6. Notation. We will often use coarse bounds in the course of this paper. Our
notation for them is as follows. We write

A . B ⇐⇒ ∃c > 0 s.t. A ≤ cB

If we say that A . B and that the constant depends only on some other variable
C, we mean that the constant c above depends only on C. Furthermore,

A ≈ B ⇐⇒ A . B and B . A

2.7. Idea of proof of Theorem 1.2. The proof of Theorem 1.2 can be roughly
divided into the following four parts.

Figure 1. A curve γ and its representative p(γ)

2.7.1. Words corresponding to closed geodesics. In Section 3, we build a combina-
torial model for geodesics on S that is very similar to the one for geodesics on a
pair of pants P described in [Sap15b]. In that paper, we assign a cyclic word w(γ)
to each curve γ on P . Specifically, the pair of pants P is decomposed into two
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right-angled hexagons. The letters of w(γ) correspond to these (oriented) hexagon
edges. Moreover, we can concatenate the hexagon edges in w(γ) to get a path p(γ)
freely homotopic to γ (Figure 1).

Given a pants decomposition Π on an arbitrary surface S, we can similarly
define a cyclic word wΠ(γ) corresponding to each γ ∈ Gc. The letters in wΠ(γ)
will again correspond to the edges of a hexagon decomposition coming from Π.
Concatenating the edges in wΠ(γ) gives a curve freely homotopic to γ. We work
with this combinatorial model for the remainder of the paper.

2.7.2. Sets of words with special properties. Since we only wish to count ModS
orbits of curves, we need to consider ModS orbits of pants decompositions of S.
Choose a shortest representative of each ModS orbit of pants decompositions. This
gives us a representative list {Π1, . . . ,Πl} where the total length of all curves in Πi

is the shortest in its entire ModS orbit.
Given any Πi in the list and any length and intersection number bounds L and

K, we restrict our attention to sets of words that satisfy certain special conditions
(Section 9). Let Wi(L,K) be the set of words wΠi

(γ) so that

• |wΠi
(γ)| . K

• |wΠi
(γ)| . L+

√
K

• The number of seam edges in wΠi
(γ) is at most cS

√
K, where cS is a

constant that depends only on S.
where |wΠi

(γ)| denotes the word length of wΠi
(γ) and a seam edge is a hexagon

edge joining two curves in Π. Note that neither of the first two conditions implies
the other for all L and K.

2.7.3. Each ModS orbit corresponds to some Wi(L,K). The bulk of the paper is
spent in showing the following fact: For each orbit, there is some γ′ ∈ ModS · γ,
and some pants decomposition Πi from the representative list so that wΠi

(γ′) ∈
Wi(L,K). First, we show that there is some γ′ and Πi that satisfy the two condi-
tions that depend only on K (Proposition 4.1). Then we show that this choice of
γ′ and Πi also satisfy the second condition (Lemma 8.1).

2.7.4. Bound on #O(L,K) by bounding #Wi(L,K). The above fact allows us to
define an injective map

O(L,K) →
l
⋃

i=1

Wi(L,K)

Thus, we can bound #O(L,K) from above by bounding the size of Wi(L,K) for
each i = 1, . . . , l. To do this, all we have to do is count the number of words wΠ(γ)
that satisfy the three conditions above (Section 9.)

2.8. Acknowledgements. This work is an extension of some results from the
author’s thesis. She would like to thank her advisor, Maryam Mirzakhani, for
the discussions and support that made this paper possible. The author would
also like to thank Kasra Rafi and Ser-Wei Fu for the enlightening discussions that
contributed significantly to key portions of this paper.
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3. Words and geodesics

Consider an arbitrary surface S. Given a pants decomposition Π of S, and any
γ ∈ Gc, our goal is to define a cyclic word wΠ(γ) (Figure 3).

Let Π = {β1, . . . , βm} be a pants decomposition of S. Here, β1, . . . , βm are
simple closed curves that cut S into pairs of pants, and include the curves in the
boundary of S.

Cut each pair of pants given by Π into two hexagons using seam edges so that

• The seam edges match up across curves in Π. That is, the hexagon decom-
position looks like a 4-valent graph on the interior of S.

• Each curve in Π is cut into two congruent arcs.
• The total length of all the seam edges is as small as possible.

(See Figure 2 for an example.)

Figure 2. Hexagon decomposition of a four-holed sphere.

Ideally, we would cut each pair of pants into right-angled hexagons whose corners
match up. But this is impossible for most hyperbolic metrics. So we force the
corners of our hexagons to match up, and then ask that they be as close to right-
angled hexagons as possible.

Figure 3. The word wΠ(γ) corresponding to the curve γ and
pants decomposition Π = {β1, . . . , β6}.

Let E = E(Π) be the set of oriented hexagon edges for this hexagonal decom-
position of S. (So we will have two copies of each edge, one for each orientation.)
Edges that lie on the curves β1, . . . , βm are again called boundary edges, and
edges that join curves in Π together are called seam edges.

We will define a cyclic word wΠ(γ), whose letters will correspond to edges in E .
It turns out that wΠ(γ) will belong to a set of allowable words, defined as follows.

Definition 3.1. Fix a pants decomposition Π and let E be the edge set for its
hexagon decomposition. Let WΠ be the set of all cyclic words w in edges in E so
that
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• We can write

w = b1s1 . . . bnsn

where bi is a sequence of boundary edges, si is a single seam edge, unless
n = 1, in which case w = b1 and s1 = ∅.

• The edges in w can be concatenated into a closed path p that does not
back-track.

• If the subword si−1bisi lies in a single pair of pants for some i, then |bi| ≥ 2.
• No more than three consecutive edges lie on the boundary of the same
hexagon.

When we say that a subword si−1bisi lies in a single pair of pants, we mean that
the arc corresponding to it does not cross any curve in Π. In this case, we call bi
an interior boundary subword.

Note that if the subword si−1bisi does not lie in a single pair of pants, we allow
bi to have any length. In particular, it can be empty. When si−1bisi does not lie
in a single pair of pants, we call bi a bridging boundary subword. (See Figure 6
for examples of interior and bridging boundary subwords.)

Lemma 3.2. For each γ ∈ Gc there is a cyclic word w = wΠ(γ) ∈ W whose edges
can be concatenated into a path p freely homotopic to γ (Figure 3.)

Proof. The construction of words for an arbitrary surface will be almost identical
to the construction for pairs of pants found in [Sap15b, Lemma 2.2], but we will
summarize it here for completeness.

We first construct a closed curve p(γ) that will be the concatenation of edges
in E and freely homotopic to γ. We get the cyclic word wΠ(γ) by reading off the
edges in p(γ). We then show that wΠ(γ) lies in the set W of allowable words.

The hexagon decomposition of S cuts γ into segments, which are maximal
subarcs of γ that lie entirely in a single hexagon.

Step 1. Suppose we have a segment σ of γ that lies in some hexagon h. We
replace it by an arc p(σ) with the same endpoints, that lies in the boundary of h.
There are two choices of p(σ). We choose the one that passes through the fewest
number of full hexagon edges.

The arc p(σ) is obtained from σ via a homotopy relative its endpoints. When
we homotope all segments of γ in this way, we get a closed curve p′(γ) that is freely
homotopic to γ.

Step 2. Since no two consecutive segments lie in the same hexagon, p′(γ) can
only back-track along seam edges. We homotope away all back-tracking and get a
new closed curve p′′(γ). The curve p′′(γ) is now a concatenation of edges in E . For
more details, see [Sap15b, Move 2, Lemma 2.2].

Step 3. We read off the edges in p′′(γ) to get a cyclic word w = b1s1 . . . bnsn
where bi is a (possibly empty) sequence of boundary edges called a boundary sub-
word and si is a single seam edge. However, we may need to homotope p′′(γ) further
so that |bi| ≤ 1 implies bi is a bridging boundary subword.

Suppose bi is empty for some i. Then si−1si is a subarc of p′′(γ). Because p′′(γ)
does not back-track, si−1 and si must come in to some curve βj in Π from opposite
sides. Thus, the curve si−1si crosses a curve in Π. Therefore, bi is a bridging
subword.

Now suppose |bi| = 1 for some i, but bi is an interior boundary subword. Then
si−1bisi lies in a single hexagon. We can homotope si−1bisi to a path xi−1sxi+1
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Figure 4. A closed geodesic γ gets assigned a curve p(γ) =
b1s1 . . . b4s4. Note that b4 is empty, and is represented by a dot.

on the other side of the hexagon, where xi−1 and xi+1 are boundary edges, and
s is a seam edge (Figure 5). Then the boundary subword bi−1 of p′′(γ) becomes
bi−1xi−1. In other words, it becomes longer. Thus, if bi−1 is an interior boundary
subword, then bi−1xi−1 is also an interior boundary subword of word length at least
two. The same is true for bi+1, which becomes xi+1bi+1. So after this homotopy,
we have at least one fewer interior boundary subword with length at most 1.

We get rid of all interior boundary subwords of length at most 1 in this way to
get a curve p(γ). Thus, we get a cyclic word wΠ(γ) ∈ W .

�

3.1. Multiple choices for wΠ(γ). Note that the word wΠ(γ) obtained in Lemma
3.2 depends on the order in which we do the homotopies in Step 3 of the proof. Thus
there may be more than one choice of cyclic word corresponding to each γ ∈ Gc.
So among all cyclic words w corresponding to γ, we choose one with the fewest
number of boundary subwords. There there is more than one such word, then we
choose one at random.



ORBITS OF NON-SIMPLE CLOSED CURVES ON A SURFACE 11

→

Figure 5. Step 3: we homotope away interior boundary subwords
of length 1.

3.2. Pants decompositions not on the representative list. Recall from Sec-
tion 2.7 that the proof of Theorem 1.2 relies on two key lemmas. Proposition 4.1
states that any γ ∈ Gc(L,K) has a curve γ′ ∈ ModS ·γ in its orbit, so that for some
pants decomposition Πi from a representative list of pants decompositions,

|wΠi
(γ′)| . K

and if wΠi
(γ′) has n seam edges, then n .

√
K. Lemma 8.1 states that the pair

(γ′,Πi) satisfy a length bound, as well:

|wΠi
(γ′)| . L+

√
K

Suppose that the above two conditions from Proposition 4.1 and Lemma 8.1 hold
for γ′ ∈ ModS ·γ and some pants decomposition Π, not necessarily on the represen-
tative list. Then Π is in the same ModS orbit as some Πi from the representative
list of pants decompositions. Thus there is some homeomorphism f of S sending
the hexagon decomposition of Π to the hexagon decomposition of Πi. In particular,
f sends boundary edges to boundary edges and seam edges to seam edges. Thus,
f induces a map of words, with

wΠ(γ) 7→ f∗wΠ(γ)

Then note that
f∗wΠ(γ) = wf ·Π(f · γ)

where f · Π = Πi. Therefore, if we can show the intersection number and length
conditions for some pants decomposition Π and some γ′ ∈ ModS · γ, then we have
shown them for a pants decomposition from the representative list and (another)
curve in the orbit of γ.

4. Intersection number condition

In Section 2.7.2, we defined a representative list {Π1, . . . ,Πl} of pants decompo-
sitions, containing the shortest representative of each ModS orbit. Then Wi(L,K)
was the set of words wΠi

(γ) = b1s1 . . . bnsn so that, in particular, |wΠi
(γ)| . K

and n .
√
K. We now show that each orbit ModS · γ contains a curve γ′ so that

these two conditions are satisfied for some Πi in the representative list.

Proposition 4.1. Let L,K > 0. For each γ ∈ Gc(L,K) there is a pants decom-
position Πj ∈ {Π1, . . . ,Πl} and a geodesic γ′ ∈ ModS · γ so that if wΠj

(γ′) =
b1s1 . . . bnsn then

n
∑

i=1

|bi| . K
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and furthermore,

n .
√
K

where the constants depend only on the topology of S.

Thus, both the total length of all boundary subwords, and the number of bound-
ary subwords, are bounded in terms of intersection number.

4.1. Idea of proof of Proposition 4.1. For each γ ∈ Gc and pair of pants Π, we
want to relate i(γ, γ) to the lengths of boundary subwords in wΠ(γ). We do this as
follows.

• We wish to assign self-intersection points of γ to pairs of boundary subwords
in wΠ(γ). In particular, each boundary subword bi of wΠ(γ) corresponds
to a so-called boundary subarc γi ⊂ γ (Figure 6 and Definition 4.3). Pairs
of boundary subwords are assigned the intersection points between their
corresponding boundary subarcs.

• We first relate i(γ, γ) to the intersection numbers of all of the boundary
subarcs. This is non-trivial because boundary subarcs do not partition the
curve γ. We show

n
∑

i,j=1

i(γi, γj) . i(γ, γ)

(Lemma 4.6.)
• We then relate the intersections between a pair (γi, γj) of boundary subarcs
with the word lengths |bi| and |bj| of the corresponding boundary subwords.
The relationships depend on whether bi and bj are interior or bridging
boundary subwords.

So we prove Proposition 4.1 for the two types of subwords separately:
Lemma 5.1 proves it for bridging boundary subwords and Lemma 6.1, for
interior boundary subwords. In other words, we show that the number of
bridging (resp. interior) boundary subwords is at most c

√
K, and that the

total length of all bridging (resp. interior) boundary subwords is at most
cK for some constant c depending only on S.

• Section 7 has the proof of Proposition 4.1 given Lemmas 5.1 and 6.1.

4.2. Boundary subarcs. Let us formally define boundary subarcs. Take a pants
decomposition Π and a non-simple closed curve γ ∈ Gc. Note that we do not need
to worry about simple closed curves, since we know #O(L, 0) = 1 + ⌊ g

2⌋.
Let bi be a boundary subword of wΠ(γ). To define the boundary subarc γi

associated to bi, we work in the universal cover S̃ of S. For an illustration of what
follows, see Figure 8.

Note that the hexagon decomposition of S associated to Π lifts to a hexagonal
tiling of S̃.

Definition 4.2. Let β̃ be the lift of a curve in Π to S̃ . The one-hexagon

neighborhood of β̃, denoted N1(β̃), is the set of all hexagons adjacent to β̃.

Inductively, its k-hexagon neighborhood Nk(β̃) is the set of all hexagons that

share an edge with its k − 1-hexagon neighborhood Nk−1(β̃) (Figure 7.)



ORBITS OF NON-SIMPLE CLOSED CURVES ON A SURFACE 13

Figure 6. The boundary subarc γi corresponding to boundary
subword bi.

Figure 7. N2(β̃)

Lift γ to a geodesic γ̃ in S̃ . Let p(γ) be the closed curve formed by concatenating
the edges in wΠ(γ). Lifting the homotopy between γ and p(γ) determines a lift p̃(γ).
Then each boundary subword bi lifts to a family of subarcs of p̃(γ).

Since γ is non-simple, we know that wΠ(γ) must have at least two boundary
subwords. (If wΠ(γ) has just one boundary subword, then wΠ(γ) = b1. If b1 lies on
boundary component β of Π, then γ must be a power of β, which is simple.) Let

π : S̃ → S be the projection back down to S.
We are now ready to define boundary subarcs associated to each boundary sub-

word.

Definition 4.3. Let wΠ(γ) = b1s1 . . . bnsn with n ≥ 2. For each i, we define the
boundary subarc γi = α(bi) for the pair (γ,Π) as follows.

Let b̃i ⊂ p̃(γ) be a lift of the boundary subword bi. Then b̃i lies on a complete

geodesic β̃i. Let

γ̃i =

{

γ̃ ∩N1(β̃i) if 2 ≤ n ≤ 5

γ̃ ∩N2(β̃i) if n ≥ 6
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(If γ̃i is disconnected, take the connected component that passes through N1(β̃).)
Then the boundary subarc γi is defined by

γi = π(γ̃i)

For an illustration of boundary subarcs lifted to the universal cover, see Figure
8. For boundary subarcs on the surface, see Figure 6.

Remark 4.4. Lemma 6.12 is the only place where it is important to use two-
hexagon neighborhoods in this definition. Everywhere else, a one-hexagon neighbor-
hood would suffice.

Figure 8. Lifts of bridging and interior boundary subarcs (in
bold) and the lifts of the associated boundary subwords.

Because the hexagonal tiling of S̃ is invariant under deck transformations, γi is
independent of the lift we choose of bi.

We defined boundary subarcs of γ as the projection down to S of certain subarcs
of a lift γ̃ of γ. So a priori, a boundary subarc γi need not be a proper subarc of γ.
We now show that boundary subarcs are, in fact, proper subarcs of γ.

Lemma 4.5. Suppose wΠ(γ) = b1s1 . . . bnsn with n ≥ 2 and take a boundary subarc
γi = α(bi). Then l(γi) ≤ l(γ) for each i.

Proof. Choose a lift γ̃ of γ. Fix an i, and suppose the boundary subword bi lies on
a simple closed geodesic βi in S. Then there is some lift β̃i of βi of S and a lift γ̃i
of γi so that

γ̃i = γ̃ ∩Nk(β̃i), where k = 1 or 2

Note that γ̃ must cross ∂Nk(β̃i) in two points, for any k ∈ N. If not, then γ̃ has an

infinite ray that stays a bounded distance away from β̃i. So either γ spirals around
βi, which means it cannot be closed, or γ = βi. Both possibilities contradict our
assumptions.

First, suppose k = 1. Then wΠ(γ) = b1 . . . sn for 2 ≤ n ≤ 5. See Figure 9

for what follows. Let x̃ be one of the endpoints of γ̃i lying on ∂N1(β̃i). Abusing
notation, we can view γ as a deck transformation that acts by translation along γ̃.
Let ỹ = γ(x̃). Then let γ̃xy be the subarc of γ̃ between points x̃ and ỹ. We can
assume that γ̃i and γ̃xy overlap because if the interior of γ̃xy does not pass through
N1(γ̃), then we can let ỹ = γ−1(x̃), instead. Since l(γ̃xy) = l(γ), we just need to
show that, in fact, γ̃i is contained inside γ̃xy.

Note that x̃ and ỹ project to the same point in S. Since x̃ is an endpoint of γ̃i,
it lies on a hexagon edge on ∂N1(β̃i), which does not touch β̃i. Thus, ỹ also lies
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Figure 9. The arc γ̃xy passes through N1(β̃i), which is shaded gray.

on an edge that does not touch β̃i. Therefore γ̃xy is not contained in N1(β̃i). So
γ̃i ⊆ γ̃xy.

Now suppose that wΠ(γ) = b1s1 . . . bnsn with n ≥ 6. Then

γ̃j = γ̃ ∩N2(β̃j)

for some lift β̃j of a curve in Π, for each j = 1, . . . , n. Note that the shortest edge

path between β̃i and β̃i+3 must have at least 3 seam edges in it. So γ̃i and γ̃i+3

overlap inside at most 1 hexagon of the hexagonal tiling of S̃. In fact, because
n ≥ 6, no other lift of γi+3 overlaps with γ̃i in more than 1 hexagon. Thus, γi and
γi+3 have at most 2 segments in common (where a segment is a maximal subarc
of γ̃ lying in some hexagon of the hexagon decomposition of S. But by definition,
γj has at least 4 segments for each j. So at least two segments of γi+3 are not
segments of γi. Therefore, l(γi) ≤ l(γ).

�

4.3. Intersection numbers of boundary subarcs approximate i(γ, γ). Bound-
ary subarcs do not partition γ, so it is not true that

∑

i(γi, γj) = i(γ, γ). However,
this holds up to a multiplicative constant.

Lemma 4.6. Let γ ∈ Gc and let Π be a pants decomposition. Let γ1, . . . , γn be the
boundary subarcs of the pair (γ,Π). Then

n
∑

i,j=1

i(γi, γj) ≤ 25i(γ, γ)

Proof. Parameterize γ by γ : [0, 1] → S. Then the self-intersection points of γ are
given by times t1 < t2 < · · · < tn and s1, . . . , sn so that γ(tk) = γ(sk) for each k.
For each pair (tk, sk), we need to bound the number of pairs (γi, γj) so that tk is
in the domain of γi and sk is in the domain of γj .

Choose an intersection time tk. Lift γ to the universal cover, and consider one
lift of γ(tk). This is some point x̃ on γ̃. We will count the number of boundary
subarcs whose lifts contain x̃.

The point x̃ lies in some hexagon h. So we really just need to count the number
of boundary subarcs whose lifts to γ̃ pass through h.

Suppose β̃ and β̃′ are the lifts of two curves in Π. Consider the intersection
I = N2(β) ∩N2(β

′) of their two hexagon neighborhoods (Figure 10). Between the
first time γ̃ enters I and last time it leaves, it will pass through at most 4 hexagons.
Thus, the lifts of two boundary subarcs overlap in at most 4 hexagons.
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Figure 10. Intersections of the 1- and 2- hexagon neighborhoods
of β and β′ are shaded.

No boundary subarc is contained in any other boundary subarc. Therefore, any
hexagon h intersects the lifts of at most 5 boundary subarcs. So any intersection
time tk or sk lies in the domain of at most 5 boundary subarcs. Therefore, for each
pair (tk, sk), there are at most 25 pairs (γi, γj) so that tk is in the domain of γi and
sk is in the domain of γj . �

4.4. Two types of boundary subarcs. Suppose bi is a boundary subword lying
on the simple closed curve βj ∈ Π. Recall that we had two types of boundary
subwords. If bi is an interior boundary subword, then we say that γi is an interior

boundary subarc. In this case, γ̃i does not intersect β̃j .

Label the two sides of (a regular neighborhood of) βj by β+
j and β−

j . Then the
seam edges si−1 and si enter and exit the same side of βj , respectively. If they enter

and exit through β+
j , we say that γi lies on the positive side of βj . Otherwise,

γj lies on the negative side. Let

Γ′
2j = {γi | γi lies on the positive side of βj}

Γ′
2j+1 = {γi | γi lies on the negative side of βj}

Now let

Γ′ =
2m
⋃

j=1

Γ′
l

This is the set of all interior boundary subarcs of the pair (γ,Π).

Otherwise, bi is a bridging boundary subword, and γ̃i intersects β̃j . Then we
call γi a bridging boundary subarc, or, alternatively, say that γi bridges βj. Let

Bj = {γi | γi bridges βj}
and let

B =

m
⋃

j=1

Bj

be the set of all bridging boundary subarcs of the pair (γ,Π).

5. Intersection bounds for bridging boundary subwords

We first prove Proposition 4.1 for bridging boundary subwords. The formulation
is as follows:
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Lemma 5.1. There is a pants decomposition Π and some element f ∈ ModS so
that if B is the set of bridging boundary subarcs of the pair (f · γ,Π), then

∑

γi∈B

|bi| . K and #B ≤ cS
√
K

where γi = α(bi) for each i, and the constants depend only on the topology of S.
5.1. Idea of proof. The proof is divided into two major parts, corresponding to
the two inequalities in the lemma.

Step 1. First, we find a pants decomposition so that wΠ(γ) satisfies

#B .
√
K

Take any pants decomposition Π. The curve γ may cross each curve in Π multi-
ple times. The number of times γ crosses all the curves in Π is exactly the number
of bridging boundary subwords (Proposition 5.2). So in fact, we find a pants de-
composition Π so that

i(γ,Π) .
√
K

(Proposition 1.4).

Figure 11. The difference in twisting of γi and γj creates inter-
sections between them.

Step 2. Next we find a γ′ ∈ ModS · γ that differs from γ by Dehn twists about
Π and satisfies:

∑

B

|bi| . K

(Lemma 5.6.)
As a bridging boundary subarc γi crosses a curve βk ∈ Π, it may spiral around it.

Note that a single arc twisting by itself does not contribute anything to intersection
number. But suppose two boundary subarcs γi and γj bridge some βk ∈ Π. If γi
twists ∆i times, and γj twists ∆j times, then

i(γi, γj) ≈ |∆i −∆j |
where ∆i is the signed twisting number of γi (Figure 11.) So we get

∑

γi,γj ıBk

|∆i −∆j | . K

(Claim 5.7.)
We apply Dehn twists about curves in Π to γ so that the total signed twisting

about each β ∈ Π is as small as possible (Claim 5.9). This gives us a new curve γ′.
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Since γ′ has the smallest possible total twisting about curves in Π, we can show
that, in fact,

∑

Bk

|∆′
i| . K

Lastly, we consider the word wΠ(γ
′) = b′1s

′
1 . . . b

′
ns

′
n. Note that if |b′i| = 2m then

γi twists roughly m times. Thus, |∆′
i| ≈ |b′i| for each bridging boundary subword

bi. This gives us that
∑

B

|b′i| . K

where B is the set of bridging boundary subarcs of γ′ (Claim 5.8). This gives us
Lemma 5.1 (Section 5.4).

5.2. Number of subarcs. Given any curve γ and pants decomposition Π, let
i(γ,Π) denote the total number of intersections between γ and the curves in Π. So

i(γ,Π) =
∑

βi∈Π

i(γ, βi)

Proposition 5.2. Take any curve γ and pants decomposition Π. Let B be the set
of bridging boundary subarcs of the pair (γ,Π). Then

#B = i(γ,Π)

Proof. It is easier to see this in the universal cover S̃ of S. Take a lift γ̃ of γ.
Suppose γ̃ intersects a lift β̃j of βj ∈ Π. Let p(γ) be the path associated to wΠ(γ).
Lift the homotopy between p(γ) and γ so that γ lifts to γ̃ and p(γ) lifts to a curve

p̃(γ). Since γ̃ crosses β̃j , the curve p̃(γ) must also cross β̃j . But p̃(γ) is made up of
arcs that lie on lifts of curves in Π, and seam arcs connecting curves in Π. So p̃(γ)

crosses β̃j if and only if it has a bridging boundary subword bi, possibly empty, that

lies on β̃j . Therefore, B is in one to one correspondence with intersections between
γ and Π. �

Note that if we choose a pants decomposition Π at random, then we only have

i(γ,Π) ≤ l(γ)l(Π)

where l(Π) =
∑

β∈Π l(β). This follows, for example, by an argument similar to the

proof of [Bas13, Theorem 1.1]. Because of this, the following proposition may be
of independent interest.

Proposition 1.4. Let γ ∈ Gc with i(γ, γ) = K ≥ 1. Then there exists a pants
decomposition Π so that

i(γ,Π) ≤ cS
√
K

where the constant cS depends only on the topology of S.
The author would like to thank Kasra Rafi for the conversation in which we came

up with the main idea of this proof.

Proof. We find the pants decomposition Π one curve at a time. Each time we add
a simple closed curve β to Π, we cut along β. So S gets progressively cut along
simple closed curves until we decompose S into the union of pairs of pants.

So suppose we have a (connected) surface S ′ with b boundary components, that
either contains a single non-simple closed geodesic or that is traversed by at most√
K geodesic arcs connecting its boundary components, so that these arcs intersect
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each other at most K times. Let γ denote this single closed geodesic or collection
of geodesic arcs. Then we find a simple closed curve β that crosses γ at most 57

√
K

times. We do this as follows:

Figure 12.

Step 1. We choose an essential, non-peripheral, non-separating simple closed
curve α so that i(α, γ) is as small as possible. For example, in Figure 12, α intersects
γ 3 times. If S has genus 0, then we drop the non-separating condition, as in Figure
14.

Step 2. The curve γ cuts S into regions. An Euler characteristic argument
implies that

√
K arcs with K total self-intersections cut S into at most K +

√
K

regions. The number of regions does not need to be very precise. As
√
K ≤ K, we

can say we have at most 2K regions.

Remark 5.4. Suppose an arc η passes through i+1 regions. Then it crosses from
one region to another i times. Since η can pass through region corners, and at most
4 regions can meet at each corner, this means that

#η ∩ γ ≤ 2i

where we do not count any intersections between the endpoints of η with γ.

This motivates the following definition. We define neighborhoods N0(α) ⊂
N1(α) ⊂ · · · ⊂ Ni(α) ⊂ . . . , where N0(α) contains all the regions that touch
α, and Ni+1(α) contains all the regions that touch Ni(α) (in either an edge or a
corner.) (Figure 12).

A small caveat is that we want Ni(α) to have essential boundary for each i. So
suppose N ′

i+1(α) is the union of Ni(α) and the set of regions that touch Ni(α).
Then let Ni+1(α) be N ′

i+1(α) together with all contractible subsets of S \N ′
i+1(α).
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Remark 5.5. Any point x on the boundary of Ni(α) can be joined to α by an arc
η : x 7→ α that passes through at most i+ 1 regions. In particular, it will intersect
γ at most 2i times.

Step 3. There are finitely many regions, so at some point, there will be an n
for which one of the following two things will happen:

(1) The curve α separates Nn(α) but not Nn+1(α). For example, in Figure 12,
α separates N0(α) but not N1(α).

Since the nested sequence of neighborhoods N0(α) ⊂ · · · ⊂ Ni(α) ⊂ . . .
eventually fills out the entire surface, either this condition is eventually
satisfied, or α separates S (which is only possible if S has genus 0.)

(2) The number of new regions in Nn+1(α) will be fewer than 4
√
K:

#Nn+1(α) \Nn(α) ≤ 4
√
K

For example, in Figure 12, N0(α) only has 3 regions. Since i(γ, γ) = 39, this
condition is satisfied for n = −1 (using the convention that N−1(α) = α).

We let n be the least number so that one of these two conditions are satisfied.
In Figure 12, n = −1, because condition 2 is satisfied before condition 1.

In particular, since condition 2 must be satisfied at some point, and since there
are at most 2K regions, we must have that

n ≤ 1

2

√
K

We will examine what happens when each of the conditions fails first.
Case 1. Suppose Condition 1 fails first. That is, α separates Nn(α), but does

not separate Nn+1(α).
In this case, we construct another essential, non-peripheral, non-separating curve

β so that

i(β, γ) ≤ 2
√
K + 2 +

1

2
i(α, γ)

We chose α so that i(α, γ) ≤ i(β, γ). Thus the above inequality implies that

i(α, γ) ≤ 4
√
K + 4

The curve β will be the concatenation of an arc ρ in S \ α with a subarc α′ of
α. First we build the arc ρ that will join α to itself. So cut Nn+1(α) along α. The
result is connected by assumption, and has two boundary components, α+ and α−,
that come from α.

Figure 13. Since α does not separate N2(α), we can find this
curve β.
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Then we claim that there is a curve ρ joining α+ to α− that passes through at

most
√
K +2 regions. There are at most 2 regions, R1, R2, in Nn+1(α) \Nn(α), so

that R1 ∪ R2 joins one component of Nn(α) \ α to the other. In Figure 13, there
is actually a single region in N1(α) \ N0(α) that connects the two components of
N0(α) \ α. Take any point x where R1 meets the boundary of Nn(α). Then we
can join x to α by an arc that passes through at most n regions. Thus, we can join
α+ to α− by an arc ρ that passes through at most 2n + 2 regions. As remarked

above, n ≤ 1
2

√
K, so ρ passes through at most

√
K + 2 regions. By Remark 5.4,

this means that

#ρ ∩ γ ≤ 2
√
K + 2

Now we think of ρ as an arc in S. Its endpoints lie on α. Thus, we can join the
endpoints of ρ by a subarc α′ of α so that

#α′ ∩ γ ≤ 1

2
i(α, γ)

Take the concatenation β = ρ ◦ α. Then we have

i(β, γ) ≤ 2
√
K + 2 +

1

2
i(α, γ)

Note that by construction, i(β, α) = 1. This means that β is essential, non-
peripheral, and non-separating. So, as explained above, we get that i(α, γ) ≤
4
√
K + 4.
Case 2. Now suppose Condition 2 fails first. That is, α separates Nn+1(α), but

the number of regions in Nn+1(α) \ Nn(α) is fewer than 4
√
K. For example, in

Figure 14, α actually separates S, which is a 4-holed sphere. The multi-arc γ has
16 self-intersections, and N2(α) has 4 more regions than N1(α).

Figure 14. N0(α), N1(α) andN2(α) are shown in different shades
of gray.

In this case, let β1, . . . , βm be the boundary components of Nn+1(α). Consider
one such boundary component βi. Then any point on βi either lies on the boundary
of a region that is new to Nn+1(α), or it lies on the boundary of S. There are at

most 4
√
K regions in Nn+1(α) \ Nn(α), and 2

√
K regions touching ∂S (because

γ consists of at most
√
K arcs, which cut ∂S into 2

√
K pieces). Thus, βi passes

through the boundary of at most 6
√
K regions. Because regions can meet in corners,

this implies that

i(βi, γ) ≤ 12
√
K

for each boundary component βi in Nn+1(α).
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Figure 15. A path ρi connects its boundary component βi to α,
for each i = 1, 2, 3, 4. Then, we form the curve β.

If Nn+1(α) has a non-peripheral boundary component βi, then we are done: we

have found an essential, simple closed curve βi that intersects γ at most 12
√
K

times. So suppose that all boundary components of Nn+1(α) are peripheral, as in
Figure 15. In this case, Nn+1(α) is homeomorphic to S. As we assume that α
separates Nn+1(α), it must separate S. We only allow this if S has genus 0.

In this case, we will find an essential, non-peripheral closed curve β so that

i(β, γ) ≤ 28
√
K + 8 +

1

2
i(α, γ)

When S is genus 0, we assume that α is the essential, non-peripheral closed curve
that intersects γ the least. So i(α, γ) ≤ i(β, γ) implies that

i(α, γ) ≤ 56
√
K + 16

We build β as follows. S has genus 0 with b boundary components, for b ≥ 4.
So we label the boundary components of Nn+1(α) by β1, . . . , βb. By Remark 5.5,
any point xi on βi can be joined to α by an arc ρi with #ρi ∩ γ ≤ 2n+2, as in the
left-hand side of Figure 15. Since n ≤ 1

2

√
K, we have

#ρi ∩ γ ≤
√
K + 2

Let yi be the endpoint of ρi that lies on α. Since b ≥ 4, there are at least 4 such
points. So without loss of generality, y1 and y2 can be joined by a subarc α′ ⊂ α
so that

#α′ ∩ γ ≤ 1

4
i(α, γ)

The arc ρ = ρ1 ◦α′ ◦ ρ2 joins β1 to β2, as in the right-hand side of Figure 15. By
the above,

#ρ ∩ γ ≤ 2
√
K + 4 +

1

4
i(α, γ)

Note that it must be a simple arc, because if, for example, ρ1 and ρ2 intersect, we
can do surgery on one of them so that it goes through strictly fewer regions.

We can then form the simple closed curve

β = ρ ◦ β1 ◦ ρ−1 ◦ β2

(See the right-hand side of Figure 15.) We know that i(βi, γ) ≤ 12
√
K for each

i = 1, . . . , b. So,

i(β, γ) ≤ 28
√
K + 8 +

1

2
i(α, γ)
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Because β1 and β2 are homotopic to distinct boundary components of S, the curve
β is essential and non-peripheral. So by the argument above, i(α, γ) ≤ 56

√
K +16.

Step 4. In each case above, we found an essential, simple closed curve β that
crosses γ at most 56

√
K + 16 times. As K ≥ 1, this means i(γ, β) ≤ 57

√
K.

Step 5: Now take our original surface S and a single non-simple closed geodesic
γ with at mostK self-intersections. Then there is a simple, essential, non-peripheral
closed curve β1 on S with

i(γ, β1) ≤ 57
√
K

Now suppose we have distinct simple closed curves β1, . . . , βi with i(βi, γ) = Ii.
Cutting γ along β1, . . . , βi gives us a multiarc γi composed of

Ti = I1 + · · ·+ Ii

arcs. As I1 = 57
√
K, we see that Ti ≥

√
K. So we can use the argument in Steps

1-4 to find a curve βi+1 with

i(γ, βi+1) ≤ 57Ti

since we can use (Ti)
2 as the new upper bound for i(γi, γi). By induction, we see

that

Ti = 57(1 + 57)i−1
√
K

We continue finding curves until we get a pants decomposition Π = {β1, . . . , βm}.
Note that i(γ,Π) ≤ Tm. Thus, we can simplify the above bound to get

i(γ,Π) ≤ 58m
√
K

�

5.3. Total length of bridging boundary subwords. From now on, we will
assume that Π = {β1, . . . , βm} is a pants decomposition so that i(γ,Π) ≤ cS

√
K

for all i. Let τi be the Dehn twist about βi.
We show the following:

Lemma 5.6. There is some product f = τn1

1 . . . τnm
m of Dehn twists so that if B is

the set of bridging boundary subarcs of the pair (f · γ,Π) then
∑

γi∈B

|bi| . K

where the constant depends only on S.
Note that if f is any product of Dehn twists about curves in Π, then i(f ·γ,Π) ≤

cS
√
K still holds. That is, Π is the “right” pants decomposition for γ if and only if

it is the “right” pants decomposition for f · γ. So Proposition 1.4 and Lemma 5.6
together imply Lemma 5.1.

Proof. Lift the hexagon decomposition of S to a hexagon decomposition of its
universal cover S̃. Let βl ∈ Π. Choose a lift β̃l of βl to S̃. Number the hexagons
on either side of β̃l (Figure 16). Let {hi}i∈Z be the hexagons on one side and
{χi}i∈Z be the hexagons on the other side, so that hi and χi share an edge, and hi

is adjacent to hi−1 and hi+1.

Suppose γ̃ is a lift of γ that intersects β̃l. Then there is a boundary subarc γi
with a lift

γ̃i = γ̃ ∩Nk(β̃l)
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Figure 16.

for k = 1 or 2. Suppose γ̃i enters N1(β̃l) at hni
and exits at χmi

. Let

∆i = mi − ni

We will call ∆i the twisting parameter of γi, since it is related to the number of
times γi twists about βl, and the direction it twists in.

Suppose γj is another boundary subarc that bridges βl. Then there is another
lift γ̃′ of γ so that

γ̃j = γ̃′ ∩Nk(βl)

is a lift of γj . Then, up to reversing orientation, γ̃j enters N1(β̃j) at hnj
and exits

at χmj
and has twisting parameter ∆j (Figure 17.)

Claim 5.7. Suppose i(γ,Π) ≤ cS
√
K. If Bl is the set of boundary subarcs of the

pair (γ,Π) that bridge βl ∈ Π for each l, then
m
∑

l=1

∑

γi,γj∈Bl

|∆i −∆j | . K

where the constant depends only on the topology of S, and ∆i is the twisting pa-
rameter of γi.

Proof. Both γ̃i and γ̃j cut N1(β̃l) into two pieces. For example, consider the two

components of N1(β̃l) \ γi. Whenever n > ni and m < mi, the edges of ∂N1(β̃l)
adjacent to hexagon hn are in a different component than the edges adjacent to
hexagon χm. In fact, if

ni < nj and mj < mi or

nj < ni and mi < mj

we have that
#γ̃i ∩ γ̃j = 1

(See Figure 17.)

Let fl be the deck transformation that acts by translation along β̃l with trans-
lation length l(βl). We will use fl to slide γ̃i around and create intersections with
γ̃j .

Up to replacing fl with f−1
l , we have fl(hn) = hn+2 and fl(χn) = χn+2. So

fk
l (γ̃i) has endpoints in hexagons hni+2k and χmi+2k. Thus, whenever

ni+2k < nj and mj < mi+2k or

nj < ni+2k and mi+2k < mj
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Figure 17.

we have that
#fk

l (γ̃i) ∩ γ̃j = 1

Recall that we defined the twisting parameter

∆i = mi − ni

for each i. Then we can count the number of powers k that result in an intersection:

#{k ∈ Z | #fk
l (γ̃i) ∩ γ̃j = 1} ≥ 1

2
|∆i −∆j | − 1

Project all intersections between shifts fk
l (γ̃i) and γ̃j down to γ. Note that they

must all project down to distinct self-intersection points of γ. Thus,

i(γi, γj) ≥
1

2
|∆i −∆j | − 1

for any γi and γj that bridge βl. By Lemma 4.6, this implies that
m
∑

l=1

∑

γi,γj∈Bl

(|∆i −∆j | − 2) ≤ 50i(γ, γ)

where Bl is the set of all boundary subarcs of the pair (γ,Π) that bridge βl. We

chose Π so that
∑

#Bl ≤ cS
√
K for each l. Since i(γ, γ) ≤ K, this implies

m
∑

l=1

∑

γi,γj∈Bl

|∆i −∆j | ≤ (50 + 2(cS)
2)K

�

Whenever γ satisfies

(5.3.1) 0 ≤
∑

∆i ≤ 4cS
√
K

we get the following claim.

Claim 5.8. Suppose i(γ,Π) ≤ cS
√
K. If γ also satisfies (5.3.1), then
∑

γi∈B

|bi| . K

where B is the set of bridging boundary subarcs of the pair (γ,Π), γi = α(bi) for
each i, and the constant depends only on S.

After we show this claim, we will show how to find a composition of Dehn twists
f ∈ ModS so that (5.3.1) holds for f · γ.
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Proof. We will first bound
∑ |∆i−∆j| from Claim 5.7 from below by

∑ |∆i|. Then
we will show that |∆i| ≥ |bi|+ 1. Combined with Claim 5.7, this will complete the
proof.

Let Bl be the set of boundary subarcs of the pair (γ,Π) that bridge βl. Renumber
the elements of Bl by γ1, . . . , γN so that their respective twisting parameters satisfy
∆1 ≤ ∆2 ≤ · · · ≤ ∆N . Consider the set of vectors {vi = (1,∆i)} ⊂ R

2. Form a
convex polygon P with vertices at w0 = 0, and wi = v1 + · · ·+ vi for i = 1, . . . , N .
(Figure 18.)

v1

v2
. . .

vN

Figure 18. The polygon P . The slopes of its sides are the twisting
parameters of γ about βl.

The area of P is exactly
∑

i<j |∆i −∆j |. To see this, consider the triangle with
vertices at wi, wi+1 and wN .

Two sides of this triangle are given by the vectors vi = (1,∆i) and vi+1 + · · ·+
vN = (N − i,∆i+1 + · · · + ∆N ), respectively. Thus, its area is given by absolute
value of the determinant

∣

∣

∣

∣

1 N − i
∆i ∆i+1 + · · ·+∆N

∣

∣

∣

∣

=

N
∑

j=i

(∆j −∆i)

These triangles are disjoint for all i, so the sum of their areas gives the area of P .
Thus,

area(P ) =
∑

i≤j

∆j −∆i

where we do not need absolute value signs because ∆i ≤ ∆j for j ≥ i.
We would like to thank Ser-Wei Fu for introducing us to the above technique.

Specifically, he showed us how to write a sum of differences of twisting numbers as
the area of a polygon, like we do above.

We will bound area(P ) from below by a multiple of
∑ |∆i|. Let T be the triangle

with vertices 0, a and b where a and b are defined as follows: Let a = wN be the
right-most vertex of P , and let b be a point on P with the least y-coordinate. As
T is contained inside P , we will, in fact, bound area(T ) from below in terms of
∑ |∆i|.
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0

b

a

Figure 19. The triangle T inside P .

We will use Heron’s formula to estimate the area of T . Heron’s formula says

(area(T ))2 = s(s− l1)(s− l2)(s− l3)

where l1, l2, and l3 are the side lengths of T , and s = 1
2 (l1 + l2 + l3). Let

l1 = |0a|, l2 = |0b| and l3 = |ab|
By the triangle inequality, all four terms in Heron’s formula are positive. So we

will use that (area(T ))2 ≥ s(s− l1). Thus, we can bound area(T ) from below if we
bound s from below and l1 from above.

So we need the following bounds on l1, l2 and l3. Because a = (N,
∑

∆i), we

have that N ≤ l1 ≤ N +
∑

∆i. Since 1 ≤ N ≤ cS
√
K, and

∑

∆i ≤ 4cS
√
K, we

have

1 ≤ l1 ≤ 5cS
√
K

Next, note that both 0b and ab join b to a point with non-negative y-coordinate.
So if b = (b1, b2), then

l2 ≥ |b2| and l3 ≥ |b2|
So we will bound l2 and l3 from below if we can bound |b2| from below. Since b is
the lowest point on P , its y-coordinate must be

b2 =
∑

∆i<0

∆i

As 0 ≤∑∆i ≤ 4cS
√
K, we have that

0 ≤
∑

∆i>0

|∆i| −
∑

∆i<0

|∆i| ≤ 4cS
√
K

By adding 2
∑

∆i<0 |∆i| to both sides and rearranging the resulting inequality, we
get

|b2| ≥
1

2

N
∑

i=1

|∆i| − 2cS
√
K
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Therefore, we get the inequalities

l2 ≥ 1

2

N
∑

i=1

|∆i| − 2cS
√
K

and

l3 ≥ 1

2

N
∑

i=1

|∆i| − 2cS
√
K

Now we can estimate s and s− l1 as follows:

s ≥ 1

2

N
∑

i=1

|∆i| − 2cS
√
K

and

s− l1 ≥ 1

2

N
∑

i=1

|∆i| − 7cS
√
K

where we ignore the contribution of +1 to s from l1 to make our computations
cleaner.

Clearing out the fraction and applying Heron’s formula, this gives us that

4 · area(T ) ≥ (
N
∑

i=1

|∆i| − 4cS
√
K)(

N
∑

i=1

|∆i| − 14cS
√
K)

≥ (

N
∑

i=1

|∆i| − 14cS
√
K)2

Note that without loss of generality, the terms in the product are both positive.

If either term is negative, then
∑N

i=1 |∆i| ≤ 14cS
√
K. But this implies that

∑N
i=1 |∆i| . K, which is what we are trying to show.
So we can bound

∑ |∆i| as follows:
N
∑

i=1

|∆i| ≤ 2 · area(T ) + 14cS
√
K

≤ 2 · area(P ) + 14cS
√
K

= 2
∑

i≤j

∆j −∆i + 14cS
√
K

. K

by Claim 5.7, where the constant is 100 + 4(cS)2 + 14cS , since
√
K ≤ K for all

K ≥ 1.
Lastly, we wish to relate the number |∆i| to the length of boundary subword bi.

Let p(γ) be the path formed by concatenating letters in wΠ(γ). Lift the homotopy
between γ and p(γ) so that γ lifts to γ̃. This gives us a lift p̃(γ). Then there is a

lift b̃i of bi that lies on β̃l. Each edge in b̃i lies on the boundary of two hexagons.
By construction, γ̃ must pass through at least one of those hexagons. So if γ̃ enters
N1(β̃l) at hexagon hni

and exits at hexagon χmi
, then |bi| ≤ |mi−ni|+1. In other

words,

(5.3.2) |bi| ≤ |∆i|+ 1
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Note that if γ̃i passes through hexagons numbered n − 1, n, n + 1 adjacent to β̃l,
then p̃(γ) must lie on β̃l in hexagon number n (at least). So the curve p̃(γ) must lie

on β̃l at least from hexagon ni + 1 to hexagon mi − 1, as in Figure 20. Combining

Figure 20. The arc b̃i must contain the arc in bold.

this observation with Inequality (5.3.2), we get

(5.3.3) |bi| − 1 ≤ |∆i| ≤ |bi|+ 1

Let B be the set of all bridging boundary subarcs, and let Bl be the subarcs of
γ that bridge βl. Then

∑

γi∈B

|bi| ≤
m
∑

l=1

∑

γi∈Bl

(|∆i|+ 1)

≤
m
∑

l=1

∑

γi∈Bl

|∆i|+ cS
√
K

. K

Note that the second inequality uses the fact that
∑m

l=1 #Bl ≤ cS
√
K. We can take

the multiplicative constant to be (100 + 29(cs)
2)m, since

√
K ≤ K for all K ≥ 1

and cS ≥ 1.
�

Now we want to find the element γ′ ∈ ModS · γ for which i(γ′,Π) .
√
K and

which also satisfies inequality (5.3.1). To do this, we will apply Dehn twists to γ
about curves in Π until the result satisfies (5.3.1). Recall that τl was the Dehn
twist about βl ∈ Π for each l.

Claim 5.9. There is a composition of Dehn twists f = τn1

1 . . . τnm
m so that the pair

(f · γ,Π) satisfies (5.3.1) for each βl ∈ Π:

0 ≤
∑

γi∈Bl

∆i ≤ 4cS
√
K

where Bl is the set of boundary subarcs of the pair (f · γ,Π) that bridge βl, and ∆i

is the twisting parameter of γi ∈ Bl.

Proof. Consider the closed curve p(γ) formed by concatenating the letters of wΠ(γ).
If bi ∈ Bl is a boundary subword bridging βl, then the orientation of S assigns bi
a sign σ = ±1 depending on where bi twists around βl to the right or to the left.
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(For example, we can define twisting to the right to be positive twisting.) Assign
each bi ∈ B the twisting parameter

σi|bi|
Note that knowing the twisting parameter and the curve βl uniquely determines bi,
up to orientation.

Let f = (τ1)
n1 · · · (τm)nm ∈ ModS be a composition of Dehn twists about Π.

Then a representative of f · p(γ) can be obtained by changing only the bridging
boundary subwords of p(γ). In fact, the bridging boundary subword f ·bi of f ·p(γ)
will be the unique one whose twisting parameter is

σi|bi|+ 2nl

Thus, twisting once about βl adds 2#Bl to the sum
∑

Bl
σi|bi|. As #Bl ≤ cS

√
K,

we can choose integers n1, . . . , nm so that

(5.3.4) cS
√
K ≤

∑

Bl

(σi|bi|+ 2nl) ≤ 3cS
√
K

for each l. This means that the net twisting of f ·p(γ) about βl is bounded in terms

of
√
K.

We wish to relate the net twisting of f · p(γ) with the net twisting of f · γ. To
do this, we will first show that the closed curve f · p(γ) is, in fact, the curve formed
by concatenating the letters of wΠ(f · γ).

Let w be the cyclic word given by the edges in f ·p(γ). When we went from p(γ)
to f ·p(γ), we only changed the length and direction of bridging boundary subwords.
Thus, w satisfies Definition 3.1 because wΠ(γ) does. In particular, w is an allowable
word living in WΠ. Furthermore, f · p(γ) must have the least possible number of
boundary subwords among all such curves freely homotopic to f · γ, because it
has the same number of boundary subwords as p(γ), which had the fewest possible
number of boundary subwords. Therefore, w = wΠ(f · γ).

Take a word w = wΠ(γ) for some closed geodesic γ. Suppose bi is a bridging
boundary subword and γi is the corresponding boundary subarc for the pair (γ,Π).
We need to relate the twisting parameter ∆i of γi to the twisting parameter σi|bi|
of bi. Note that the sign of ∆i is the same as the sign σi of bi (if we let 0 have
whatever sign is needed for this statement to hold). Thus, Inequality (5.3.2) implies
that

σi|bi| − 1 ≤ ∆i ≤ σi|bi|+ 1

Let f ·Bl = {f ·∆i} be the set of twisting parameters of the bridging boundary
subarcs of the pair (f · γ,Π) that bridge βl. Then by Inequality 5.3.4,

0 ≤
∑

f ·Bl

f ·∆i ≤ 4cS
√
K

�

5.4. Proof of Lemma 5.1. Take the curve γ′ = f · γ ∈ ModS · γ defined in the
previous claim. Note that i(γ′,Π) = i(γ,Π), since γ′ differs from γ by Dehn twists
about curves in Π. Furthermore, γ′ satisfies (5.3.1). So Claims 5.7 and 5.8 imply
that if wΠ(γ

′) = b1s1 . . . bnsn, and if B is the set of bridging boundary subarcs of
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the pair (γ′,Π), then
∑

γi∈B

|bi| . i(γ′, γ′)

Since i(γ′, γ′) = i(γ, γ), we are done. �

6. Proposition 4.1 for interior boundary subwords

Next, we show Proposition 4.1 for interior boundary subwords:

Lemma 6.1. Let L,K > 0. Let γ ∈ Gc(L,K) and let Π be any pants decomposition

so that i(γ,Π) ≤ cS
√
K. If wΠ(γ) = b1s1 . . . bnsn then

(6.0.1)
∑

Γ′

|bi| . K

and furthermore,

(6.0.2) #Γ′ .
√
K

where the constants depend only on the topology of S and Γ′ is the set of interior
boundary subarcs of the pair (γ,Π).

For the rest of this section, fix a γ ∈ Gc(L,K) and choose a pants decomposition

Π so that i(γ,Π) ≤ cS
√
K. Write

wΠ(γ) = b1s1 . . . bnsn

Then γi = α(bi) will be the boundary subarc associated to bi and the pair (γ,Π).

6.1. Intuition behind Lemma 6.1. The next part is intended to provide intuition
for why Lemma 6.1 holds, as the proof itself is rather technical. The full outline of
the proof can be found in Section 6.2.1. For now, suppose that γ lies in a single pair
of pants, so that all boundary subwords are interior boundary subwords. Suppose
bi is an interior boundary subword, and γi is the corresponding boundary subarc.
Intuitively, if |bi| = 2n then

i(γi, γi) ≈ n

We will save the explanation for later, but refer to Figure 6 on page 13 for an
illustration of why this should be true. In Figure 6, the interior boundary subarc
bi has length 6, and γi has 3 self-intersections.

Moreover, we note that if two interior boundary subarcs, bi and bj , wind around
the same curve in Π, they will interfere with one another. Roughly, if |bi| = 2n and
|bj| = 2m, then

i(γi, γj) ≈ min{2n, 2m}
(Figure 21.) Thus we can approximate the number of intersections between bound-
ary subarcs if we just know the lengths of the corresponding boundary subwords.

So it is not unreasonable to assume that we have the following lower bound

(6.1.1) i(γi, γj) & min{|bi|, |bj|}
for all pairs of interior boundary subwords (bi, bj) and some universal constant.
We would then get Proposition 4.1 by summing inequality (6.1.1) over all i ≤ j.
Specifically, relabel the interior boundary subwords so that |b1| ≥ |b2| ≥ · · · ≥ |bn|.
Then, min{|bi|, |bj|} = |bi| if i ≤ j. Thus,

n
∑

i≤j=1

i(γi, γj) &

n
∑

i=1

i|bi|



32 JENYA SAPIR

Figure 21. |bi| = 4, |bj| = 2, and i(γi, γj) = 2

as |bi| is less than or equal to i other word lengths.
So, if inequality (6.1.1) held for all pairs of interior boundary subwords, then

Lemma 4.6 implies that

(6.1.2)

n
∑

i=1

i|bi| . i(γ, γ)

(This is almost true: see Remark 6.11.)
On the one hand, if we use that |bi| ≤ i|bi|, inequality (6.1.2) implies that

n
∑

i=1

|bi| . i(γ, γ)

so the total length of all interior boundary subwords is coarsely bounded by inter-
section number.

On the other hand, we can use that |bi| ≥ 2 for all interior boundary subwords.
Then inequality (6.1.2) implies that

n(n+ 1) . i(γ, γ) =⇒
n2 . i(γ, γ)

so the number of interior boundary subwords is coarsely bounded by the square
root of intersection number. So if all pairs (γi, γj) satisfied Inequality (6.1.1), we
would get Proposition 4.1.

In general, not all pairs of interior boundary subwords satisfy inequality (6.1.1).
To deal with this, we first need some more definitions.

6.2. Relevant subarcs, and an outline of the proof of Lemma 6.1. In Section
6.1, we hoped to convince the reader that we want pairs of boundary subarcs
γi = α(bi) and γj = α(bj) to satisfy Inequality (6.1.1).

So we will now investigate which pairs (γi, γj) of interior boundary subarcs sat-
isfy a more precise version of Inequality (6.1.1). For that, we make the following
definition:

Definition 6.2. We say that a set Γ of interior boundary subarcs is relevant if
∀γi, γj ∈ Γ,

(6.2.1)
1

5
min{|bi|, bj |} ≤ i(γi, γj)

where γi = α(bi) and γj = α(bj).
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Thus a relevant set of interior boundary subarcs is one in which any two elements
satisfy inequality (6.2.1).

Suppose Π = {β1, . . . , βm}. Recall that Γ′
2j and Γ′

2j+1 are the sets of interior
boundary subarcs that lie on the positive and negative sides of βj , respectively.
Then there is no hope that a pair (γi, γj) will satisfy inequality (6.2.1) if γi and γj
lie in different sets Γ′

k and Γ′
l, respectively. So, we wish to find a maximal relevant

subset

Γi ⊂ Γ′
i

for each i.
Building the maximal relevant subset Γi becomes easier if we put a restriction

on which interior boundary subarcs we consider.

Definition 6.3. Let γi ∈ Γ′
2j ∪ Γ′

2j+1. Suppose we have a lift γ̃i = γ̃ ∩ Nk(β̃j) of
γi, as in Definition 4.3. Then γi is twisting if

f(γ̃i) ∩ γ̃i 6= ∅

where f is a deck transformation of S̃ acting by translation along β̃j.

Essentially, γi ∈ Γ′
2j or Γ′

2j+1 is twisting if at least one of its self-intersections
comes from twisting around βj .

6.2.1. Idea of proof of Lemma 6.1. Then we show Lemma 6.1 as follows:

• We show that there is a unique maximal relevant subset Γj ⊂ Γ′
j , for each

j, that consists entirely of twisting subarcs. In particular, we show that if
Γ1,Γ2 ⊂ Γ′

i are relevant subsets, and if each element of Γ1 ∪ Γ2 is twisting,
then Γ1 ∪ Γ2 is a relevant subset of Γ′

i (Lemma 6.4).
• Let Γ = ∪Γj be the union of all the maximal relevant subsets. Because all
pairs of interior boundary subarcs in each Γj satisfy inequality (6.2.1), a
computation similar to the one in Section 6.1 implies that

∑

γi∈Γ

|bi| . K

and

#Γ .
√
K

for each j (Section 6.4).
• The union of all maximal relevant subsets turns out to be quite large. We
show that

3#Γ + 4#B ≥ #Γ′

where Γ = ∪Γj , and B is the set of all bridging boundary subarcs (Lemma
6.12.)

We know that #B ≤ cS
√
K. So this allows us to promote the above

inequalities for Γ to inequalities for all of Γ′. Namely, we show that
∑

Γ′ |bi| . K and #Γ′ .
√
K, completing the proof of Lemma 6.1 (Section

6.6).
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6.3. Finding a maximal relevant subset. The following lemma implies that
each Γ′

j contains a maximal relevant subset Γj , where every element is twisting.

Lemma 6.4. Let Γ1,Γ2 ⊂ Γ′
k be relevant subsets so that each element of Γ1 ∪ Γ2

is twisting. Then Γ1 ∪ Γ2 is a relevant subset of Γ′
k.

Proof. To prove this lemma, we need to take γi = α(bi) ∈ Γ1, γj = α(bj) ∈ Γ2 and
show that

1

5
min{|bi|, |bj |} ≤ i(γi, γj)

Suppose Γ′
k is the set of interior boundary subarcs that lie on some side of βl ∈ Π.

Lift the hexagon decomposition of S to the universal cover, and take some lift β̃l

of βl.
Take two lifts γ̃ and γ̃′ of γ so that we get lifts γ̃i and γ̃j of γi and γj , respectively,

with

γ̃i = γ̃ ∩N∗(β̃l) and γ̃j = γ̃′ ∩N∗(β̃l)

where ∗ is either 1 or 2.
It is easier to show that the pair (bi, bj) satisfies inequality (6.2.1) if |bi|, |bj | ≥ 4.

So we do that first:

Claim 6.5. Let γi = α(bi), γj = α(bj) ∈ Γ′
k. Suppose |bi|, |bj| ≥ 4. Then

1

5
min{|bi|, bj |} ≤ i(γi, γj)

Proof. Number the hexagons on either side of β̃l as in the proof of Lemma 5.6 (Fig-

ure 16). Without loss of generality, γ̃ and γ̃′ lie on the side of β̃l with hexagons la-

beled . . . , h0, h1, . . . . Suppose γ̃i enters N1(β̃l) at hexagon hni
and exits at hexagon

hmi
, and likewise, γ̃j enters at hexagon hnj

and exits at hmj
. Up to changing ori-

entation of γ̃ and γ̃′, we can assume that ni < mi and nj < mj . Then γ̃i intersects
γ̃j if

ni < nj < mi < mj or

nj < ni < mj < mi

(Figure 22).

Figure 22.

Remark 6.6. Suppose instead of two interior boundary subarcs, we consider γi as
above, but let γj be a boundary subarc bridging βl. Then we get a similar inequality.

In particular, if a lift γ̃j of γj intersects β̃l, then #γ̃i ∩ γ̃j = 1 if ni ≤ nj ≤ mi.
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Just as in the proof of Lemma 5.6, let fl be the deck transformation that acts by
translation along β̃l with translation length l(βl). We will use fl to slide γ̃i around
and create intersections with γ̃j .

Up to replacing fl with f−1
l , we have fl(hn) = hn+2. So fk

l (γ̃i) enters and exits

N1(β̃l) in hexagons hni+2k and hmi+2k, respectively. Thus, whenever

ni+2k < nj < mi+2k < mj or

nj < ni+2k < mj < mi+2k

we have that

#fk
l (γ̃i) ∩ γ̃j = 1

So we can count the number of powers k that result in an intersection:

#{k ∈ Z | #fk
l (γ̃i) ∩ γ̃j = 1} ≥ min{mi − ni,mj − nj} − 2

There are two things left to do:

(1) Show that the set of powers k that result in intersections between γ̃i and

γ̃j in S̃ are in at most 2-to-1 correspondence with intersections of γi and
γj .

(2) Show that mi − ni ≥ |bi| − 1.

Let

{x̃k} = fk
l (γ̃i) ∩ γ̃j

for each power k so that fk
l (γ̃i) ∩ γ̃j 6= ∅. If k 6= k′, then x̃k 6= x̃k′ . Let π(x̃k) = xk

be the projection of the intersection points to S, for each k. The problem is if
xk = xk′ for some k and k′. But x̃k and x̃k′ project to the same point in S if and
only if they correspond to the same self-intersection point of γ. By Lemma 4.5,
l(γi) ≤ l(γ), so γi and γj are proper subarcs of γ. So in fact, for each x̃k there is
at most one other x̃k′ that projects down to the same intersection between γi and
γj . (And, in fact, if i = j, each x̃k gets paired up with exactly one other x̃k′ in this
way.)

Thus, the set

{k ∈ Z | #fk
l (γ̃i) ∩ γ̃j = 1}

is in at most 2-to-1 correspondence with intersections between γi and γj . Therefore,

i(γi, γj) ≥
1

2
#{k ∈ Z | #fk

l (γ̃i) ∩ γ̃j = 1}

and so,

i(γi, γj) ≥
1

2
min{mi − ni,mj − nj} − 1

Lastly, we will show that mi−ni ≥ |bi|−1. In fact, we can use the same argument
as in the proof of Claim 5.8. Let p(γ) be the curve formed by concatenating the
edges in w(γ). There is a homotopy between p(γ) and γ. We can lift this homotopy
so that γ lifts to γ̃ and p(γ) lifts to p̃(γ). Each edge of p̃(γ) lies on the boundary of
two hexagons. If an edge e lies on the boundary of h and h′, then by construction,
γ̃ must pass through either h or h′. So γ̃ must pass through at least |bi| hexagons
in N1(β̃i). But γi passes through exactly mi − ni + 1 hexagons in N1(β̃). Thus,

mi − ni ≥ |bi| − 1 and mj − nj ≥ |bj | − 1
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Therefore,

i(γi, γj) ≥
1

2
min{|bi|, |bj |}} −

3

2

= min
1

2
{|bi| − 3, |bj| − 3}

As |bi|, |bj| ≥ 4, this implies

i(γi, γj) ≥
1

5
min{|bi|, |bj|}}

�

We showed that if |bi| ≥ 4 then {γi} is relevant. In fact, the proof of Claim 6.5
also implies the following.

Corollary 6.7. Let bi be an interior boundary subword. If |bi| ≥ 4 then the bound-
ary subarc γi is twisting.

Moreover, an even stronger statement follows from the proof. Note that |bi| ≥ 4

implies that γ̃i passes through at least 4 hexagons in N1(β̃l), but not vice versa.

Corollary 6.8. Let bi be an interior boundary subword. If γ̃i passes through at
least 4 hexagons in N1(β̃l) then {γi} is relevant and γi is twisting.

Completion of proof of Lemma 6.4. Let Γ1,Γ2 ⊂ Γ′
k be two relevant subsets so that

each element of Γ1∪Γ2 is twisting. We need to show that given any γi = α(bi) ∈ Γ1

and γj = α(bj) ∈ Γ2 that

i(γi, γj) ≥
1

5
min{|bi|, |bj |}

If |bi|, |bj| ≥ 4, then we are done by Claim 6.5. So suppose that min{|bi|, |bj |} ≤ 3.
Thus, 1

5 min{|bi|, |bj |} ≤ 1. So we just need to show that i(γi, γj) ≥ 1.
Again, consider the lifts γ̃i and γ̃j , as above. Since γi and γj are twisting, we

have the deck transformation f acting by translation along β̃l so that

γ̃i ∩ f · γ̃i 6= ∅ and γ̃j ∩ f · γ̃j 6= ∅
Take the set {fm · γ̃i}m∈Z of all translations of γ̃i by f . Because fm · γ̃i intersects
fm+1 · γ̃i for each m, we get a region Ri whose boundary consists of β̃l and a subarc
of ∪mfm(γi). Likewise, we can form a region Rj from the translates of γ̃j that has
the same property (Figure 23.)

Figure 23. The region Ri is shaded.
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These regions overlap in a neighborhood of β̃l. So there are two cases. Either
one of Ri and Rj contains the other, or neither Ri nor Rj contains the other. First,
suppose without loss of generality that

Ri ⊂ Rj

We know that γ̃i has endpoints on ∂N∗(β̃l) where ∗ = 1 or 2, and passes along the
boundary of Ri, which is contained inside Rj . Furthermore, Rj is a proper subset

of N∗(β̃l). Thus, γ̃i must pass through the boundary of Rj . Since γ̃i does not cross

β̃l, there is some m so that γ̃i ∩ fm(γ̃j) 6= ∅. In other words, i(γi, γj) ≥ 1.
Suppose now that

Ri 6⊂ Rj and Rj 6⊂ Ri

Then the boundary of Ri must intersect the boundary of Rj somewhere. So there

are powers m and m′ so that fm · γ̃i ∩ fm′ · γ̃j 6= ∅. Again, we conclude that
i(γi, γj) ≥ 1. �

Remark 6.9. Let bi ∈ Γ′
2k ∪ Γ′

2k+1 be a twisting interior boundary subword, and
let bj ∈ Bk be a bridging boundary subword. Then the above proof also estimates
the contribution that the pair (bi, bj) make to intersection number. In particular,

i(γi, γj) ≥
1

5
|bi|

where we use Remark 6.6 for the case where |bi| ≥ 4.

6.4. Lemma 6.1 for relevant subsets. By Lemma 6.4, each set Γ′
k of interior

boundary subarcs has a unique maximal relevant subset Γk ⊂ Γ′
k consisting entirely

of twisting boundary subarcs. Let

Γ = ∪Γk

be the union of these maximal relevant subsets. Then the intuitive argument for
Lemma 6.1 in Section 6.1 gives us the inequalities for Γ.

Lemma 6.10. For any pair (γ,Π), we have that
∑

Γ

|bi| . K

and

#Γ .
√
K

where Γ is the union of maximal relevant subsets of interior boundary subarcs for
(γ,Π), and the constants depend only on S.
Proof. We actually show a stronger inequality for each maximal relevant subset Γk.
We show that if we renumber the elements of Γk by γ1, . . . , γnk

so that |b1| ≥ |b2| ≥
· · · ≥ |bnk

|, then
nk
∑

i=1

i|bi| . K

In fact, for all pairs (bi, bj), where bi, bj ∈ Γk, we have that

i(γi, γj) ≥
1

5
min{bi, bj}
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Therefore, if we relabel the elements of Γk so that |b1| ≥ |b2| ≥ · · · ≥ |bnk
|, then

nk
∑

i=1

i|bi| =
∑

i≤j

min{|bi|, |bj |}

≤ 25
∑

i≤j

i(γi, γj)

≤ 625i(γ, γ)

where the last inequality is by Lemma 4.6.
So if we use that i|bi| ≥ |bi|, we get that

∑

Γk

|bi| . K

for each k. Summing the above inequality over Γ1, . . . ,Γ2m, we get that
∑

Γ

|bi| . K

where the constant is 1250m.
If we use instead that |bi| ≥ 2 for each interior boundary subarc, then we get

∑

Γk
2i . K. If we let

Nk = #Γk

then this implies that Nk(Nk − 1) . K, so in particular,

(Nk)
2 . K

where the constant is 625. We can show by induction that (
∑n

i=1 ai)
2 ≤ n

∑

a2i for
any sequence of numbers a1, . . . , an. So let N =

∑

Nk. That is, N = #Γ. Then

N2 ≤ 2m

2m
∑

k=1

(Nk)
2

Therefore,

#Γ .
√
K

where the constant is 25
√
2m. �

Remark 6.11. We know that Γk contains all γi so that |bi| ≥ 4 by Corollary 6.7.
So the above proof actually gives us the following nice formula for Γ′

k:
∑

|bi|≥4,γi∈Γ′
k

i|bi| . K

where we number the elements of Γ′
k so that |b1| ≥ |b2| ≥ · · · ≥ |bnk

|.
6.5. The maximal relevant subsets are large. Let Γ be the union of maximal
relevant subsets defined above. We want to show that Γ is, in fact, quite large in
the following sense.

Lemma 6.12. Let B and Γ′ be the set of bridging and interior boundary subarcs
for the pair (γ,Π), respectively. When Γ ⊂ Γ′ is defined as above, we have

3#Γ + 4#B ≥ #Γ′

whenever the total number of boundary subarcs is at least 6.
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Proof. Let wΠ(γ) = b1s1 . . . bnsn with n ≥ 6. As usual, γi = α(bi) is the boundary
subarc associated to the boundary subword bi.

Claim 6.13. If γi−2, γi−1, γi, γi+1 and γi+2 are all interior boundary subarcs, then
one of {γi−1}, {γi} and {γi+1} must be relevant and twisting.

Given this claim, the proof of the lemma goes as follows: The union of twisting,
relevant subsets of Γ′

j is again twisting and relevant for each j. So, the set Γ is

exactly the union of all twisting and relevant singleton sets {γi} ⊂ Γ′. If we count
such singleton sets, we get the size of Γ.

Consider the (cyclic) sequence (γ1, . . . , γn) of boundary subarcs. We can break
it up into maximal subsequences of interior boundary subarcs: there are #B such
sequences. Suppose after cyclic renumbering that γ1, . . . , γi is one such maximal
sequence of interior boundary subarcs. Then Claim 6.13 implies that at least 1

3 (i−4)
of these boundary subarcs are relevant and twisting. So we get that

1

3
(#Γ′ − 4#B) ≤ #Γ

This gives us Lemma 6.12 assuming Claim 6.13. �

Proof of Claim 6.13. We have that γi−2, . . . , γi+2 are all interior boundary subarcs.
Thus, there is a pair of pants, P , cut out by the pants decomposition Π, so that
the subword si−3bi−2 . . . bi+2si+2 is entirely contained in P . That is, this subword
doesn’t cross ∂P . Each boundary subarc γj is defined in terms of the 2-hexagon
neighborhood of a lift of the curve in Π that contains bj. Thus, the union γi−1 ∪
γi ∪ γi+1 is entirely contained in P , but γi+2 and γi−2 might cross ∂P . This is why
we only work with γi−1, γi and γi+1 from now on.

Take a lift γ̃ of γ to S̃. Choosing a lift of the subarc γi−1 ∪ γi ∪ γi+1 to γ̃ gives

us lifts β̃j for j = i− 1, i, i+ 1 of curves in Π so that

γ̃j = γ̃ ∩N2(β̃j)

By Corollary 6.8, if γ̃i passes through four hexagons adjacent to β̃i, then γi is
twisting and the singleton set {γi} is relevant. If this is the case, then we are done.

So assume that γ̃i passes through at most three hexagons adjacent to β̃i, as in
Figure 25.

In all the figures for this proof, we only draw the hexagon decomposition of the
pair of pants P lifted to a partial hexagonal tiling of S̃. This is because γi−1 ∪ γi ∪
γi+1 lies in P .

Claim 6.14. The arc γ̃i can pass through at no fewer than 3 hexagons in N1(β̃i).

Proof. Because bi is an interior boundary subword, we know that |bi| ≥ 2. Thus,

γ̃i passes through at least two hexagons in N1(β̃i). Suppose that |bi| = 2 and γ̃i
passed through exactly 2 hexagons, h1 and h2 (Figure 24). Because γi is an interior

boundary subarc, h1 and h2 lie on the same side of β̃i. Then the boundaries of h1

and h2 have exactly two lifts of curves in Π in common. One is β̃i and the other is
some curve β̃′

i.

Furthermore, h1 and h2 have three seam edges adjacent to β̃′
i. We have that γ̃i

only crosses N1(β̃i) in h1 and h2, and that it only crosses seam edges. So it must

cross all three of the seam edges adjacent to β̃′
i. By the construction of p(γ), this

implies that p̃(γ) must, in fact, lie on β̃′
i and not β̃i. This gives us a contradiction.

�
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Figure 24. The case when γ̃ passes through just two hexagons in N1(β̃i).

By definition, γ̃i lives in N2(β̃i). Label the hexagons it passes through in order.

So their labels are h0, h1, h2, h3, h4, where h1, h2 and h3 lie in N1(β̃i) and h0 and
h4 do not.

Figure 25. Part of S̃ that contains γ̃i.

Let a and b be the seam edges of h0, and let c and d be the seam edges of h4,
that do not lie on N1(β̃) (Figure 25). Note that b and c are the seam edges adjacent

to geodesics β̃b and β̃c that bound hexagon h2.
Because γi−1 ∪γi ∪γi+1 lies on the interior of the pair of pants P , the endpoints

on γi lie on seam edges. There are two cases: either the endpoints of γ̃i lie on a
and d, or at least one endpoint of γ̃i lies on b or c.

Suppose γ̃i has an endpoint on a and an endpoint on d. Consider the deck
transformation f that acts by translation along β̃i with translation length l(βi).
Up to taking the inverse of f , we must have f(h1) = h3. So, f(a) = c.

Let H = h0 ∪ · · · ∪ h4 be the union of the five hexagons. If e is the second seam
edge that γ̃i hits as it goes through H , then f(e) must be the seam edge on the
boundary of H as in Figure 26. Since H is convex, and the pairs a, d and c, f(e)
separate each other on ∂H , we must have

γ̃i ∩ f(γ̃i) 6= ∅
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Therefore, γi is twisting and i(γi, γi) ≥ 1. As |bi| ≤ 3, this implies that {γi} is
relevant.

Figure 26. The case when γ̃i joins seams a and d.

Now we consider the other case, where γ̃i has an endpoint on either b or c
(Figure 27). Suppose without loss of generality that γ̃i has an endpoint on b. Thus,

γ̃ continues past b into another hexagon adjacent to β̃b. So γ̃ must pass through at
least 4 hexagons in N1(β̃b).

Figure 27. The case where γ̃i has an endpoint on seam b.

Because γ̃ passes through four hexagons in N1(β̃b), it must pass through at least

three seam edges adjacent to β̃b. The construction of p(γ) is such that if γ̃ passes

through three seam edges adjacent to the lift β̃b of βb ∈ Π, then p(γ) has a boundary

subword bj with a lift b̃j lying on β̃b. Since β̃b and β̃i are joined by a seam edge, we

must have β̃b = β̃i−1 or β̃i+1. So, in fact, γ̃ passes through at least four hexagons

adjacent to one of β̃i−1 or β̃i+1. By Corollary 6.7, this implies that either γi+1 or
γi−1, respectively, is twisting and the singleton set containing this boundary subarc
is relevant.

�
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6.6. Proof of Lemma 6.1.

Proof of Lemma 6.1. Recall that Γk ⊂ Γ′
k is the maximal relevant subset defined

above, for each k = 1, . . . , 2m, and that Γ = ∪Γk. By Lemma 6.10, we have that
∑

Γ

|bi| . K and #Γ .
√
K

First we use this to bound the size of Γ′ from below. If the pair (γ,Π) has at
least 6 boundary subwords, then Lemma 6.12 gives us that

3#Γ + 4#B ≥ #Γ′

We assumed that i(γ,Π) ≤ cS
√
K. So by Proposition 5.2, 4#B ≤ 4cS

√
K. Since

we have #Γ .
√
K, this implies that

#Γ′ .
√
K

where the constant is 25
√
2m+ 4cS .

If the pair (γ,Π) has has fewer than 6 boundary subwords, then #Γ′ ≤ 5. As

K ≥ 1, this means #Γ′ .
√
K with constant 5. So the above bound still holds.

Next we bound the total length of all interior boundary subwords from above. To
do this, we need to bound the total length of all those interior boundary subwords
whose corresponding subarcs are not in Γ′. By Corollary 6.7, if bi is an interior
boundary subword with |bi| ≥ 4, then γi ∈ Γ. So,

∑

Γ′\Γ
|bi| ≤

∑

Γ′\Γ
4

.
√
K

where the last inequality comes from the fact that #Γ′ .
√
K, and the constant is

100
√
2m+ 16cS . As

√
K ≤ K for all K ≥ 1, we can combine this inequality with

Lemma 6.10 to get that
∑

Γ′

|bi| . K

where the constant is 1450m+ 16cS . �

7. Proof of Proposition 4.1

Let γ ∈ Gc(L,K), for L,K > 0. By Lemma 5.1, there is a γ′ ∈ ModS · γ so that
if B is the set of bridging boundary subarcs of the pair (γ′,Π), then

∑

γi∈B

|bi| . K and #B ≤ cS
√
K

Since #B ≤ cS
√
K, we have that i(γ′,Π) ≤ cS

√
K by Proposition 5.2. So we can

apply Lemma 6.1. Thus, if Γ′ is the set of interior boundary subarcs of the pair
(γ′,Π), then

∑

γi∈Γ′

|bi| . K and #Γ′ .
√
K

The set of all boundary subarcs of the pair (γ′,Π) is exactly B ∪ Γ′. Let wΠ(γ
′) =

b1s1 . . . bnsn. In particular, there are n boundary subwords. Therefore,
n
∑

i=1

|bi| . K and n .
√
K
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The right-hand inequality follows from the fact that a2 + b2 ≤ 2(a+ b)2.
So we have found a curve γ′ ∈ ModS · γ and a pants decomposition Π for which

the inequalities in Proposition 4.1 hold. As explained in Section 3.2, this implies
that there is some other γ′′ ∈ ModS · γ and some pants decomposition Πi on the
list of ModS representatives of pants decompositions of S, so that Proposition 4.1
holds for the pair (γ′′,Πi). This completes the proof of Proposition 4.1.

8. Length bound

We also want to relate the length of γ to the length of the word wΠ(γ) for our
nice pants decomposition Π.

Given γ ∈ Gc(L,K), we found a curve γ′ ∈ ModS · γ and a pants decomposition
Π that satisfied the intersection number conditions in Proposition 4.1. That is, if
wΠ(γ

′) = b1s1 . . . bnsn, then
∑ |bi| . K and n .

√
K. We now get a condition on

wΠ(γ
′) in terms of L.

Lemma 8.1. Let γ ∈ Gc(L,K). Then there is a curve γ′ ∈ ModS · γ and a
pants decomposition Π that satisfy the conditions of Proposition 4.1 and so that if
wΠ(γ

′) = b1s1 . . . bnsn, then

|wΠ(γ
′)| ≤ cXL+ cS

√
K

where cX depends only on the metric X and cS depends only on S.
Note that the constant cS in this lemma is actually 18 times the constant cS

from Proposition 1.4.

Proof. First, we show that if γ ∈ Gc(L,K) for L,K > 0, and if Π is a pants

decomposition of S so that i(γ,Π) ≤ cS
√
K, then

|wΠ(γ)| ≤
18L

lX
+ 18cS

√
K

where lX is the length of the systole in X . Note that this does not quite complete
the proof, as there is no guarantee that the curve γ′ ∈ ModS ·γ for which Proposition
4.1 holds also has length at most L.

Figure 28. The hexagon decomposition H⊥ by right-angled hexagons.

The pants decomposition Π cuts S into pair of pants. Further cut each pair
of pants into right-angled hexagons (Figure 28). Once again, these hexagons have
boundary edges that lie on curves in Π, and seam edges that join curves in Π
together. Let H⊥ be the set of right-angled hexagons we obtain.

Then H⊥ cuts γ into segments, which are maximal subarcs of γ lying entirely in
a single hexagon. Let n be the number of segments of γ with respect to H⊥. Then
we claim that

|wΠ(γ)| ≤ 9n
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In fact, let H be the hexagon decomposition of S used to define wΠ(γ). The
hexagons in H are not right-angled, because their seems are forced to match up
across curves in Π. But their seam edges are chosen to be as short as possible. So
if m is the number of segments of γ with respect to H , then m ≤ 3n. Let p(γ) be
the closed curve formed by concatenating the edges in wΠ(γ). There is a homotopy
between γ and p(γ) that sends each segment of γ with respect to H to a subarc of
at most three edges in p(γ). Therefore, |wΠ(γ)| ≤ 3m, and so |wΠ(γ)| ≤ 9n.

This means we need to bound the number n in terms of l(γ).

Figure 29. A segment σ connects two seam edges incident to a
boundary edge x.

Let σ be a segment of γ with respect to H⊥. Suppose σ joins two seam edges
of some hexagon h ∈ H⊥ (Figure 29). Those two seam edge are connected by a
boundary edge x of h. Since the seam edges meet x at right angles, we have that
l(σ) ≥ l(x). But l(x) is half the length of a curve in Π, and thus at least half the
systole length of X . Therefore,

l(σ) ≥ 1

2
lX

Since the total length of γ is at most L, this means there are at most 2L
lX

segments
that join seam edges.

Now consider the set of segments that have at least one endpoint on the boundary
edge of some hexagon h ∈ H⊥. If σ is such a segment, then it could join a seam
edge to an adjacent boundary edge. Thus, l(σ) can be arbitrarily small. However,
each intersection between γ and Π corresponds to exactly two such segments. As
i(γ,Π) ≤ cS

√
K, the number of segments that touch a boundary edge is at most

2cS
√
K. (Note that we are overcounting segments that join two boundary edges

together by a factor of 2.)
Therefore, the total number n of segments of γ with respect to H⊥ is bounded

above by

n ≤ 2L

lX
+ 2cS

√
K

So we get

|wΠ(γ)| ≤
18L

lX
+ 18cS

√
K

Now let f be a composition of Dehn twists about curves in Π so that the total
length of bridging boundary subwords of wΠ(f · γ) is as small as possible. So by
Lemma 5.1, the total length of bridging boundary subwords in the pair (f · γ,Π)
must be bounded by a multiple of K. As shown in the proof of Claim 5.9, applying
Dehn twists to γ changes only the bridging boundary subwords. Therefore, the pair
(f · γ,Π) also satisfy the conditions of Lemma 6.1. Moreover,

|wΠ(f · γ)| ≤ |wΠ(γ)|
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Thus, there is a γ′ = f · γ ∈ ModS · γ and a pants decomposition Π that satisfy
both the conditions of Proposition 4.1 and of Lemma 8.1. As explained in Section
3.2, this means that there is a curve γ′′ ∈ ModS · γ and a pants decomposition Πi

on the representative list of pants decompositions, so that the pair (γ′′,Πi) satisfy
the conditions of Lemma 8.1.

�

Corollary 8.2. If l(γ) ≤ L, and Π is a pants decomposition so that i(γ,Π) ≤
cS
√

i(γ, γ), then

|wΠ(γ)| . L

where the constant depends on the metric X

This follows from the previous lemma, and the fact that i(γ, γ) ≤ κL2, where
the constant κ, which depends only on the metric X , can be found in, for example,
[Bas13].

Remark 8.3. One can in fact show that for any geodesic γ and pants decomposition
Π,

1

27
lmin|wΠ(γ)| ≤ l(γ) ≤ 2lmax|wΠ(γ)|

where lmin and lmax are the longest and shortest edge lengths in a right-angled
hexagon decomposition of Π. We do not do this here, since it is not needed for the
proof of the main theorem.

9. Proof of Theorem 1.2

We are now ready to prove Theorem 1.2. Recall from Section 2.7 that {Π1, . . . ,Πl}
was our representative list of pants decompositions of S, containing one pants de-
composition from each ModS orbit. Then for any L,K > 0, we defined Wj(L,K)
to be the set of all cyclic words wΠi

(γ) so that γ is non-simple, and if wΠi
(γ) ∈

Wj(L,K), then

(1) If wΠi
(γ) = b1s1 . . . bnsn, then

n
∑

i=1

|bi| ≤ dSK

where dS depends only on S.
(2) Furthermore,

n ≤ dS
√
K

where dS depends only on S.
(3) And lastly,

|wΠ(γ)| ≤ dXL+ dS
√
K

where dX depends only on X and dS depends only on S.
Then for any γ ∈ Gc(L,K), Proposition 4.1 and Lemma 8.1 imply that there is a
geodesic γ′ ∈ ModS · γ and pants decomposition Πi in the representative list, so
that wΠi

(γ′) ∈ Wj(L,K).
By choosing such a γ′ for each γ ∈ Gc(L,K), we can define a map

O(L,K) →
l
⋃

i=1

Wi(L,K)
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In fact, this map is one-to-one. To see this, note that the letters in wΠ(γ) can
be concatenated into a curve freely homotopic to γ. So wΠ(γ) = wΠ(γ

′) implies
γ = γ′. In particular, two distinct ModS orbits cannot be sent to the same cyclic
word.

So to bound #O(L,K), we first get a slightly obscure upper bound on the size
of Wj(L,K) for each j. We then simplify the upper bound, and sum over all pants
decompositions in the representative list to get Theorem 1.2.

9.1. Bound on the Size of Wj(L,K). The following lemma gives a general form
for an upper bound on #Wj(L,K).

Lemma 9.1. Let S be a compact genus g surface with b geodesic boundary compo-
nents. Fix L,K > 0. Then the size of Wj(L,K) is bounded above as follows:

#Wj(L,K) < (8m)N ·
(

M +N

N

)

for

M = min{⌊dXL+ dS
√
K⌋, dSK} and N = ⌊dS

√
K⌋

where m = 3g − 3 + 2b, dX depends only on the metric X and dS depends only on
S.
Proof. Suppose w = b1s1 . . . bnsn ∈ Wj(L,K). Note that Condition 3 actually

implies that
∑ |bi| ≤ dXL+ dS

√
K. So, in fact, Conditions 1 - 3 imply that

(9.1.1)

n
∑

i=1

|bi| ≤ M and n ≤ N

where
M = {⌊dXL+ dS

√
K⌋, dSK} and N = ⌊dS

√
K⌋

To get a bound on #Wj(L,K), we will bound the number of cyclic words
b1s1 . . . bnsn satisfying the inequalities in (9.1.1). In fact, given a sequence (b1, b2, . . . , bn)
of boundary subwords, there is at most one sequence (s1, . . . , sn) so that b1s1 . . . bnsn
is a cyclic word in WΠj

. So we just need to bound the number of sequences
(b1, . . . , bn) of boundary subwords with the above properties.

Note that the sequence (b1, . . . , bn) may have empty boundary subwords that
just encode the vertex where si−1 and si meet. Furthermore, the sequences are not
cyclic, so more than one sequence corresponds to the same cyclic word. Since we
only want an upper bound, we ignore this fact.

Because words in Wi(L,K) do not back-track, each boundary subword bi is
uniquely determined by its initial boundary edge xi and its length |bi|. In other
words, a pair of sequences (x1, . . . , xn) of boundary edges and (l1, . . . , ln) of non-
negative integers determines a sequence (b1, . . . , bn), where bi has initial boundary
edge xi and length li = |bi| for each i. (If li = 0 for some i, then bi is just the start
point of the oriented edge xi.)

Fix an n < N . As there are 4m oriented boundary edges, the number of length
n sequences (x1, . . . , xn) is (4m)n. As n ≤ N , each sequence (l1, . . . , ln) of lengths
corresponds to at most (4m)N sequences (b1, . . . , bn). So we can just count the
number of sequences (l1, . . . , ln) so that

n
∑

i=1

li ≤ M and n ≤ N.
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We need to count the number of ways to write all numbers smaller than M as
ordered sums of at most N non-negative integers. (Note that this problem makes

sense precisely because M > N ≥ 1.) This is bounded above by N
(

M+N
N

)

. To see
this, suppose we put down M +N rocks in a row and choose N of them to pick up.
There are

(

M+N
N

)

ways to do this. Then we are left with N + 1 groups of rocks,
some of which may be empty. So we get a way to write M as an ordered sum of
at N + 1 non-negative integers. If we choose a number n ≤ N , we can choose the
first n terms of this sum, l1 + · · ·+ ln with li ≥ 0, ∀i. There are N ways to choose
n. Setting M ′ = l1 + · · ·+ ln, we see that this is a way to write a number M ′ ≤ M
as the sum of n ≤ N non-negative integers.

Furthermore, for each number M ′ ≤ M and each way to write it as M ′ =
l1 + · · · + ln, there is a way of choosing N rocks out of a row of M + N so that
the first n groups of rocks correspond to exactly this sum. For example, we can
choose rocks numbers l1 + 1, l2 + 2, and so on, through ln + n, and then choose
rocks numbered ln + n+ 1, ln + n+ 2, . . . , ln +N , to get the sequence l1, l2, . . . , ln.

Thus, the number of sequences (l1, . . . , ln) is at most

N

(

M +N

N

)

Therefore, the number of sequences (b1, . . . , bn) is at most N(4m)N ·
(

M+N
N

)

. As

N ≤ 2N for all N ≥ 1, we get that the number of sequences (b1, . . . , bn) satisfying
the two inequalities in (9.1.1) is at most

(8m)N ·
(

M +N

N

)

�

To get nice upper bounds on the size ofO(L,K), we thus want to bound binomial

coefficients of the form
(

a+b
b

)

.

Lemma 9.2. Suppose a, b ∈ N with a ≥ b ≥ 1. Then

(

a+ b

b

)

≤ eb log(2e
a
b )

Proof. We get this formula via the following computation.

(

a+ b

b

)

=
1 · · · (a+ b)

(1 · · · b)(1 · · ·a)

=
(a+ 1) · · · (a+ b)

1 · · · b
≤ 2a

1
· 2a
2

· · · 2a
b

=
(2a)b

b!
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Stirling’s formula gives us, in particular, that b! ≥
√
2πb

(

b
e

)b
for all b ≥ 1. So,

(2a)b

b!
≤ (2a)b

√
2πb

(

b
e

)b

≤ 1√
2πb

eb log(2e
a
b )

Since 1√
2πb

< 1, we get,
(

a+ b

b

)

≤ eb log(2e
a
b )

�

9.2. Proof of Theorem 1.2. The proof of Theorem 1.2 is just an application of
Lemma 9.2 to the upper bound we found on #Wj(L,K) in Lemma 9.1.

Proof of Theorem 1.2. We have that

#O(L,K) ≤
∑

#Wj(L,K) + #O(L, 0)

where #O(L, 0) = 1 + ⌊ g
2⌋. Thus, by Lemma 9.1,

#O(L,K) ≤ l · (8m)N ·
(

M +N

N

)

+#O(L, 0)

where

M = min{⌊dXL+ dS
√
K⌋, dSK} and N = ⌊dS

√
K⌋

Applying Lemma 9.2, this gives us that

#O(L,K) ≤ l · (8m)N · eN log(4eM
N ) + #O(L, 0)

= l · eN log(4eM
N

+8m) + #O(L, 0)

We expand the exponent N log
(

2eM
N

+ 8m
)

in the cases where M = ⌊dXL +

dS
√
K⌋ and dSK, respectively. Note that ⌊dS

√
K⌋ ≥ 1

2dS
√
K, as K ≥ 1.

First, suppose M = ⌊dXL+ dS
√
K⌋. Then

N log

(

2e
M

N
+ 8m

)

≤ dS
√
K log

(

4e
dXL+ dS

√
K + 8m

dS
√
K

)

= dS
√
K log

(

4e
dXL

dS
√
K

+ 3e

)

as K ≥ 1 and we can assume 8m
dS

≤ 1. So we can define a new constant dX
depending only on X so that in this case,

#O(L,K) ≤ e
dS

√
K log

(

dX
L√
K

+dX

)

Since both l and #O(L,K) are constants depending only on S, and we increase dS
if necessary to incorporate them into the exponent.

Now suppose that M = dSK. Then

N log

(

2e
M

N
+ 8m

)

≤ dS
√
K log

(

2e
dSK + 8m

dS
√
K

)

= dS
√
K log(2e(dS

√
K) + e)
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asK ≥ 1 and we can assume 8m
dS

≤ 1. So we can define a new constant dS depending
only on S so that in this case,

#O(L,K) ≤ edS
√
K log dS

√
K

Since both l and #O(L,K) are constants depending only on S, we can increase dS
if necessary to incorporate them into the exponent.

As #O(L,K) is bounded above by the smaller of the two bounds given here, we
have the theorem. �
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