Instruction: Work in small groups
Problem 1. Let $\sigma=\left(\begin{array}{cccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 2 & 1 & 8 & 6 & 4 & 5 & 3 & 7 & 10 & 9\end{array}\right) \in \mathbf{S}_{10}$.
(1) Write σ as a product of disjoint cycles.
(2) Let $\tau=(13578)$. Find the smallest positive integer n such that $\tau^{n}=e$.
(3) Compute $\sigma^{-1},(\sigma \rho)^{-1}$ and $\sigma^{-1} \rho^{-1}$, where $\rho=(126)$.
(4) $\left(^{*}\right)$ Let $f=\left(a_{1} a_{2} \cdots a_{r}\right)$ and $g=\left(b_{1} b_{2} \cdots b_{s}\right)$ be two disjoint cycles in S_{n} for some integer $n>1$. Show that $f g=g f$.

Problem 2. Let a, b, c be integers with $a \neq 0$. Show that
(1) If $a \mid b$ and $a \mid c$, then $a \mid b u+c v$ for all integers u, v.
(2) Assume that $d=a x+b y$ is a positive integer for some integers x, y. Does it imply that $d=\operatorname{gcd}(a, b) ?$
(3) Show that $\operatorname{gcd}(a, b)=1$ if and only if $1=a x+b y$ for some integers x, y.
(4) Find the multiplicative inverse of [43] in \mathbb{Z}_{102} if it exists.

Problem 3. Construct the Cayley tables of $\left(\mathbb{Z}_{4},+\right)$ and $\left(\mathbb{Z}_{8}^{*}, \cdot\right)$. Use the tables to find the inverse of each element in the group.
Problem 4. Let G be a group with identity e. Show that G is abelian if one of the following conditions holds.
(1) $a^{2}=e$ for all $a \in G$.
(2) $(a b)^{2}=a^{2} b^{2}$ for all $a, b \in G$.
(3) $\left(^{*}\right)(a b)^{3}=a^{3} b^{3}$ and $(a b)^{5}=a^{5} b^{5}$, for all $a, b \in G$.

