Math 401-02

Practice 2

(Due: Tuesday, Sep. 14)

Instruction: Work in small groups

Problem 1. Let
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 2 & 1 & 8 & 6 & 4 & 5 & 3 & 7 & 10 & 9 \end{pmatrix} \in \mathbf{S}_{10}$$

- (1) Write σ as a product of disjoint cycles.
- (2) Let $\tau = (13578)$. Find the smallest positive integer n such that $\tau^n = e$.
- (3) Compute $\sigma^{-1}, (\sigma\rho)^{-1}$ and $\sigma^{-1}\rho^{-1}$, where $\rho = (126)$.
- (4) (*) Let $f = (a_1 \ a_2 \cdots a_r)$ and $g = (b_1 \ b_2 \cdots b_s)$ be two disjoint cycles in S_n for some integer n > 1. Show that fg = gf.

Problem 2. Let a, b, c be integers with $a \neq 0$. Show that

- (1) If $a \mid b$ and $a \mid c$, then $a \mid bu + cv$ for all integers u, v.
- (2) Assume that d = ax + by is a positive integer for some integers x, y. Does it imply that $d = \gcd(a, b)$?
- (3) Show that gcd(a, b) = 1 if and only if 1 = ax + by for some integers x, y.
- (4) Find the multiplicative inverse of [43] in \mathbb{Z}_{102} if it exists.

Problem 3. Construct the Cayley tables of $(\mathbb{Z}_4, +)$ and (\mathbb{Z}_8^*, \cdot) . Use the tables to find the inverse of each element in the group.

Problem 4. Let G be a group with identity e. Show that G is abelian if one of the following conditions holds.

- (1) $a^2 = e$ for all $a \in G$.
- (2) $(ab)^2 = a^2b^2$ for all $a, b \in G$.
- (3) $(*)^{(ab)^3} = a^3b^3$ and $(ab)^5 = a^5b^5$, for all $a, b \in G$.