Instruction: Work in small groups
Problem 1. Let G be a group and let $a \in G$. The centralizer of a in G, denoted by $\mathbf{C}_{G}(a)$, is the set of all elements of G that commute with a, that is,

$$
\mathbf{C}_{G}(a)=\{x \in G: x a=a x\} .
$$

(1) Show that $\mathbf{C}_{G}(a)$ is a subgroup of G.
(2) Show that $\mathbf{C}_{G}(a)=\mathbf{C}_{G}\left(a^{-1}\right)$.
(3) Let $G=\mathrm{S}_{3}$. Find $\mathbf{C}_{G}(g)$ for each $g \in G$.

Problem 2. Find the order of each element in $G=\left(\mathbb{Z}_{18}^{*}, \cdot\right)$. Is G a cyclic group? List all distinct cyclic subgroups of G.
Problem 3. Let H be a subgroup of a group G. Let $x \in G$ and define

$$
x H x^{-1}=\left\{x h x^{-1}: h \in H\right\} .
$$

(1) Show that $x H x^{-1}$ is a subgroup of G. This subgroup is called a conjugate of H.
(2) Show that $\left|x H x^{-1}\right|=|H|$ if $|H|$ is finite.

Problem 4. Let p be a prime and let a, b be integers. Assume that p divides $a b$. Prove that p divides a or p divides b. (Do not use the Fundamental Theorem of Arithmetic).

