(Due: Wednesday, September 1)

Instruction: Turn in All problems. Use Tex/Latex.

Problem 1. Determine whether each of the following set with the indicated binary operation is a group or not.
(1) $G=\mathbb{R}$ and for $x, y \in G, x * y=x+y-1$.
(2) $G=\mathbb{R}$ and for $x, y \in G, x * y=x+y+x y$.
(3) $G=\mathbb{R}-\{-1\}$ and for $x, y \in G, x * y=x+y+x y$.

Problem 2. For $a, b \in \mathbb{R}$ with $a \neq 0$, define $f_{a, b}: \mathbb{R} \rightarrow \mathbb{R}$ by $f_{a, b}(x)=a x+b$ for all $x \in \mathbb{R}$.
(1) Show that $f_{a, b} \circ f_{c, d}=f_{u, v}$ for some real numbers u, v. Give explicit values for u, v in terms of a, b, c, d.
(2) Show that $f_{a, b}^{-1}$ exists and find $c, d \in \mathbb{R}$ such that $f_{a, b}^{-1}=f_{c, d}$.
(3) Let $G=\left\{f_{a, b}: a, b \in \mathbb{R}, a \neq 0\right\}$. Show that G is a group under the composition of functions.
(4) Is G an abelian group?

Problem 3. Let G be an abelian group and let $f \in G$ be a fixed element in G. Define a new binary operation on G by $a \circ b:=a b f$ for all $a, b \in G$. Determine whether (G, \circ) is a group or not.

Problem 4. Let

$$
G=\left\{\left(\begin{array}{cc}
a & b \\
1-a & 1-b
\end{array}\right): a, b \in \mathbb{R}, a \neq b\right\} .
$$

Is G a group under the usual matrix multiplication? Explain.

