Math 401-02

Homework 2

(Due: Wednesday, September 15)

Instruction: Turn in All problems. Use Tex/Latex if possible.

Problem 1. Let $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 1 & 8 & 6 & 4 & 5 & 3 & 7 \end{pmatrix} \in \mathbf{S}_8.$

(1) Write σ as a product of disjoint cycles.

(2) Compute σ^{-1} , ρ^{-1} , $\sigma\rho$, $\sigma^{-1}\rho^{-1}$, $(\sigma\rho)^{-1}$, $\rho\sigma\rho^{-1}$ and σ^{6} , where $\rho = (136)(487)$.

Problem 2.

- (1) Find gcd(27, 186) and integers u, v such that gcd(27, 186) = 27u + 186v.
- (2) Find the multiplicative inverse of [37] in \mathbb{Z}_{2021} if it exists.
- (3) Let a, b be positive integers and let $d = \gcd(a, b)$. Prove that $\gcd(a/d, b/d) = 1$.
- (4) Let a, b, n be integers with n > 1. Show that gcd(ab, n) = 1 if and only if gcd(a, n) = 1 and gcd(b, n) = 1.

Problem 3. Construct the Cayley tables of the following groups. Use the tables to compute the inverse of each element in the group.

- (1) $(\mathbb{Z}_8, +).$
- (2) $(\mathbb{Z}_{15}^*, \cdot).$
- (3) The symmetric group S_3 under the composition of functions.

Problem 4. Let G be a group. Show that G is abelian if one of the following conditions holds.

- (1) $(ab)^{-1} = a^{-1}b^{-1}$ for all $a, b \in G$.
- (2) ab = ca implies b = c for all $a, b, c \in G$.
- (3) $(ab)^i = a^i b^i$ for three consecutive positive integers *i*, for all $a, b \in G$.