(Due: Wednesday, September 15)

Instruction: Turn in All problems. Use Tex/Latex if possible.
Problem 1. Let $\sigma=\left(\begin{array}{cccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 1 & 8 & 6 & 4 & 5 & 3 & 7\end{array}\right) \in \mathbf{S}_{8}$.
(1) Write σ as a product of disjoint cycles.
(2) Compute $\sigma^{-1}, \rho^{-1}, \sigma \rho, \sigma^{-1} \rho^{-1},(\sigma \rho)^{-1}, \rho \sigma \rho^{-1}$ and σ^{6}, where $\rho=(136)(487)$.

Problem 2.

(1) Find $\operatorname{gcd}(27,186)$ and integers u, v such that $\operatorname{gcd}(27,186)=27 u+186 v$.
(2) Find the multiplicative inverse of [37] in \mathbb{Z}_{2021} if it exists.
(3) Let a, b be positive integers and let $d=\operatorname{gcd}(a, b)$. Prove that $\operatorname{gcd}(a / d, b / d)=1$.
(4) Let a, b, n be integers with $n>1$. Show that $\operatorname{gcd}(a b, n)=1$ if and only if $\operatorname{gcd}(a, n)=1$ and $\operatorname{gcd}(b, n)=1$.

Problem 3. Construct the Cayley tables of the following groups. Use the tables to compute the inverse of each element in the group.
(1) $\left(\mathbb{Z}_{8},+\right)$.
(2) $\left(\mathbb{Z}_{15}^{*}, \cdot\right)$.
(3) The symmetric group S_{3} under the composition of functions.

Problem 4. Let G be a group. Show that G is abelian if one of the following conditions holds.
(1) $(a b)^{-1}=a^{-1} b^{-1}$ for all $a, b \in G$.
(2) $a b=c a$ implies $b=c$ for all $a, b, c \in G$.
(3) $(a b)^{i}=a^{i} b^{i}$ for three consecutive positive integers i, for all $a, b \in G$.

