(Due: Wednesday, September 22)
Instruction: Turn in All problems. Use Tex/Latex if possible.
Problem 1. Let G be a group. The center of G, denoted by $\mathbf{Z}(G)$, is the subset of elements in G that commute with every element of G, that is,

$$
\mathbf{Z}(G)=\{a \in G: a x=x a \text { for all } x \in G\}
$$

(1) Show that the center $\mathbf{Z}(G)$ of G is an abelian subgroup of G.
(2) Compute $\mathbf{Z}\left(\mathrm{D}_{8}\right)$ and $\mathbf{Z}\left(\mathrm{S}_{3}\right)$.
(3) Let $a \in G$. The centralizer of a in G, denoted by $\mathbf{C}_{G}(a)$, is the set of all elements of G that commute with a, that is,

$$
\mathbf{C}_{G}(a)=\{x \in G: x a=a x\} .
$$

Show that $\mathbf{Z}(G)=\cap_{a \in G} \mathbf{C}_{G}(a)$.
Problem 2. Let G be a finite group with identity e. Let $a, b \in G$.
(1) Show that $o(a)=o\left(a^{-1}\right)$.
(2) Show that $o\left(b a b^{-1}\right)=o(a)$.
(3) Show that $o(a b)=o(b a)$.
(4) Assume that $a \neq e, o(b)=2$ and $b a b^{-1}=a^{2}$. Find $o(a)$.

Problem 3.

(1) Let $G=\left(\mathbb{Z}_{10},+\right)$. List all the elements G; determine the order of each element and list all the cyclic subgroups of G.
(2) Do the same for the group $\left(\mathbb{Z}_{14}^{*}, \cdot\right)$.

Problem 4.

(1) Prove or disprove that the union of two proper subgroups of a group is a subgroup.
(2) Let H be a finite non-empty subset of a group G which is closed under multiplication, that is, $a b \in H$ for all $a, b \in H$. Prove that H is a subgroup of G.

