(Due: Wed, Feb. 16)

Problem 1. Let $S=M_{2}(\mathbb{R})$ be the matrix ring over the real numbers. Which of the following subsets of S are rings under the same matrix addition and matrix multiplication as in S.
(1) $S_{1}=\left\{A \in S: A^{T}=A\right\}$, the set of all symmetric matrices in S.
(2) $S_{2}=\left\{A \in S: A^{T}=-A\right\}$, the set of all skew-symmetric matrices in S.
(3) The set S_{3} of all upper triangular matrices in S.
(4) The set S_{4} of all strict upper triangular matrices in S.

Problem 2. Let R be a ring such that $x^{2}=x$ for all $x \in R$. Show that
(1) Let $x \in R$. Evaluate $(x+x)^{2}$. Show that $x+x=0$.
(2) Evaluate $(x+y)^{2}$ for $x, y \in R$. Show that R is commutative.

Problem 3. Let R be a commutative ring with identity. Suppose that there exists an integer $n>1$ such that $x^{n}=x$ for all $x \in R$. If m is a positive integer such that $a^{m}=0$ for some $a \in R$, show that $a=0$.

Problem 4. Let $R=\left\{a+b i: a, b \in \mathbb{Z}_{3}\right\}$, where $i^{2}=-1$. Is R a commutative ring with identity? Is R a field?

