(Due: Wed, Feb. 23)

Problem 1. Find all idempotents elements of the rings $\mathbb{Z}_{9}, \mathbb{Z}_{10}$ and $\mathbb{Z} \times \mathbb{Z}$.
Problem 2. Find all units of the rings $\mathbb{Z}_{4} \times \mathbb{Z}_{9}$ and $\mathbb{Z} \times \mathbb{Z}$.
Problem 3. Show that there is no integral domain with exactly 6 elements.
Problem 4. Let R be a ring that contains at least 2 elements. Suppose that for each nonzero $a \in R$, there exists a unique $b \in R$ such that $a b a=a$.
(a) Show that R has no zero divisor.
(b) Show that $b a b=b$.
(c) Show that R has an identity.
(d) Show that R is a division ring.

Problem 5. Let $R=\mathbb{Z} / 36 \mathbb{Z}$ and let I be the ideal generated by 3 in R. Show that as a group, $(I,+)$ is isomorphic to $(\mathbb{Z} / 12 \mathbb{Z},+)$. However, the $\operatorname{ring}(I,+, \cdot)$ is not isomorphic to the ring $(\mathbb{Z} / 12 \mathbb{Z},+, \cdot)$.

