(Due: Tuesday, March. 2)

Problem 1. Let R be a commutative ring with identity. Assume that R has a prime characteristic p and $a \in R$ is nilpotent, that is, $a^{n}=0$ for some positive integer n. Show that there exists a positive integer k such that $(1+a)^{k}=1$.
(Hint. You can use the Binomial Theorem and the fact that $p \left\lvert\,\binom{ p}{k}\right.$ for $1 \leq k<p$.)
Problem 2. Let R be a commutative ring with identity, and let I, J be ideals of R. Show that $I J$ and $I: J$ are ideals of R.

Problem 3. Let R be a commutative ring with identity 1 .
(1) Show that a is an idempotent, i.e. $a^{2}=a$ if and only if there exists $b \in R$ such that $a b=0$ and $a+b=1$.
(2) Let E be the set of all idempotents of R. Assume that the characteristic of R is 2 . Is E a subring of R ?
Problem 4. Let $R=\mathbb{Z}[\sqrt{-5}]$.
(1) Find all units of R.
(2) The integer 21 can be factored as $21=3 \times 7=(1+2 \sqrt{-5})(1-2 \sqrt{-5})$ in R. Show that $3,7,1 \pm 2 \sqrt{-5}$ are irreducible in R. Furthermore, 3 is not associate to $1 \pm 2 \sqrt{-5}$ and 7 is not associate to $1 \pm 2 \sqrt{-5}$. This shows that R is not a UFD. Can you find an irreducible element of R that is not a prime?

