(Due: Tuesday, March. 16)

Problem 1.

(1) Let $f(x)=x^{3}+3 x+2$. Is $f(x)$ irreducible in $\mathbb{F}_{7}[x]$? How's about \mathbb{F}_{19} ?
(2) Factor $x^{5}+x+1$ into irreducible polynomials in $\mathbb{F}_{2}[x]$.

Problem 2. Find the greatest common divisor of $f(x)=3 x^{4}+x^{3}+2 x^{2}+1$ and $g(x)=x^{2}+4 x+2$ in $\mathbb{F}_{5}[x]$.

Problem 3. Let D be a Euclidean domain with degree function d. Assume $u \in D$. Show that u is a unit if and only if $d(u)=d(1)$.

Problem 4. Let R be a commutative ring with identity and let I be an ideal of R.
(1) Show that $I[x]$ is an ideal of $R[x]$.
(2) If I is a prime ideal of R, then $I[x]$ is a prime ideal of $R[x]$.

