Problem 1. Let $a, b \in \mathbb{Z}$ and $f(x)=x^{3}+a x^{2}+b x+1 \in \mathbb{Z}[x]$. For which values of $a$ and $b$ is $f(x)$ reducible in $\mathbb{Z}[x]$ ? What about in $\mathbb{Q}[x]$ ?

Problem 2. Find a polynomial in $\mathbb{Z}[x]$ that has $\sqrt{2}+\sqrt{3}$ as a root. Use it to prove that $\sqrt{2}+\sqrt{3}$ is irrational.

Problem 3. Let $R$ be an integral domain. Show that $f(x) \in R[x]$ is irreducible if and only if $f(x+1)$ is irreducible.

Problem 4. Determine whether the following polynomials are irreducible in the given ring or not.
(1) $f(x)=x^{4}+x^{3}+x^{2}+x+1$ in $\mathbb{Q}[x]$
(2) $f(x)=x^{6}+4 x^{3}+1$ in $\mathbb{Q}[x]$

