(Due: Tuesday, March. 30)

Problem 1. Determine whether the following polynomials are irreducible in the given ring or not.
(1) $f(x)=3 x^{5}+30 x^{4}-20 x^{3}+10 x+20$ in $\mathbb{Q}[x]$.
(2) $f(x)=x^{4}+x+1$ in $\mathbb{Q}[x]$

Problem 2. Let $\alpha=\sqrt{1+\sqrt{5}}$.
(1) Find a monic polynomial $f(x) \in \mathbb{Z}[x]$ of minimal degree such that $f(\alpha)=0$.
(2) Verify that $f(x)$ is irreducible in $\mathbb{Q}[x]$.
(3) Show that the ring $\mathbb{Q}[\alpha]=\{g(\alpha): g \in \mathbb{Q}[x]\}$ is isomorphic to $\mathbb{Q}[x] /\langle f(x)\rangle$. Deduce that $\mathbb{Q}[\alpha]$ is a field.

Problem 3. Let $a, b$ be real numbers and let $f \in \mathbb{R}[x]$. Prove that if $a+b i$ is a root of $f$, then $a-b i$ is a root of $f$.

