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1. Introduction
In this paper, we study the existence of periodic solutions for a Hamiltonian system
—Jz—B(t)z=VH(t,z), zeR¥, tcR, (1)

where B(t) is a given T-periodic and symmetric 2N x 2N-matrix function of C' class
in t, He C!'(R x R?M,R) is T-periodic in ¢, VH :=V,H € C(R x R*¥ , R?) and

0 —Iy
Iv 0

J:
is the standard symplectic matrix. The main results of this paper are the following:

Theorem 1.1. For T >0, suppose that H satisfies the following conditions:
(H1) H € C'(S; x R*™,R), St =R/(TZ).
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(H2) There are constants u>2 and r>0 such that
0<uH(t,z)<zVH(t,z), Vz|>r.

(H3) H(t,z)=o(|z|?), uniformly in ¢ as z — 0.
(H4) There exists a constant a such that

H,(t, _ 2
|z\1?moo Ht((t,j)) >a> — I uni formly in t.

Then Eq. (1) has a nontrivial T-periodic solution in each of the following two cases:
(i) The boundary value problem

—Ji=B(t)z,  z(0)=z(T), 2)

has only the trivial solution.
(ii) There is a constant p >0 such that H(t,z)>0 (or H(t,z)<0) for all z satisfying
0<lz|<p.

Theorem 1.2. Suppose that H satisfies (H1)—(H3) and the following (HS).

There are constants c,d >0, such that |VH(t,z)| <c(VH(t,z),z) + d, Vz € R?V,
Then Eq. (1) has a nontrivial T-periodic solution in each of case (i) and (ii) in
Theorem 1.1.

For the autonomous case, i.e. H is independent of ¢, in his pioneering work [9]
Rabinowitz first proved the existence of at least one periodic solution for Eq. (1).
Many works have been done on this problem. For example, in [1, 2, 4-6, 9—12] some
existence results of Eq. (1) are proved. We refer to [1, 12] for further references.
These results have further restrictions on V,H(¢,z) in addition to (H1)—(H3). In this
paper, we prove the existence of periodic solutions for Eq. (1) under a different and
new condition (H4), which measures the difference of Eq. (1) from the autonomous
systems. Define H(t,z) = f(t)elI" for large |z|, with >0 and f € C'(Sr,R) satisfy-
ing f'(¢)/f(¢t)> — 2/T for all ¢t. Such kinds of functions as above satisfy the condi-
tions of our Theorem 1.1, but are not contained in the above mentioned papers. Our
Theorem 1.2 generalizes Theorem 2.1 of [2], where [2] requires |VH(t,z)|? <
cVH(t,z)z + d, for all z€ R?M, where p>1. One may also compare our theorems
with Theorem 1.4 of [10].

2. Proofs of main results

In this section, we consider the Hamiltonian system
—JZz—B(t)z=VH(,z), zeR?*™, teR

with B(¢) being a given continuous 7-periodic and symmetric matrix function and H
being T-periodic in ¢. Let X := W'%2(S;,R*") be the Sobolev space of T-periodic
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R?N-valued functions with inner product (-,-)y and norm || - ||x. Define two self-adjont
operators 4, B € £ (X) by extending the bilinear forms

T T
(Ax, y)= /0 (=Jx, y)dt, (Bx,y)= /0 (B(t)x,y)dt, Vx,yeX

By [7] and standard spectral theory, B is compact on X. Denote the eigenvalues of
A— B on X by

KA <A <0(=Adg) <A <A<,
where when dimker(4 —B)=0, 4o ¢ 6(4—B) . Let {e4;} be the eigenvectors of 4 —
B corresponding to {14}, respectively. Define X, =span{ej,e,...}, X_ =span{e_,,
e_s,...}, Xo=ker(4 — B). Hence there exists a decomposition X =X, ® Xy ®X_ with

dim Xy < oo, dim X; =dim X_ = oo and an equivalent inner product in X, denoted by
(,) foru=ut +u’+u and v=v"+ 1" + v~ €X =X, ®Xo ®X_, define

(u,0) = ((4 = Byut, 0" )y — (4 = Byu—, 07 )y + (u, 0")x.

Hence, we have

T
/ (—Ji — B(tyuyudt = ((4 — Byu,u)y = |[u™]|* — |Ju~ |
0

Note that dim X, >0 if and only if the boundary value problem
—JZ=B(t)z, z(0)=z(T)

has at least a nontrivial solution.
Set ag = min\z\:ro,tesr H(t,z), fo = max
imply that for some f3 >0

|H(t,z)|. Conditions (H1) and (H2)

|z| <ro,tE€ST

aolz|* <H(t,z), V|z| >ro,

1
|z <H(t,2) + fo < L(VH2) + Bs), VzeR™.

Modifying [5] (cf. appendix of [5]), choose o €(0,1), such that uo>2, we truncate
H as in the following proposition:

Proposition 2.1. Assume conditions (H1) and (H2), then there exist two sequences

{K,} and {K]} in R and a sequence of functions {H,} such that

(1) 0<Ky<K,<K,i1, VneEN, and K, — 0o, as n— oo, where Ky=max{l,r, o/
ao(1 — o)} and K, <K, ¥Yn€R.

(ii) H,t C(St x R*™ R) and for any given t€ Sy, H,(t,-)€ C'(R?M ,R), for every
neN.

(iii) H,(t,z)=H(t,2), V|z| <K,, for every n€N; and H,(t,z)=(t, + 1)|z|*, V|z|
>K), for every n€N.
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(IV) Hn(l,Z) < Hn+l(taz) < H(l,Z), V(t,Z) € ST X R2N-
(v) 0<poH,(t,2) < VH,(t,z)z, V|z| > ro, for every n€N.

Note that in [5] the truncating functions are constructed for autonomous Hamiltonian
functions. But the proof also works for time-dependent H(¢,z).
Now integrating (v) yields

H,(t,z)>alz|"* — b, Vze€ R,

for some n-independent constants a and b. Let ¥, (u)= fOT H,(t,u)dt. Define a func-
tional 7,: X — R by

T T
L(u) = %/0 (=’ —B(t)u)udt—/o H,(t,u)dt

S = Nl (1) = W)

It is well known that 7, € C'(X,R), and
T T
(I)(u),v) = / (=J — B(t)u)vdt — / VH,(t,u)vdt
0 0

=(u" —u",0)— (W (u),v)

and U/ is compact as in [12]. So finding T-periodic solutions of Eq. (1) with H
replaced by H, is equivalent to finding critical points of 7, in X.

We will use Theorem 1.3 of [2] to prove that /, has a critical point u, which
is different from 0. Similarly to the proof of [2], it is easy to show that the func-
tional 7, satisfies (I12), (I3) and (I4) in Theorem 1.3 of [2] without using (H4) or
(H5). Different from [2], we also prove (I1) without using (H4) or (H5) as the
following.

Lemma 2.1. I, satisfies (PS)*.

Proof. Suppose {u;} is a sequence in X such that
up €Xp, L)< C<oo and BJI(u)—0 as k— oo,

Then for large n and v=1uy,

C+ |lullx > Li(ue) — S(Pedy(uge ), ux)

T
= / (%VHH(L uk)uk - H"l(ta l/lk))dt
0

1 1 T
>z —— / VH,(t,u; )uy dt — ¢y
2 us) ),
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I V

——1 /H(tuk)dt—cz

Y

eslluelfee — ca (3)
via (H2) and the growth of H, at infinity. Writing

U, = u,‘f +u, + u,? eX, pX_ DX
Because Xj is a finite-dimensional space, it follows from Eq. (3) that

i lx < es(1 + a9,

Taking v=u; in the inequality |(PI;(u ), v)| < ||v|| (which holds for large n), we have

i = | [ st ] <

Using the Hélder inequality and |ju|z« < Cyq||ullx, by Eq. (3) we have

T (no—1)/uo
Il < { [ P e gl + oL
0

(uo—1)/uo
= / - / |V H, (1, u)|F7/ =D ds
|MA‘§K,;+1 |le‘>K,:+1

o Nl + N |1

IN

{Coln) + (uaR) =D 7 7 W [ oo+ [ |

IN

Crm)(1+ g 72 e xs

1e.,
o 1 < CLmT + |7 < a1+ [l |77,

where C;(n)’s are constants depending on n. Similarly, for v=u, we have
i I < Co(m)(X+ e [¢7 ).

Hence,
Jlaellic < Cam)(X + gl |7~

i.e., {ux} is bounded on X. Since

wl —uy — PV (up) =P, (up) — 0 as k— oo,
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W, is a compact operator, and {u?} C X° is bounded, {u} has a convergence subse-
quence, i.e., (PS)* holds. O

Proof of Theorem 1.1. By our above discussions, /, satisfies the hypotheses of
Theorem 1.3 of [2]. So I, possesses a nontrivial critical point u,. We shall prove
l|lun|lc <K, for large n.

We first prove that there is a constant M >0 such that 7,(u,) <M, for every n € N.
If every one of {u,} is gained in the first case in the proof of Theorem 1.3 of [2]
(p. 228), I,(u,) <0 holds for every n € N. Otherwise, there exists an ny such that u,,
is gained in the second case. Note that 7, <1, for n>ng (since H, > H,, for n>ny),
we replace [,, by I, only in the proof of the Theorem 1.3 of [2] (pp. 228-230), and
use the same ®,I', 4, #,,0n, G as gained for [, and BY" for I,. Then we can gain a
critical point u, of I, such that o, <I,(u,) <1, (uy,), i.e., 0<a, <c, <c,. Thus, we
have constant M >0 such that there exists a critical point u, of I, such that I,(u,) <M.

Now we show that ||u,||c <K, for large n. Since I)(u,)=0, similarly to Eq. (3) we
have

T T
/ N H (6, Yty df < M, / Hy(t,u,) dt < My @)
0 0

for some constants M| and M, independent of n.

Denote by H,(t,z) = %(B(t)z,z)—i—H,,(t,z). Then (H1), (H2) and (H4) also hold for
H, with some i, 7 independent of n and the same . Thus we can omit (B(¢)z,z) in
the following proof.

Denote

Ay ={t €S| |lu.(t)| <K, }.

By Eq. (4) we have
T
MzZ/ H (o) dt > o0 |1 + b
0

for some n-independent constant . Thus we know for large n, 4, # () and measure(4,)
> T/2. Since u, € C', A4, is open. Let 4, = U;’Zl (an, j, b, ;). It suffices to prove 4, = Sr.

We prove this indirectly by assuming that this claim fails in a subsequence of
{4,}. Without loss generality, we still denote this subsequence by {4,}. By Eq. (4),
H,(t,uy)|a, = H(t,u,) and K, >r, we have

T o0 bn, j
M, > / H(t,u,)dt > / Hy(tuy)dt =" H(t,uy)dt.
0 A - a
n j:1 n,J

For every (ay, ;,bn, ), let

Bl ={t € (@n,j, b ;) | H(t,un()) < H(ay, jyun(an )} = | (c],d}).
=1
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We have H(ay, j,un(an ;))=H(c], u,(c]))=H(d/,u,(d})), ¥ €N. Thus,

bu;
H(t,u,)dt

an, j

> (buj — an j)H(ay, j, un(an,;)) + /Bﬂ [H(t,ux(t)) — H(ay, j, un(an,;))] dt

00 d/ e
=(bn,j — an, j)H(ay, j,un(an,;)) + Z / / H(s,u,(s))ds dt,
=1 e e

the last equality holds since u, =JVH(t,u,). By (H4) there exists N >r independent

of n such that
H/(t,z) 1 a

>——+—, Vz|>N.
H(t,2) rty VA

When [u,(s)| > N and H(s,un(s)) <0 for s € B', we have

HS(S7 un(s)) > HS(Sa un(s)) > l _|_ g_

H(an,jaun(an,j)) T H(s,uu(s)) — T 2
Let = mins¢g, .| <y {H(5,2),0}, then f is finite and independent of n. Hence we
have

b Hy(s, tn(5)) }
HyndZH n,js%n n,j bn'_n' —dd
[ e He e ,,)){< J—an)+ / s s
—|—(// —|—// )Hs(s,un(s))dsdt,

O1 = {s€B/|un(s)| >N, H(s,un(s)) <0},
0y = {s € B/ [|un(s)| >N, H(s,u,(s)) > 0},
O3 = {s€B}|[ua(s)| <N}

where

Then we have

b,,.j
H(t,u,)dt

0 pdl ot
+> /j // B dt
=174 <

< 41 a
> H(dn (@) [(bn,j -3 [ [(-5+3)
=174 “¢
(bn j— an,j)z.[g

1 2 _ )
> |:(bn,j - an,j) - Z(bn,j - an,j)2 (T - a>:| H(an,ja un(an,j)) + D
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1 2
> l:(bn,j - an,j) - Z(bn,j - an,j)z (T - é):l (“Olun(an,j)w - b)

(bn,j - an,j)zﬁ

* 2

2+ 7Ta Tﬂ]

> (bnj —an,j) [ ) (KK — b) + >

Thus, we have

00 b, j
M, > Z/ H(t,u,)dt
j=1 7

a

\Y)

> 2+ Ta . T,
D (buj—an) [ 7 (0K —b)+ 2[3}
j=1

T[2+Ta B
> H_ L
_2{ G (ki b)+2]

Since u>2, 2/T + @>0 and K, — oo as n— oo, we have a contradiction. Hence
lun|lc <K, for large n. Since H,(t,u,)=H(t,u,) for |lu,|c <K,, we have that u,
is a nontrivial solution of Eq. (1) for large n. Hence Theorem 1.1 is proved. [J

Proof of Theorem 1.2. As in the proof of Theorem 1.1, we have Eq. (4) and 4, =

U;’Zl (an,j, by, ;) for large n. By passing a subsequence, assume A4, # Sr, for n € N.
Otherwise, we have the conclusion. From Eq. (4) and (H5)

T
1
Mlz/ VH,,(t,u,,)u,,dtZ/ VH(t,un)undtz—/ (|VH (t,u,)| — d)dz.
0 Ay € Ja,
Thus, we have
[e%S) b, ;
Z/ \a,,(t)\dt:/ |VH(t,u,)| dt < cM, +dT.
j=1"anj An
For t € (ay, j, by, ), we have

t
wmn—mwwnzj/ ()| ds > —(cM; +dT),

ie., |uy()| > K, — (cM, +dT). By Eq. (4) we have

T
M, 2/ H,(t,u,)dt
0

T
> [ Galup b
0
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v

T
/ [oo(K,, — eMy — dT)" — b]dt
0

Too(K, — cMy — dT)* — b].

Since og,b,c,d, u, M; are independent of n and K, — oo as n— oo, we have a con-
tradiction. Hence A4, =Sy for large n, i.e., ||us||c <K,. Since H,(t,u,)=H(t,u,) for
||lun|lc < K,, we have that u, is a nontrivial solution of Eq. (1) for large n. Hence
Theorem 1.2 is proved. [
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