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1. Introduction

In this paper, we study the existence of periodic solutions for a Hamiltonian system

− J ż − B(t)z=∇H (t; z); z ∈R2N ; t ∈R; (1)

where B(t) is a given T -periodic and symmetric 2N × 2N -matrix function of C1 class
in t, H ∈C1(R× R2N ;R) is T -periodic in t, ∇H :=∇zH ∈C(R× R2N ;R2N ) and

J =

(
0 −IN
IN 0

)

is the standard symplectic matrix. The main results of this paper are the following:

Theorem 1.1. For T¿0, suppose that H satis�es the following conditions:
(H1) H ∈C1(ST × R2N ;R), ST =R=(TZ).
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(H2) There are constants �¿2 and r¿0 such that

0¡�H (t; z)≤ z∇H (t; z); ∀|z| ≥ r:
(H3) H (t; z)= o(|z|2), uniformly in t as z→ 0.
(H4) There exists a constant �a such that

lim
|z|→∞

Ht(t; z)
H (t; z)

≥ �a¿− 2
T
; uniformly in t:

Then Eq. (1) has a nontrivial T -periodic solution in each of the following two cases:
(i) The boundary value problem

− J ż=B(t)z; z(0)= z(T ); (2)

has only the trivial solution.
(ii) There is a constant �¿0 such that H (t; z)¿0 (or H (t; z)¡0) for all z satisfying

0¡|z|¡�.

Theorem 1.2. Suppose that H satis�es (H1)–(H3) and the following (H5).
There are constants c; d¿0, such that |∇H (t; z)| ≤ c(∇H (t; z); z) + d, ∀z ∈R2N .
Then Eq. (1) has a nontrivial T -periodic solution in each of case (i) and (ii) in
Theorem 1.1.

For the autonomous case, i.e. H is independent of t, in his pioneering work [9]
Rabinowitz �rst proved the existence of at least one periodic solution for Eq. (1).
Many works have been done on this problem. For example, in [1, 2, 4–6, 9–12] some
existence results of Eq. (1) are proved. We refer to [1, 12] for further references.
These results have further restrictions on ∇zH (t; z) in addition to (H1)–(H3). In this
paper, we prove the existence of periodic solutions for Eq. (1) under a di�erent and
new condition (H4), which measures the di�erence of Eq. (1) from the autonomous
systems. De�ne H (t; z)=f(t)e|z|

�
for large |z|, with �¿0 and f∈C1(ST ;R) satisfy-

ing f′(t)=f(t)¿ − 2=T for all t. Such kinds of functions as above satisfy the condi-
tions of our Theorem 1.1, but are not contained in the above mentioned papers. Our
Theorem 1.2 generalizes Theorem 2.1 of [2], where [2] requires |∇H (t; z)|p≤
c∇H (t; z)z + d, for all z ∈R2N , where p¿1. One may also compare our theorems
with Theorem 1.4 of [10].

2. Proofs of main results

In this section, we consider the Hamiltonian system

−J ż − B(t)z=∇H (t; z); z ∈R2N ; t ∈R
with B(t) being a given continuous T -periodic and symmetric matrix function and H
being T -periodic in t. Let X :=W 1=2;2(ST ;R2N ) be the Sobolev space of T -periodic
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R2N -valued functions with inner product (·; ·)X and norm ‖ · ‖X . De�ne two self-adjont
operators A; B∈L(X ) by extending the bilinear forms

(Ax; y)=
∫ T

0
(−J ẋ; y) dt; (Bx; y)=

∫ T

0
(B(t)x; y) dt; ∀x; y∈X:

By [7] and standard spectral theory, B is compact on X . Denote the eigenvalues of
A− B on X by

· · · ≤ �−2≤ �−1¡0(= �0)¡�1≤ �2≤ · · · ;

where when dim ker(A−B)= 0, �0 =∈ �(A−B) . Let {e± j} be the eigenvectors of A−
B corresponding to {�± j}, respectively. De�ne X+ = span{e1; e2; : : :}, X−=span{e−1;
e−2; : : :}, X0 = ker(A−B). Hence there exists a decomposition X =X+⊕X0⊕X− with
dim X0¡∞, dim X+ =dim X−=∞ and an equivalent inner product in X , denoted by
〈· ; ·〉, for u= u+ + u0 + u− and v= v+ + v0 + v− ∈X =X+⊕X0⊕X−, de�ne

〈u; v〉=((A− B)u+; v+)X − ((A− B)u−; v−)X + (u0; v0)X :

Hence, we have∫ T

0
(−J u̇− B(t)u)u dt=((A− B)u; u)X = ‖u+‖2 − ‖u−‖2:

Note that dim X0¿0 if and only if the boundary value problem

−J ż=B(t)z; z(0)= z(T )

has at least a nontrivial solution.
Set �0 = min|z|=r0 ; t∈ST H (t; z), �0 = max|z|≤r0 ; t∈ST |H (t; z)|. Conditions (H1) and (H2)

imply that for some �3≥ 0
�0|z|�≤H (t; z); ∀|z| ≥ r0;
�0|z|�≤H (t; z) + �0≤ 1

�
(∇H (t; z)z + �3); ∀z ∈R2N :

Modifying [5] (cf. appendix of [5]), choose �∈ (0; 1), such that ��¿2, we truncate
H as in the following proposition:

Proposition 2.1. Assume conditions (H1) and (H2), then there exist two sequences
{Kn} and {K ′

n} in R and a sequence of functions {Hn} such that
(i) 0¡K0¡Kn¡Kn+1, ∀n∈N, and Kn→∞, as n→∞, where K0 =max{1; r; �0=

�0(1− �)}; and Kn¡K ′
n, ∀n∈R.

(ii) Hnt C(ST × R2N ;R) and for any given t ∈ ST , Hn(t; ·)∈C1(R2N ;R), for every
n∈N.

(iii) Hn(t; z)=H (t; z), ∀|z| ≤Kn, for every n∈N; and Hn(t; z)= (�n + 1)|z|��, ∀|z|
≥K ′

n, for every n∈N.
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(iv) Hn(t; z)≤Hn+1(t; z)≤H (t; z), ∀(t; z)∈ ST × R2N .
(v) 0¡��Hn(t; z)≤∇Hn(t; z)z, ∀|z| ≥ r0, for every n∈N.

Note that in [5] the truncating functions are constructed for autonomous Hamiltonian
functions. But the proof also works for time-dependent H (t; z).
Now integrating (v) yields

Hn(t; z)≥ a|z|�� − b; ∀z ∈R2N ;

for some n-independent constants a and b. Let 	n(u)=
∫ T
0 Hn(t; u) dt. De�ne a func-

tional In :X →R by

In(u) =
1
2

∫ T

0
(−Ju′ − B(t)u)u dt −

∫ T

0
Hn(t; u) dt

= 1
2(‖u+‖2 − ‖u−‖2)−	n(u):

It is well known that In ∈C1(X;R), and

〈I ′n(u); v〉=
∫ T

0
(−Ju′ − B(t)u)v dt −

∫ T

0
∇Hn(t; u)v dt

=
〈
u+ − u−; v〉−〈	′

n(u); v〉
and 	′

n is compact as in [12]. So �nding T -periodic solutions of Eq. (1) with H
replaced by Hn is equivalent to �nding critical points of In in X .
We will use Theorem 1.3 of [2] to prove that In has a critical point un which

is di�erent from 0. Similarly to the proof of [2], it is easy to show that the func-
tional In satis�es (I2), (I3) and (I4) in Theorem 1.3 of [2] without using (H4) or
(H5). Di�erent from [2], we also prove (I1) without using (H4) or (H5) as the
following.

Lemma 2.1. In satis�es (PS)∗.

Proof. Suppose {uk} is a sequence in X such that

uk ∈Xk; In(uk)≤C¡∞ and PkI ′n(uk)→ 0 as k→∞:
Then for large n and v= uk ,

C + ‖uk‖X ≥ In(uk)− 1
2 〈PkI ′n(uk); uk〉

=
∫ T

0
( 12∇Hn(t; uk)uk − Hn(t; uk)) dt

≥
(
1
2
− 1
��

)∫ T

0
∇Hn(t; uk)uk dt − c1
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≥
(��
2

− 1
)∫ T

0
Hn(t; uk) dt − c2

≥ c3‖uk‖��L�� − c4 (3)

via (H2) and the growth of Hn at in�nity. Writing

uk = u+k + u
−
k + u

0
k ∈X+⊕X− ⊕X0:

Because X0 is a �nite-dimensional space, it follows from Eq. (3) that

‖u0k‖X ≤ c5(1 + ‖uk‖1=��X ):

Taking v= u+k in the inequality |〈PkI ′n(uk); v〉|≤ ‖v‖ (which holds for large n), we have

‖u+k ‖2X −
∣∣∣∣
∫ T

0
∇Hn(t; uk)u+k dt

∣∣∣∣≤‖uk‖X :

Using the H�older inequality and ‖u‖L�� ≤C��‖u‖X , by Eq. (3) we have

‖u+k ‖2X ≤
{∫ T

0
|∇Hn(t; uk)|��=(��−1) dt

}(��−1)=��
‖u+k ‖L�� + ‖u+k ‖X

=

{∫
|uk |≤K′

n+1
+
∫
|uk |¿K′

n+1
|∇Hn(t; uk)|��=(��−1) dt

}(��−1)=��

×‖u+k ‖L�� + ‖u+k ‖X

≤ {C0(n) + (��R)��=(��−1)‖uk‖��L��}(��−1)=��‖u+k ‖L�� + ‖u+k ‖X

≤ C1(n)(1 + ‖uk‖��−1L�� )‖u+k ‖X ;
i.e.,

‖u+k ‖X ≤C1(n)(1 + ‖uk‖��−1L�� )≤C2(n)(1 + ‖uk‖(��−1)=��X );

where Ci(n)’s are constants depending on n. Similarly, for v= u−k we have

‖u−k ‖X ≤C3(n)(1 + ‖uk‖(��−1)=��X ):

Hence,

‖uk‖X ≤C4(n)(1 + ‖uk‖(��−1)=��X )

i.e., {uk} is bounded on X . Since
u+k − u−k − Pk	′

n(uk)=PkI
′
n(uk)→ 0 as k→∞;
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	′
n is a compact operator, and {u0k}⊂X 0 is bounded, {uk} has a convergence subse-
quence, i.e., (PS)∗ holds.

Proof of Theorem 1.1. By our above discussions, In satis�es the hypotheses of
Theorem 1.3 of [2]. So In possesses a nontrivial critical point un. We shall prove
‖un‖C ≤Kn for large n.
We �rst prove that there is a constant M¿0 such that In(un)≤M , for every n∈N.

If every one of {un} is gained in the �rst case in the proof of Theorem 1.3 of [2]
(p. 228), In(un)¡0 holds for every n∈N. Otherwise, there exists an n0 such that un0
is gained in the second case. Note that In≤ In0 for n¿n0 (since Hn≥Hn0 for n¿n0),
we replace In0 by In only in the proof of the Theorem 1.3 of [2] (pp. 228–230), and
use the same �;�;B, Hm; Qm; G as gained for In0 and B

m
1 for In. Then we can gain a

critical point un of In such that �n≤ In(un)≤ In0 (un0 ), i.e., 0¡�n≤ cn≤ cn0 . Thus, we
have constant M¿0 such that there exists a critical point un of In such that In(un)≤M .
Now we show that ‖un‖C ≤Kn for large n. Since I ′n(un)= 0, similarly to Eq. (3) we

have ∫ T

0
∇Hn(t; un)un dt≤M1;

∫ T

0
Hn(t; un) dt≤M2 (4)

for some constants M1 and M2 independent of n.
Denote by H̃ n(t; z)= 1

2 〈B(t)z; z〉+ Hn(t; z). Then (H1), (H2) and (H4) also hold for
H̃ n with some �̃, r̃ independent of n and the same �a. Thus we can omit 〈B(t)z; z〉 in
the following proof.
Denote

An= {t ∈ ST | |un(t)|¡Kn}:
By Eq. (4) we have

M2≥
∫ T

0
Hn(t; un) dt≥ �0‖un‖��L�� + b

for some n-independent constant b. Thus we know for large n, An 6= ∅ and measure(An)
¿T=2. Since un ∈C1, An is open. Let An=

⋃∞
j=1 (an; j; bn; j). It su�ces to prove An= ST .

We prove this indirectly by assuming that this claim fails in a subsequence of
{An}. Without loss generality, we still denote this subsequence by {An}. By Eq. (4),
Hn(t; un)|An =H (t; un) and Kn¿r, we have

M2≥
∫ T

0
Hn(t; un) dt≥

∫
An
Hn(t; un) dt=

∞∑
j=1

∫ bn; j

an; j
H (t; un) dt:

For every (an; j; bn; j), let

Bnj = {t ∈ (an; j; bn; j) |H (t; un(t))¡H (an; j; un(an; j))}=
∞⋃
l=1

(c jl ; d
j
l ):
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We have H (an; j; un(an; j))=H (c
j
l ; un(c

j
l ))=H (d

j
l ; un(d

j
l )), ∀l∈N. Thus,∫ bn; j

an; j
H (t; un) dt

≥ (bn; j − an; j)H (an; j; un(an; j)) +
∫
Bnj

[H (t; un(t))− H (an; j; un(an; j))] dt

=(bn; j − an; j)H (an; j; un(an; j)) +
∞∑
l=1

∫ d jl

c jl

∫ t

c jl

Hs(s; un(s)) ds dt;

the last equality holds since u̇n= J∇H (t; un). By (H4) there exists N¿r independent
of n such that

Ht(t; z)
H (t; z)

¿− 1
T
+
�a
2
; ∀|z|¿N:

When |un(s)| ≥N and Hs(s; un(s))¡0 for s∈Bnj , we have
Hs(s; un(s))

H (an; j; un(an; j))
≥ Hs(s; un(s))
H (s; un(s))

≥ − 1
T
+
�a
2
:

Let �= mins∈ ST ;|z| ≤N{Hs(s; z); 0}, then � is �nite and independent of n. Hence we
have∫ bn; j

an; j
H (t; un) dt ≥H (an; j; un(an; j))

{
(bn; j − an; j) +

∫ ∫
Q1

Hs(s; un(s))
H (an; j; un(an; j))

ds dt
}

+
(∫ ∫

Q2
+
∫ ∫

Q3

)
Hs(s; un(s)) ds dt;

where

Q1 = {s∈Bnj | |un(s)|¿N;Hs(s; un(s))¡0};
Q2 = {s∈Bnj | |un(s)|¿N;Hs(s; un(s))≥ 0};
Q3 = {s∈Bnj | |un(s)| ≤N}:

Then we have∫ bn; j

an; j
H (t; un) dt

≥H (an; j; un(an; j))
[
(bn; j − an; j)−

∞∑
l=1

∫ d jl

c jl

∫ t

c jl

(
− 1
T
+
�a
2

)]
+

∞∑
l=1

∫ d jl

c jl

∫ t

c jl

� dt

≥
[
(bn; j − an; j)− 1

4
(bn; j − an; j)2

(
2
T

− �a
)]
H (an; j; un(an; j)) +

(bn; j − an; j)2�
2
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≥
[
(bn; j − an; j)− 1

4
(bn; j − an; j)2

(
2
T

− �a
)]
(�0|un(an; j)|� − b)

+
(bn; j − an; j)2�

2

≥ (bn; j − an; j)
[
2 + T �a
4

(�0K�n − b) + T�
2

]
:

Thus, we have

M2 ≥
∞∑
j=1

∫ bn; j

an; j
H (t; un) dt

≥
∞∑
j=1

(bn; j − an; j)
[
2 + T �a
4

(�0K�n − b) + T�
2

]

≥ T
2

[
2 + T �a
4

(�0K�n − b) + T�
2

]
:

Since �¿2, 2=T + �a¿0 and Kn→∞ as n→∞, we have a contradiction. Hence
‖un‖C ≤Kn for large n. Since Hn(t; un)=H (t; un) for ‖un‖C ≤Kn, we have that un
is a nontrivial solution of Eq. (1) for large n. Hence Theorem 1.1 is proved.

Proof of Theorem 1.2. As in the proof of Theorem 1.1, we have Eq. (4) and An=⋃∞
j=1 (an; j; bn; j) for large n. By passing a subsequence, assume An 6= ST , for n∈N.

Otherwise, we have the conclusion. From Eq. (4) and (H5)

M1≥
∫ T

0
∇Hn(t; un)un dt≥

∫
An
∇H (t; un)un dt≥ 1

c

∫
An
(|∇H (t; un)| − d) dt:

Thus, we have

∞∑
j=1

∫ bn; j

an; j
|u̇n(t)| dt=

∫
An

|∇H (t; un)| dt≤ cM1 + dT:

For t ∈ (an; j; bn; j), we have

|un(t)| − |un(an; j)| ≥−
∫ t

an; j
|u̇n(s)| ds≥−(cM1 + dT );

i.e., |un(t)| ≥Kn − (cM1 + dT ). By Eq. (4) we have

M2 ≥
∫ T

0
Hn(t; un) dt

≥
∫ T

0
(�0|un|�� − b) dt
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≥
∫ T

0
[�0(Kn − cM1 − dT )�� − b] dt

= T [�0(Kn − cM1 − dT )�� − b]:
Since �0; b; c; d; �;M1 are independent of n and Kn→∞ as n→∞, we have a con-
tradiction. Hence An= ST for large n, i.e., ‖un‖C ≤Kn. Since Hn(t; un)=H (t; un) for
‖un‖C ≤Kn, we have that un is a nontrivial solution of Eq. (1) for large n. Hence
Theorem 1.2 is proved.
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