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1. Introduction

Let H (t; u) :R × R2N → R be a continuously di2erentiable function and consider
the Hamiltonian system

Ju̇+∇H (t; u)= 0; (t; u)∈ ST × R2N ;

where H ∈C1(R × R2N ;R) is T -periodic in the t-variable, and J=(
0 −IN
IN 0

)

denotes the standard symplectic matrix and ∇ denotes the gradient with respect to
the u-variable. Suppose that H (t; u)= 1

2L(t)u · u + W (t; u) where L∈C1(R;R4N 2
) is

a 2N × 2N symmetric matrix valued function and W ∈C1(R × R2N ;R) is globally
super-quadratic in the u-variable, i.e., the potential H satis es
(H1) There is a constant �¿ 2 such that

0¡�W (t; u)6 z∇W (t; u); ∀|u|¿ 0:

Recall that a solution u of the system (1) is said to be homoclinic to 0 if u 	=0
and u → 0 as |t| → ∞. We are interested in the existence of homoclinic orbits of the
system (1). In recent years there have been many papers devoted to the existence of
homoclinic orbits for the system (1)( e.g., [1,3–5,8,9]). In most of these papers, there
is a condition on the growth of H (t; u) at in nity such as
(H4)p There are constants c; R¿ 0 and p∈ (1; 2), such that

|∇W (t; u)|p6 c(∇W (t; u); u); ∀|u|¿R:
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Condition (H4)p implies that |∇W (t; u)| grows at in nity no faster than |u|1=(p−1).
For second-order Hamiltonian systems, in [2] the authors proved the existence of ho-
moclinic orbits by assuming only super-quadratic condition (H1) for the potentials. On
the other hand, the existence of T -periodic solutions for the system (1) has been proved
in [7] and [10] recently under some conditions weaker than (H4)p on the growth rate
of the potential at in nity such as
(H4) There is a constant c¿ 0, such that

|∇W (t; u)|6 c(∇W (t; u); u); ∀|u|¿ 1:

or

(H5) lim sup
|u|→∞

Wt(t; u)
|u|�W (t; u)

= 0; or lim inf
|u|→∞

Wt(t; u)
|u|�W (t; u)

= 0; uniformly in t:

It is natural to ask the following question: Can one relax the condition (H4)p,
as has been done for the problem of the existence of T -periodic solutions of the
system (1)?
Here, we answer the above question. Using the ideas for the problem on the existence

of T -periodic solutions of the system (1) in paper [10], we  rst prove two new estimates
on the bound of C0-norm of homoclinic orbits of the system (1) under the conditions
(H1) and (H4) (or (H5)), then we will show that we can relax condition (H4)p exactly
as in paper [10]. The main purpose of the present paper is to establish the existence
of homoclinic orbits of the system (1) both with and without symmetry hypotheses.
Here is the outline of our present paper. In Section 2, we prove two new estimates on

the bound of C0-norm of homoclinic orbits of the system (1) when the corresponding
critical values of homoclinic orbits are bounded. In Section 3, we study the symmetric
Hamiltonian systems. We  rst obtain an improvement of Theorem 2:1 in [1] by some
precise computations. Since the solutions in [1] are obtained by minimax procedure, we
show that the corresponding critical values are bounded. Using our estimates obtained in
Section 2, we know the solutions of modi ed systems to be the solutions of the system
(1) for a large enough n, then we get the main results of this section, Theorems 3.1
and 3.2. In Section 4, we study the Hamiltonian systems without symmetry. Using the
same idea which is used in Section 3, we get the main results of this section Theorems
4.1 and 4.2.

2. Two estimates

In this section, we  rst truncate the potential W by an increasing sequence {Wn}
such that each Wn satis es the growth condition (H4)p for some p∈ (1; 2). Then we
give the function space E and the new norm ||·||E according to the self-adjoint operator
A=−(J d

dt+L(t)) as was done in Section 2 of [3,4] and the corresponding functional In
with respect to the system (1) replacing W by Wn. Finally, we prove two new estimates
on the bound of C0-norm of homoclinic orbits of the system (1) under the conditions
(H1) and (H4) (or (H5)) when the corresponding critical values of homoclinic orbits
are bounded.
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2.1. Truncation of W (t; u)

Set a=min|u|=1; t∈STW (t; u); b=max|u|61; t∈ST |W (t; u)|. Condition (H1) implies that
for some �3¿ 0


a|u|�6W (t; u) ∀|u|¿ 1;

b|u|�¿W (t; u) ∀|u|6 1;

a|u|�6W (t; u) + b6 1
� (∇W (t; u)u+ �3) ∀u∈R2N :

As was done in [6] (cf. Appendix of [6]), choose �∈ (0; 1), such that ��¿ 2, we
truncate W as the following proposition:

Proposition 2.1. Assume that for condition (H1) there exist two sequences {Kn} and
{K ′

n} in R and a sequence of functions {Wn} such that
(i) 0¡K0 ¡Kn ¡Kn+1;∀n∈N; and Kn → ∞; as n → ∞; where K0 =max{1;

b=a(1− �)}; and Kn ¡K ′
n; ∀n∈R.

(ii) For any given t ∈ ST ; Wn(t; u)∈C1(R2N ;R); for every n∈N.
(iii) Wn(t; u)=W (t; u);∀|u|6Kn; for every n∈N; and for some �∈ (�; 1), such that

Wn(t; u)= (�n + 1)|u|��;∀|u|¿K ′
n; for every n∈N.

(iv) Wn(t; u)6Wn+1(t; u)6W (t; u);∀(t; u)∈ ST × R2N .
(v) 0¡��Wn(t; u)6∇Wn(t; u)u;∀|u|¿ 0; for every n∈N.

Note that in [6] the truncating functions are constructed for autonomous Hamiltonian
functions. In fact, the proof also works for time dependent W (t; u).

2.2. Setting for functional In

Let A=−(J(d=dt)+L(t)) be the self-adjoint operator acting on L2(R;R2N ) with the
domain D(A)=H 1(R;R2N ) and �(A) be the spectrum of A. We use the norm || · ||E ,
which is de ned as

||u||E =(||A|1=2u|22 + |u|22)1=2;
instead of the norm ||·||� in [3] or [4], and the Banach space E, which is the completion
of the set D(A)=H 1(R;R2N ) under the norm || · ||E , instead of the space E� in [3]
or [4]. As in Section 2 of [3] or [4], we have these facts: E has the direct sum
decomposition E=E− ⊕ E+, and E is embedded continuous in L for any  ∈ [2;∞)
and compactly in L 

loc for any  ∈ [2;∞). Using our norm || · ||E instead of || · ||�, the
reader can check the details of these facts following the Proofs in Section 2 in [3] or
[4]. Setting

Jn(u)=
∫
R

Wn(t; u) dt;

it is easy to check if Jn ∈C1(E;R) since each Wn satis es (H3) and (iii) of Pro-
position 2.1, and E is embedded continuous in L for any  ∈ [2;∞); furthermore, we
have

J′
n(u)v=

∫
R
∇Wn(t; u)v dt; ∀u; v∈E:
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Consider the functional

In(u) =
1
2

∫
R
(−Ju̇ · u− L(t)u · u) dt −

∫
R

Wn(t; u) dt

=
1
2
(||u+||2E − ||u−||2E)− Jn(u)

for u= u+ + u− ∈E=E+ ⊕ E−. We have In ∈C1(E;R), while any critical point of In
corresponds to a homoclinic orbit of the system (1) replacing W by Wn.

2.3. Two estimates

Now we will prove two new estimates on the bound of C0-norm for homoclinic
orbits of the system (1) under the growth conditions (H1) and (H4) (or (H5)).

Lemma 2.1. Suppose that W (t; u) satis7es (H1), (H4) and u(t) is a critical point of
In such that In(u)6N; then we have the following estimate:

||u||C0 6M

where M is independent of u and n.

Proof. Since u is a critical point of In and each Wn(t; u) satis es (iii) and (v) of
Proposition 2.1, we have

In(u) =
1
2

∫
R
−(Ju̇+ L(t)u)u dt −

∫
R

Wn(t; u) dt

=
1
2

∫
R
∇Wn(t; u) · u dt −

∫
R

Wn(t; u) dt

¿
(
1
2
− 1

��

)∫
R
∇Wn(t; u) · u dt

¿
(��
2

− 1
)∫

R
Wn(t; u) dt

From the above, we have∫
R
∇Wn(t; u)u dt6M1;

∫
R

Wn(t; u) dt6M2 (2)

for some constants M1 and M2 independent of n. Now integrating (v) of Proposition 2.1
we have

Wn(t; u)¿ a|u|��; ∀|u|¿ 1;

Wn(t; u)6 b|u|��; ∀|u|6 1;

where a=min|u|=1; t∈STW (t; u) and b=max|u|61; t∈ST |W (t; u)| are independent of n since

Wn(t; u)=W (t; u); ∀|u|6K1 and ∀n∈N:
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We  rst show that for a large enough n,

||u||C0 6Kn

If not, by passing a subsequence, without the loss of generality, for each n∈N, there
exists un(t) and tn ∈R+, such that |un(tn)|=Kn, |un(0)|=1 and 16 |un(t)|6Kn for
t ∈ [0; tn). Since

M2¿
∫
R

Wn(t; un) dt¿
∫ tn

0
Wn(t; un) dt¿ a

∫ tn

0
|un|� dt¿ a

∫ tn

0
|un| dt

we have
∫ tn
0 |un| dt6M2=a. Hence, we have

Kn − 1 = |un(tn)| − |un(0)|

=
∫ tn

0

d
ds

|un(s)| ds

=
∫ tn

0
un(s) · u̇ n(s)=|un(s)| ds

6
∫ tn

0
|u̇(s)| ds (since |un(s)|6Kn)

6
∫ tn

0
(|L(t)un(s)|+ |∇W (s; un(s))|) ds (by (H4))

6 ||L||L∞

∫ tn

0
|un(s)| ds+ c

∫ tn

0
(∇W (s; un(s)); un(s)) ds

6N1M2 + c
∫
R
(∇Wn(s; un(s)); un(s)) ds

6N1M2 + cM1;

where c; N1; M1 and M2 are n-independent constants. But we have Kn → ∞, as n →
∞, which leads to a contradiction. Hence, there exists m∈N, which is determined only
by W (t; u) and N , for any n¿m; if u is a critical point of In with In(u)6N , then
||u||C0 6Kn holds.
Hence, for any critical point u of In with In(u)6N , if n¿m, repeating the above

computation, we have

|u(t)|6N1M2 + cM1 + 1; ∀ t ∈R:

For k ¡m, from (iii) of Proposition 2.1, we have

|∇Wk(t; u)|6 ck(∇Wk(t; u); u); ∀ |u|¿ 1

for some suitable constant ck , which is determined by Wk for k =1; 2; : : : ; m−1. Hence,
by the same argument as above, we have

|u(t)|6N1M2 + ckM1 + 1; ∀ t ∈R:

Then, we have

||u||C0 6max{N1M2 + cM1 + 1; N1M2 + ckM1 + 1; k =1; 2; : : : ; m− 1}=M

Hence, our Lemma holds.
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Lemma 2.2. Suppose that W (t; u) satis7es (H1); (H5) and u(t) is a critical point of
In such that In(u)6N; then we have the following estimate:

||u||C0 6M

where M is independent of u and n.

Proof. As the  rst part of the Proof of Lemma 2.1, we have∫
R
∇Wn(t; u)u dt6M1;

∫
R

Wn(t; u) dt6M2

for some constants M1 and M2 independent of n. Now integrating (v) of Proposition 2.1
we have

Wn(t; u)¿ a|u|��; ∀|u|¿ 1;

Wn(t; u)6 b|u|��; ∀|u|6 1;

where a=min|u|=1; t∈STW (t; u) and b=max|u|61; t∈ST |W (t; u)| are independent of n. Since
W (t; u) satis es (H5), de ne

�(r)= sup
|u|¿r; t∈ST

Wt(t; u)
|u|�W (t; u)

and

((r)= inf
|u|¿r; t∈ST

Wt(t; u)
|u|�W (t; u)

:

Then, (H5) means

lim
r→∞�(r)= 0 or lim

r→∞ ((r)= 0:

Case I: Suppose that we have

lim
r→∞�(r)= 0:

By the de nition of �(r), we have �(r) which decreases to 0. Fix a large R¿ 1,
such that

a− �(R)M2 ¿ 0:

Firstly, we show |u|C0 6Kn for large n. If not, by passing a subsequence we may
assume that for each n, there exist un(t); an and bn such that

(an; bn) ⊂ {t ∈R|R¡ |un(t)|¡Kn}
and |un(an)|=R; |un(bn)|=Kn. We have

M2¿
∫
R

Wn(t; un) dt¿
∫ bn

an
W (t; un) dt¿

∫ bn

an
a|un(t)|� dt¿ (bn − an)a:
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Hence, bn − an6M2=a. Here, we have

H (bn; un(bn))− H (an; un(an))

=
∫ bn

an

d
dt

Hn(t; un(t)) dt (since |un(t)|6Kn)

=
∫ bn

an
∇Hn(t; un(t))u̇ n(t) dt +

∫ bn

an
Ht(t; un(t)) dt

=
∫ bn

an

1
2
L′(t)unun dt +

∫ bn

an
Wt(t; un) dt

6
1
2
||L′||L∞

∫ bn

an
|un|2 dt +

∫ bn

an
�(|un|)|un|�W (t; un) dt

6N1M2K2
n + �(R)K�

n

∫ bn

an
W (t; un) dt

6N1M2K2
n + �(R)K�

n

∫
R
Wn(t; un) dt

6N1M2K2
n + �(R)M2K�

n :

Hence, we have

H (bn; un(bn))− H (an; un(an))6N1M2K2
n + �(R)M2K�

n

On the other hand, we have

H (bn; un(bn))− H (an; un(an))

=
1
2
(L(bn)un(bn); un(bn)) +W (bn; un(bn))− H (an; un(an))

¿ a|un(bn)|� − ||L||L∞ |un(bn)|2 − max
|u|6R; t∈ST

|H (t; u)|

= aK�
n − ||L||L∞K2

n − max
|u|6R; t∈ST

|H (t; u)|

Combining the above two formulas, we have

(a− �(R)M2)K�
n − N2K2

n 6 max
|u|6R; t∈ST

|H (t; u)|

Since �¿ 2; a − �(R)M2 ¿ 0 and Kn → ∞ as n → ∞, the left-hand side tends to
in nity, but the right-hand side is a constant independent of u and n. This leads to a
contradiction. Hence, there exists m∈N, which is determined only by H (t; u) and N ,
such that for any n¿m, if u(t) is a critical point of In such that In(u)6N , we have
|u|C0 6Kn.
For n¿m, if the C0-norm of critical points u satisfying In(u)6N does not have

an n-independent upper bound M0, then repeating the above proof by replacing Kn

by Mn with Mn → ∞ as n → ∞, we can also get the contradiction. For n¡m,
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as the Proof in last part of Lemma 2.1, we have

|u(t)|6N1M2 + ckM1 + 1; ∀ t ∈R;

where ck is determined by Wk for k =1; 2; : : : ; m− 1.
Hence, we have

||u||C0 6max{M0; N1M2 + ckM1 + 1; k =1; 2; : : : ; m− 1}=M

Case II: Suppose that we have

lim
r→∞ ((r)= 0:

We need only to modify the proof of Case I slightly. By the de nition of ((r), we
have ((r) which increases to 0. Fix a large R¿ 1 such that

a+ ((R)M2 ¿ 0:

Firstly we show that |u|C0 6Kn for large n. If not, by passing a subsequence we
may assume that for each n there exist un(t); an and bn such that

(an; bn) ⊂ {t ∈R|R¡ |un(t)|¡Kn}
and |un(an)|=Kn; |un(bn)|=R. As in Case I, we know that bn − an6M2=a and we
have

H (bn; un(bn))− H (an; un(an))

=
∫ bn

an

1
2
L′(t)un(t)un(t) dt +

∫ bn

an
Wt(t; un) dt

¿− 1
2
||L′||L∞

∫ bn

an
|un|2 dt +

∫ bn

an
((R)|un|�W (t; un) dt

¿− N1M2K2
n + ((R)K�

n

∫ bn

an
W (t; un) dt

¿− N1M2K2
n + ((R)K�

n

∫
R

Wn(t; un) dt

¿− N1M2K2
n + ((R)M2K�

n :

Hence, we have

H (bn; un(bn))− H (an; un(an))¿− N1M2K2
n + ((R)M2K�

n :

On the other hand, we have

H (bn; un(bn))− H (an; un(an))

6 max
|u|6R; t∈ST

|H (t; u)| − a|un(an)|� + ||L||L∞ |un(bn)|2

= max
|u|6R; t∈ST

|H (t; u)| − aK�
n + ||L||L∞K2

n :
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Combining the above two formulas, we have

(a+ ((R)M2)K�
n − N2K2

n 6 max
|u|6R; t∈ST

|H (t; u)|:

Since �¿ 2; a + ((R)M2 ¿ 0 and Kn → ∞ as n → ∞, the left-hand side tends to
in nity, but the right-hand side is a constant independent of u and n. This leads to a
contradiction. Hence, |u|C0 6Kn holds for large n. Using the same discussion as that
in Case I, we have

||u||C0 6M

Combining the above two cases, we know that our Lemma holds.

Remark 2.1. In our Proofs of the above two Lemmas, we use (2) only to induce the
corresponding estimates in fact. When we study the convex Hamiltonian systems, since
the critical points are obtained through the Clarke duality principle, we can only obtain
some estimates as (2) for the critical points. Hence, we can get the same estimates on
the bound of C0-norm of the solutions of the convex Hamiltonian systems possessing
super-quadratic potentials. We will deal with the convex Hamiltonian systems in another
paper.

3. Symmetric Hamiltonian systems

In this section, we consider the Hamiltonian system

Ju̇+∇H (t; u)= 0; (t; u)∈ ST × R2N ;

where H (t; u)= 1
2L(t)u ·u+W (t; u) is the T -periodic in the t-variable and is symmetric

in the u-variable, i.e., there is a compact Lie group G acting on R2N via a representa-
tion % :G → O(2N ) and H is invariant under this action: H (t; gu)=H (t; u) for every
t ∈R; g∈G; u∈Rn. We let V denote the vector space R2N considered as a G-space.

De nition 3.1. We call V (or %) admissible if a given k¿ 1 and an open bounded
G-invariant neighborhood O ⊂ V k of 0 is in V k , and any continuous map f : KO →
V k−1 which commutes with the action has a zero in @O, where G acts on V k via
g(v1; : : : ; vk):=(gv1; : : : ; gvk). We call % symplectic if %(g)tJ%(g)=J is satis ed for
every g∈G.

If the action is symplectic, every homoclinic orbit u of the system (1) gives rise
to a G-orbit {gu|g∈G} of homoclinic orbits of the system (1). For each k ∈Z, let
(k ∗ u)(t):=u(t + kT ), which de nes a representation of Z in E. Since H (t; u) is
T -periodic in t-variable, we have that each In is Z-invariant. Hence, each In is also
invariant with respect to the representation of Z× G in E given by

((k; g) ∗ u)(t):=(gu)(t + kT ):

Now, let O(u)=OZ×G(u) ≡ {(k; g) ∗ u|k ∈Z; g∈G} be the orbit of u∈E. If u is a
critical point of In, O(u) will be called the critical orbit of u. Two homoclinic orbits
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u; v of the system (1) are said to be geometrically distinct if they are not in the same
critical orbit, i.e., O(u) 	=O(v).
In this section, we will show the following results:

Theorem 3.1. Suppose that H (t; u)= 1
2L(t)u · u+W (t; u)∈C1(ST × R2N ;R) satis7es

(L) L(t) depends on t with period T; and there is 1¿ 0 such that (0; 1)∩ �(A)= ∅;
where A=− (J(d=dt) + L(t)) and �(A) is the spectrum of A.

(G) There is an admissible symplectic representation 2 of a compact Lie group G
on R2N such that H is invariant with respect to this action.

(H1) There is a constant �¿ 2 such that

0¡�W (t; u)6 z∇W (t; u); ∀|u|¿ 0;

(H2) ∇W (t; u) is locally Lipschitzian continuous in u-variable.
(H3) ∇W (t; u)= o(|u|); uniformly in t as u → 0;
(H4) There is a constant c¿ 0; such that

|∇W (t; u)|6 c(∇W (t; u); u); ∀|u|¿ 1:

Then (1) has in7nitely many geometrically distinct homoclinic orbits.

Theorem 3.2. Suppose that H ∈C1(ST × R2N ;R) satis7es (L); (G); (H1)–(H3) and

(H5) lim sup
|u|→∞

Wt(t; u)
|u|�W (t; u)

= 0; or lim inf
|u|→∞

Wt(t; u)
|u|�W (t; u)

= 0; uniformly in t:

Then (1) has in7nitely many geometrically distinct homoclinic orbits.

When W (t; u) does not depend on the t-variable, since (H5) is satis ed naturally,
we have the following result:

Theorem 3.3. Suppose H (t; u)= 1
2L(t)u·u+W (t; u)∈C1(ST×R2N ;R) satis7es (L); (G);

(H1)–(H3) and W (u) is independent of t-variable; then (1) has in7nitely many geo-
metrically distinct homoclinic orbits.

In paper [1], the authors prove the following main result:

Theorem 3.4 (Theorem 2.1 in Arioli and Szulkin [1]). If H ∈C1(ST × R2N ;R) satis-
7es (G), (H1); (H3), (H4)p and
(L)′ L is a constant symmetric 2N × 2N matrix and �(JL) ∩ iR= ∅.
(H2)′ There are Kc; 40 ¿ 0 and p¿ 2 such that

|∇W (t; u+ v)−∇W (t; u)|6 Kc|v|(1 + |u|p−1)

for all t and all u; v with |v|6 40.
(H6) There exist c; r0 ¿ 0 such that

|∇W (t; u)|26 c(∇W (t; u) · u; ∀|u|6 r0

then (1) has in7nitely many geometrically distinct homoclinic orbits.
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Remark 3.1. Condition (H2)′ implies that ∇W (t; u) is locally Lipschitzian continuous
in u-variable, which means that ∇W (t; u) is Lipschitzian continuous in u -variable for
any compact set in R2N , i.e., condition (H2)′ implies condition (H2).

Firstly, we can replace (L)′ by (L) as was done in [3,4]. In fact, we need only to
use the function space E and the new norm || · ||E that we obtained in Section 2 instead
of those in the  rst part in Section 3 of [1].
Secondly, we need to show that the condition (H6) is not necessary after we mod-

ify the Proofs in Section 3 of [1] slightly. Condition (H6) is used in the Proof of
Lemma 3:4 in [1] initially. Now we show that this Lemma is also true without the
condition (H6). Recall that a sequence {un} is called (PS)c-sequence if I(un) → c and
I ′(un) → 0 as n → ∞.

Lemma 3.1 (Lemma 3:4 in Arioli and Szulkin [1]). Assume W satis7es (H1); (H3)
and (H4)p, let {un} ⊂ E be a (PS)d-sequence; then {un} is bounded and d¿ 0.

Proof. From (H3), for any 40 ¿ 0, there is a (0 ¿ 0, such that

|∇W (t; u)|6 40|u| ∀|u|6 (0; uniformly in t:

By (H1) and {un} being a (PS)d-sequence, for large n we have

d+ 1 + ||un||E ¿ I(un)− 1
2
(I ′(un); un)

=
1
2

∫
R
∇W (t; un)dt −

∫
R

W (t; un) dt

¿
(
1
2
− 1

�

)∫
R
∇W (t; un)un dt

¿
(�
2
− 1
)∫

R
W (t; un) dt:

From (H4)p, we have

|∇Wt; u)|p6 c1(40)∇W (t; u)u; ∀|u|¿ (0;

where

c1(40)=max

{
c; sup

(06|u|61; t∈ST

|∇W (t; u)|p
∇W (t; u) · u

}
:

Then,

d+ 1 + ||un||E ¿
(
1
2
− 1

�

)∫
R
∇W (t; un)un dt

¿
(
1
2
− 1

�

)∫
|un(t)|¿(0

∇W (t; un)un dt

¿
(
1
2
− 1

�

)∫
|un(t)|¿(0

1
c1(40)

|∇W (t; un)|p dt:
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This implies that∫
|un(t)|¿(0

|∇W (t; un)|p dt6 2c1(40)�
� − 2

(d+ 1 + ||un||E):

On the other hand, for large n, let un = u+n + u−n ∈E=E+ ⊕ E−, using HNolder in-
equality and Sobolev embedding theorem since E is embedded continuous in L for
any  ∈ [2;∞), we have

||u+n ||E ¿ (I ′(un); u+n )

=
1
2
||u+n ||2E −

∫
R
∇W (t; un)u+n dt

¿
1
2
||u+n ||2E −

∫
R
|∇W (t; un)| |u+n | dt

¿
1
2
||u+n ||2E −

(∫
|un(t)|6(0

+
∫
|un(t)|¿(0

)
|∇W (t; un)| |u+n | dt

¿
1
2
||u+n ||2E −

∫
|un(t)|6(0

40|un| |u+n | dt

−
(∫

|un(t)|¿(0
|∇W (t; un)|p dt

)1=p(∫
|un(t)|¿(0

|u+n |q dt
)1=q

¿
1
2
||u+n ||2E − C40||un||E ||u+n ||L2 − DN (40)||u+n ||E(d+ 1 + ||un||E)1=q

and

||u−n ||E ¿−(I ′(un); u−n )

=
1
2
||u−n ||2E +

∫
R
∇W (t; un)u−n dt

¿
1
2
||u−n ||2E −

∫
R
|∇W (t; un)| |u−n | dt

¿
1
2
||u−n ||2E −

(∫
|un(t)|6(0

+
∫
|un(t)|¿(0

)
|∇W (t; un)| |u−n | dt

¿
1
2
||u−n ||2E −

∫
|un(t)|6(0

40|un| |u−n | dt

−
(∫

|un(t)|¿(0
|∇W (t; un)|p dt

)1=p(∫
|un(t)|¿(0

|u−n |q dt
)1=q

¿
1
2
||u−n ||2E − C40||un||E ||u−n ||L2 − DN (40)||u−n ||E(d+ 1 + ||un||E)1=q
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where 1=p + 1=q=1, N (40) is a constant dependent on 40 and C;D are the Sobolev
embedding constants. Hence, we have

2||un||E ¿ ||u+n ||E + ||u−n ||E
¿

1
2
(||u+n ||2E + ||u−n ||2E)− C40||un||E(||u+n ||L2 + ||u−n ||L2 )

−DN (40)(||u+n ||E + ||u−n ||E)(d+ 1 + ||un||E)1=q

¿
1
2
||un||2E − 2C240||un||2E − 2DN (40)||un||E(d+ 1 + ||un||E)1=q:

This implies that

2¿
(
1
2
− 2C240

)
||un||E − 2D(d+ 1 + ||un||E)1=q:

Fix a small enough 40, such that 1
2 − 2C240 ¿ 0, this implies that {||un||E} is bounded.

Hence, we have

06 lim
n→∞|(I ′(un); un)|6 lim

n→∞ ||I ′(un)|| ||un||E =0:

This implies that

d= lim
n→∞I(un)= lim

n→∞(I(un)− 1
2
(I ′(un); un))¿ lim inf

n→∞

(�
2
− 1
)∫

R
W (t; un)dt¿0:

Hence, our Lemma is proved.

Now replacing the Lemma 3:4 in [1] by our Lemma 3.1, we have Lemma 3:6,
Lemma 3:7, Theorem 3:8 and Lemma 3:9 in [1] without using condition (H6). Hence,
we do not need the condition (H6) in the Proofs of Theorem 2:1 in [1]. We summarize
the above results as the following Theorem.

Theorem 3.5. Suppose that H satis7es (L); (G); (H1); (H2)′; (H3) and (H4)p; then
(1) has in7nitely many geometrically distinct homoclinic orbits.

Now we will prove our Theorems 3.1 and 3.2 by truncating the potential W (t; u)
with Wn(t; u) as Proposition 2.1 in Section 2 to obtain a sequence of new systems such
that the new systems satisfy the conditions of the above Theorem. Replacing W by
Wn, we study a sequence of new systems

Ju̇+ L(t)u+∇Wn(t; u)= 0: ∀(t; u)∈ ST × R2N : (3)

Proof of Theorems 3.1 and 3.2. From Proposition 2.1, we know that each Wn satis es
(H1) and (G). For condition (G), we need only to let

Wn(t; u)=
∫
G

Wn(t; gu) dg

where dg is the standard Haar measure on compact Lie group G. And from (iii) of
Proposition 2.1, we have

Wn(t; u)= (�n + 1)|u|��; for |u|¿K ′
n:
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Let pn = ��=(�� − 1)∈ (1; 2), we can check if Hn satis es (H2)pn for some cn which
is determined by Wn(t; u).
Now we need only to show that each Wn satis es condition (H2)′. Since ∇W (t; u)

is locally Lipschitzian continuous in u-variable and

Wn(t; u)= (�n + 1)|u|��; for |u|¿K ′
n;

we have

A= sup
|u|6K′

n ;|v|61

|∇Wn(t; u+ v)−∇Wn(t; u)|
|v|(1 + |u|��−1)

¡∞

B= sup
|u|¿K′

n ;|v|61
��(�n + 1)

||u+ v|��−2(u+ v)− |u|��−2u|
|v|(1 + |u|��−1)

¡∞:

The  rst one holds since ∇W (t; u) is locally Lipschitzian continuous in u-variable, and
the second one holds since

∇W (t; u)= ��(�n + 1)|u|��−2u∈C1(R2N ;R2N ); for |u|¿K ′
n:

Hence, (H2)′ holds for some constant Kcn =max{A; B}.
From the above Theorem 3.5, we know that each system (3) has a sequence of

classic solutions {un
k} with unbounded critical values {dn

k}. As shown in Section 6 of
[1], we know that

dn
k = In(un

k)= inf
I∗(A)¿k

sup
u∈A

In(u)

where the pseudo-index I∗(A) was de ned as De nition 4:4 (p. 303) in [1].
Given k ∈N, from (iv) of Proposition 2.1, for any n∈N we have

Wn(t; u)6Wn+1(t; u)6W (t; u); ∀(t; u)∈ ST × R2N :

This implies that

In(u)¿ In+1(u)¿ I(u); ∀u∈H 1=2(R;R2N ):

By the de nition of {dn
k} we have

d1k ¿dn
k ¿dn+1

k ; ∀n∈N:

Hence, for any given k ∈N, since W (t; u) satis es (H1), (H4) (or (H5)), and un
k is

a critical point of In such that In(un
k)6d1k holds for all k ∈N. From Lemma 2.1 (or

Lemma 2.2) of Section 2, we have constant Mk , which is dependent only on d1k and
W (t; u), such that ||un

k ||C0 6Mk holds for all n∈N.
Hence, for large n∈N such that Kn ¿Mk , we have

||un
k ||C0 6Mk ¡Kn:

On the other hand, we have

Wn(t; u)=W (t; u); ∀|u|¡Kn:

This implies that un
k(t) is a homoclinic orbit of the system (1) when ||un

k ||C0 ¡Kn.
Hence, for any given k ∈N, there exists a large enough n∈N such that un

1(t); : : : ; u
n
k(t)

are classic homoclinic orbits of the system (1). i.e., Theorems 3.1 and 3.2 hold.
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Remark 3.2. In our proof, we use the monotone property of {Wn(t; u)} only to get the
upper bound of the critical values {dn

k} for each k ∈N. In fact, the monotone property
is not necessary since we can construct that each Wn(t; u) satis es condition (H1) and
(iii) of Proposition 2.1, which ensures that

Wn(t; u)¿ a|u|�; ∀|u|¿ 1:

Then without using the monotone property, we can also obtain the upper bound of
the critical values {dn

k} for each k ∈N. When we deal with the convex Hamiltonian
systems in future, we will use this idea.

For our Theorem 3.3, we need only to check condition (H5) which is always
satis ed when the potential W is independent of the t-variable, which comes from
(d=dt)W (u)= 0.
On the other hand, in our Theorem 3.3, the potential H (t; u)= 1

2L(t)uu + W (u)
depends on the t-variable and the functional I(u) is not invariant with respect to the
representation of R×G given by ((s; g)u)(t)= g(u(t + s)) for (s; g)∈R×G, which is
not like the one mentioned in Remark 2:3 of [1] for autonomous Hamiltonian systems.
Our Theorem 3.3 makes sense when L(t) is not a constant matrix.

4. Hamiltonian systems without symmetry

In this section, we will study the homoclinic orbits of the Hamiltonian system

Ju̇+∇H (t; u)= 0; (t; u)∈R× R2N : (4)

Let H (t; u)= 1
2 (L(t)u; u) + W (t; u), where L(t) is a given continuous T -periodic and

symmetric 2N × 2N -matrix-value function and W (t; u) is T -periodic in the t-variable.
In this section, we improve those results in [4,5,9] and get the following results:

Theorem 4.1. Suppose that H ∈C1(ST ×R2N ;R) satis7es (L); (H1); (H3) and (H4),
then (1) has at least one homoclinic orbit.

Theorem 4.2. Suppose that H ∈C1(ST ×R2N ;R) satis7es (L); (H1); (H3) and (H5);
then (1) has at least one homoclinic orbit.

Especially when W does not depend on t-variable, since condition (H5) is satis ed
naturally, we have the following result:

Theorem 4.3. Suppose that H ∈C1(ST × R2N ;R) satis7es (L); (H1); (H3) and W
does not depend on t-variable; then (1) has at least one homoclinic orbit.

Remark 4.1. As said in [3,4], when the condition (L) is replaced by
( KL) L(t) depends on t with period T , and there is 1¿ 0 such that (−1; 0)∪ �(A)= ∅

where A= − (J(d=dt) + L(t)) is the self-adjoint operator acting on L2(R;R2N )
with the domain D(A)=H 1(R;R2N ) and �(A) is the spectrum of A.
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and −W (t; u) satis es other conditions in our Theorems, wherein the above results are
still valid.

In [4] there is the following result:

Theorem 4.4 (Theorem 1:1 in Ding and Willem [4]). Suppose that H (t; u)∈C1(ST ×
R2N ;R) satis7es (L); (H1); (H4)p and
(H3)’. There is an a¿ 0 such that for all (t; u) with |u|6 1; there is

|∇W (t; u)|6 a|u|�−1

then (1) has at least one homoclinic orbit.

In fact, we can replace (H3)′ by (H3) in the Proof of [4]. In the Proof of [4], there
are only three places using the condition (H3)′.
The  rst place is in the Proof of Lemma 4:2 (p. 773) in [4]. Here, we need only to

notice that for integrating condition (H1), we have

W (t; u)6 b|u|�; ∀|u|6 1

for some constant b as in the beginning of Section 2. Combining with condition (H4)p,
we have

|W (t; u)|6d(|u|� + |u|q)
where q=p=(p− 1)¿ 2. Then the Proof of Lemma 4:2 in [4] follows.
The second place is in the Proof of Lemma 4:5 (p. 774) in [4]. The condition (H3)′

is used to prove that when {un} is a (PS)c-sequence, {||un||E} is bounded, which is
exactly what we have shown in our Lemma 3.1.
The third place where the authors used the condition (H3)′ in [4] is in page 777 in

[4] to get

|u̇|26d1(|u|2 + |u|2q−2):

Using condition (H3), for any 4¿ 0, we have ((4)¿ 0 such that

|∇W (t; u)|¡4|u|; ∀|u|6 ((4)

and from (H4)p, we have

|∇W (t; u)|¡a(4)|u|q−1; ∀|u|¿ ((4):

Then, we have

|u̇| = |L(t)u+∇W (t; u)|
6 |L(t)u|+ |∇W (t; u)|
6 ||L||L∞ |u|+ 4|u|+ a(4)|u|q−1:

This implies that

|u̇|26d1(4)(|u|2 + |u|2q−2)

since q¿ 2. We summarize the above results as the following Theorem.
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Theorem 4.5. Suppose that H (t; u)∈C1(ST × R2N ;R) satis7es (L); (H1); (H3) and
(H4)p, then (1) has at least one homoclinic orbit.

Now we will prove our Theorems 4.1 and 4.2 by truncating the potential W (t; u)
with Wn(t; u) as Proposition 2.1 in Section 2 to obtain a sequence of new systems such
that the new systems satisfy the conditions of the above Theorem. Replacing W by
Wn, we study a sequence of new systems

Ju̇+ L(t)u+∇Wn(t; u)= 0; ∀ (t; u)∈ ST × R2N :

Proof of Theorems 4.1 and 4.2. We  rst truncate the potential W (t; u) by {Wn(t; u)}
obtained from Proposition 2.1 in Section 2 to get a sequence of new systems. As in
Section 2, we de ne In(u) for these new systems. For every n∈N, there are bn; 2n ¿ 0
such that In|S2∩E+ ¿ bn as Lemma 4:2 in [4], and there are yn

0 ∈ S1 ∪ E+ and R¿2n

such that In|@M 6 0, where

M := {u= x + �yn
0|x∈E−; ||u||〈R; �〉0};

@M = {u= x + �yn
0|x∈E−; ||u||=R and �¿ 0 or ||u||6R and �=0}

as Lemma 4:3 in [4]. The reason that we can choose the same R and M for all In
is that {In(u)} is a decreasing sequence for every u∈E since our truncation sequence
{Wn} satis es (iv) of Proposition 2.1. From Theorem 3.1 in [4], we know that the
critical values cn ∈ [bn; sup KM In]. Hence, we have an n-independent constant sup KM I1 ¿ 0,
for each n∈N, for which there exists a nontrivial critical point un of In, such that
In(un)6 sup KMIn6 sup KM I1 holds for all n∈N.
Since W (t; u) satis es (H1) and (H4) (or (H5)), by Lemma 2.1 (or Lemma 2.2),

we have an n-independent constant M such that

||un||C0 6M; for all n∈N:

On the other hand, we have

Wn(t; u)=W (t; u); for |u|¡Kn:

Hence, for large n∈N such that Kn ¿M , un is a homoclinic orbit of (4), i.e.
Theorems 4.1 and 4.2 hold.

For our Theorem 4.3, we need only to check if condition (H5) is always satis ed
when the potential W is independent of t-variable, which comes from (d=dt)W (u)= 0.
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