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1. Introduction

We consider the non-autonomous Hamiltonian system

Ju̇ + ∇H (t; u) = 0; (t; u)∈ ST × R2N ;

where H ∈C1(R×R2N ;R) is T -periodic in t-variable, and J=
(

0 −IN
IN 0

)
denotes the

standard symplectic matrix and ∇ denotes the gradient with respect to the u-variable.
We are interested in the existence of T -periodic solutions of (1). For the autonomous
case, i.e. H is independent of t, in his pioneer work [8] Rabinowitz :rst proved the
existence of at least one periodic solution for (1). Many works have been done on
this topics, such as [2–13]. We refer to [2,3,11] for further references. At this paper,
we :rst consider the case that H is symmetric in the u-variable. In [2] when H is
super-quadratic at in:nitely and satis:es

(H2)p There are constants c; d¿ 0 and p∈ (1; 2), such that

|∇H (t; u)|p6 c(∇H (t; u); u) + d; ∀u∈R2N ;

Barsch and Willem proved there exist T -periodic solutions with arbitrarily large
L∞-norm when H is symmetric in the u-variable. We will explain the symmetry
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in Section 3. In this paper we have the following results:

Theorem 1.1. For T ¿ 0; H ∈C1(ST × R2N ;R); ST = R=(TZ); satis1es the following
conditions:
(G) There exists an admissible representation % :G → O(2N ) on V = R2N which

satis1es %(g)tJ%(g) = J for every g∈G; such that H is invariant with respect
to this action.

(H1) There are constants �¿ 2 and r0 ¿ 0 such that

0¡�H (t; u)6 z∇H (t; u); ∀|u|¿ r0:

(H2) There are constants c; d¿ 0; such that

|∇H (t; u)|6 c(∇H (t; u); u) + d; ∀u∈R2N :

Then (1) possesses a sequence of T -periodic solutions with unbounded C0-norm.

Theorem 1.2. For T ¿ 0; H ∈C1(ST × R2N ;R) satis1es (G); (H1) and

(H3) lim sup
|u|→∞

Ht(t; u)
|u|�H (t; u)

= 0; or lim inf
|u|→∞

Ht(t; u)
|u|�H (t; u)

= 0; uniformly in t:

Then (1) possesses a sequence of T -periodic solutions with unbounded C0-norm.

When H does not have any symmetric conditions, In [3] Li and Szulkin and in [4]
Li and Willem proved the existence of at least one T -periodic solution of (1) provided
some certain conditions on H near u=0, (H1) and (H2)p. In [6] Long and the author
proved the same result as [3] by loosing the growth condition (H2)p to (H2), and also
proved the existence of at least one T -periodic solution of (1) under a strong form of
condition (H3) as following

(H3)′ there exists a constant Ea such that

lim
|z|→∞

Ht(t; u)
H (t; u)

¿ Ea¿− 2
T
; uniformly in t:

In this paper, as symmetric case we have the following results.

Theorem 1.3. For T ¿ 0; H = 1
2(B(t)u; u) + EH (t; u)∈C1(ST ×R2N ;R); satis1es (H1);

(H3) and
(H4) EH (t; u) = o(|u|2), uniformly in t as u → 0,
Then (1) has at least one non-trivial T -periodic solution in each of the following

two cases:
(i) The boundary value problem

Ju̇ + B(t)u = 0; u(0) = u(T )

has only the trivial solution.
(ii) There is a constant  ¿ 0 such that EH (t; u)¿ 0 (or EH (t; u)¡ 0) for all u

satisfying 0¡ |u|¡ .
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Theorem 1.4. For T ¿ 0; H = 1
2(B(t)u; u) + EH (t; u)∈C1(ST ×R2N ;R); satis1es (H1);

(H2) and (H4); Then (1) has at least one non-trivial T -periodic solution in each of
case (i) (ii) in above theorem.

Here is the outline of our paper. In Section 2, we :rst truncate the H by a in-
creasing sequence {Hn} such that Hn satis:es the growth condition (H2)p for some
p∈ (1; 2), i.e., for the modi:ed systems we may use the results in [2,3] to get the
T -periodic solutions. Then we give two new estimates for the bounded C0-norm of
periodic solutions of (1) when the corresponding critical values of periodic solutions
are bounded. In Section 3, we study the symmetric Hamiltonian systems. Since the
solutions in [2] are gotten by minimax procedure, we show the corresponding critical
values are bounded. Using our estimates obtaining in Section 2 and the properties of
{Hn}, we know the solutions of modi:ed systems is the solutions of (1) for n large
enough. In Section 4, we study the Hamiltonian systems without symmetry. Using the
same way as in Section 3, we prove Theorem 1.3 and Theorem 1.4. We also study
the sub-harmonic solutions of system (1) by following the main idea in [11].

2. Two estimates

In this section, we consider the Hamiltonian system

Ju̇ + ∇H (t; u) = 0; (t; u)∈ ST × R2N :

Let X :=H 1=2(ST ;R2N ) be the Sobolev space of T -periodic R2N -valued functions with
inner product (·; ·)X and norm ‖ · ‖.

Set "0 = min|u|=r0 ;t∈ST H (t; u); #0 = max|u|6r0 ;t∈ST |H (t; u)|. Condition (H1) imply that
for some #3¿ 0

"0|u|�6H (t; u); ∀ |u|¿ r0;

"0|u|�6H (t; u) + #06 1
� (∇H (t; u)u + #3); ∀u∈R2N :

Modifying [5] (cf. appendix of [5]), choose $∈ (0; 1), such that �$¿ 2, we truncate
H as following proposition:

Proposition 2.1. Assume conditions (H1) then there exist two sequences {Kn} and
{K ′

n} in R and a sequence of functions {Hn} such that
(i) 0¡K0 ¡Kn¡Kn+1; ∀n∈N; and Kn → ∞; as n → ∞; where K0 = max{1; r0;

#0="0(1 − $)}; and Kn¡K ′
n; ∀n∈R.

(ii) for any given t ∈ ST ; Hn(t; u)∈C1(R2N ;R); for every n∈N.
(iii) Hn(t; u) = H (t; u); ∀|u|6Kn; for every n∈N; and for some &∈ ($; 1); such that

Hn(t; u) = ('n + 1)|u|�&; ∀|u|¿K ′
n; for every n∈N.

(iv) Hn(t; u)6Hn+1(t; u)6H (t; u); ∀(t; u)∈ ST × R2N .
(v) 0¡�$Hn(t; u)6∇Hn(t; u)u; ∀|u|¿ r0; for every n∈N.

Note that in [5] the truncating functions are constructed for autonomous Hamiltonian
functions. In fact the proof also works for time dependent H (t; u).
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De:ne the functional In : X → R by

In(u) =
1
2

∫ T

0
(−Ju̇ · u) dt −

∫ T

0
Hn(t; u) dt:

It is well known that In ∈C1(X;R) and :nding T -periodic solutions of (1) with H
replaced by Hn is equivalent to :nding critical points of In in X .

The periodic solutions of (1) are obtained as critical points of the functional

I(u) =
1
2

∫ T

0
−Ju̇ · u dt −

∫ T

0
H (t; u) dt

de:ned on the Hilbert space H 1=2(ST ;R2N ) and I(u) is C1 at u∈H 1(ST ;R2N ). For any
periodic solution u of (1) we have

−1
2

∫ T

0
Ju̇ · u dt =

∫ T

0
∇H (t; u) · u dt:

Now we will prove two new estimates for T -periodic solutions of non-autonomous
Hamiltonian systems with growth condition (H2) or (H3).

Remark 2.1. For autonomous Hamiltonian system possessing super-quadratic potentials;
such estimate is trivial since we have H (u(t)) = constant when u(t) is a solution of
autonomous system:

Lemma 2.1. Suppose H (t; u) satis1es (H1); (H2) and u(t) is a critical point of In
such that In(u)6N; then we have the following estimate:

‖u‖C0 6M

where M is independent of u and n.

Proof. Since u is a critical point of In and each Hn(t; u) satis:es (iii) and (v) of
Proposition 2.1; we have

In(u) =
1
2

∫ T

0
−Ju̇ · u dt −

∫ T

0
Hn(t; u) dt

=
1
2

∫ T

0
∇Hn(t; u) · u dt −

∫ T

0
Hn(t; u) dt

¿
(

1
2
− 1

�$

)∫ T

0
∇Hn(t; u) · u dt − C1

¿
(�$

2
− 1
)∫ T

0
Hn(t; u) dt − C2;

where C1; C2 are independent of n. From above we have∫ T

0
∇Hn(t; u)u dt6M1;

∫ T

0
Hn(t; u) dt6M2
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for some constants M1 and M2 independent of n. Now integrating (v) of Proposition
2.1 we yields

Hn(t; u)¿ a|u|�$ − b; ∀u∈R2N ;

where a and b are independent of n since

Hn(t; u) = H (t; u); ∀|u|6 r0 and ∀n∈N:
Hence we have

N¿ In(u)¿
(�$

2
− 1
)
a
∫ T

0
|u|�$ dt − C3¿C4

(
min
t∈ST

|u(t)|
)�$

− C3

for some n-independent constants C3 and C4. Then we have

min
t∈ST

|u(t)|6N1

where N1 is independent of n. Without loss generality; we may assume |u(t)| obtains
its minimum at t = 0;

|u(t)| − |u(0)| =
∫ t

0

d
ds

|u(s)| ds =
∫ t

0
u(s) · u̇(s)=|u(s)| ds

6
∫ t

0
| u(s) · u̇(s)|=|u(s)| ds6

∫ t

0
| u̇(s)| ds

=
∫ t

0
|∇Hn(t; u(s))| ds:

From (H2) and (iii) of Proposition 2.1 we have

|∇H (t; u)|6 c(∇H (t; u); u) + d; for |u|6Kn

We :rst show for large enough n,

‖u‖C0 6Kn:

If not, by passing a subsequence, for each n∈N, there exists un(t) and tn ∈ ST , such
that |un(tn)| = Kn and |un(t)|6Kn for t ∈ [0; tn). Hence we have

Kn = |un(tn)|6
∫ tn

0
|∇Hn(s; un(s))| ds + |un(0)|

6 c
∫ tn

0
(∇Hn(s; un(s)); un(s)) ds + dT + |un(0)|

6 c
∫ T

0
(∇Hn(s; un(s)); un(s)) ds + N2 + N16 cM1 + N1 + N2;

where c, M1, N1 and N2 are n-independent constants. But we have Kn → ∞; as n → ∞,
this leads a contradiction. Hence there exists m∈N, which is determined by H (t; u)



946 X. Xu /Nonlinear Analysis 51 (2002) 941–955

and N only, for any n¿m, ‖u‖C0 6Kn holds. Repeating about computation, for any
n¿m, we have

|u(t)|6 cM1 + N1 + N2; ∀t ∈ ST :

For k ¡m, from (iii) of Proposition 2.1, we have

|∇Hk(t; u)|6 (∇Hk(t; u); u) + Dk; ∀(t; u)∈R× R2N

for some suitable constant Dk . Hence we have

‖u(t)‖6 |u(0)| +
∫ t

0
(∇Hk(s; u(s)); u(s)) ds + DkT6M1 + N1 + DkT + Ck;

∀t ∈ ST ;

where Ck and Dk are determined by Hk for k = 1; 2; : : : ; m− 1. Then we have

‖u‖C0 6max{cM1 + N1 + N2; M1 + N1 + DkT + Ck; k = 1; 2; : : : ; m− 1} = M:

Hence our Lemma holds.

Lemma 2.2. Suppose H (t; u) satis1es (H1); (H3) and u(t) is a critical point of In
such that In(u)6N; then we have the following estimate:

‖u‖C0 6M;

where M is independent of u and n.

Proof. As the :rst part Proof of Lemma 2.1; we have∫ T

0
∇Hn(t; u)u dt6M1;

∫ T

0
Hn(t; u) dt6M2

for some constants M1 and M2 independent of n. And mint∈ST |u(t)|6N1 where N1 is
independent of n. Now integrating (H1) we yields

H (t; u)¿ a|u|� − b; ∀u∈R2N ;

where a and b are independent of n. Since H (t; u) satis:es (H3); de:ne

$(r) = sup
u¿r; t∈ST

Ht(t; u)
|u|�H (t; u)

and

/(r) = inf
u¿r; t∈ST

Ht(t; u)
|u|�H (t; u)

then (H3) means

lim
r→∞$(r) = 0 or lim

r→∞ /(r) = 0:

Case I: suppose we have limr→∞ $(r) = 0.
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By the de:nition of $(r), we have $(r) is decreasing to 0. Since Hn(t; u)¿ 0 for
|u|¿ r0, we have

M2 ¿
∫ T

0
Hn(t; u) dt

=
∫
{Hn(t;u)¿0}

Hn(t; u) dt +
∫
{Hn(t;u)¡0}

Hn(t; u) dt

¿
∫
{Hn(t;u)¿0}

Hn(t; u) dt − T sup
u6r0 ; t∈ST

|H (t; u)|:

Hence we have∫
{Hn(t;u)¿0}

Hn(t; u) dt6M2 + T sup
u6r0 ; t∈ST

|H (t; u)| = M3;

where M3 is a constant independent of n and u. Fix a large R¿r0, such that

a− $(R)M3 ¿ 0:

Firstly we show |u|C0 6Kn for large n. If not, by passing a subsequence we may
assume for each n, there exists un(t), an and bn such that

(an; bn) ⊂ {t ∈ ST |R¡ |un(t)|¡Kn}
and |un(an)| = R, |un(bn)| = Kn. Here we have

H (bn; un(bn)) − H (an; un(an))

=
∫ bn

an

d
dt
Hn(t; u(t)) dt =

∫ bn

an
∇Hn(t; un(t)) · u̇ n(t) dt +

∫ bn

an
Ht(t; un(t)) dt

=
∫ bn

an
Ht(t; un(t)) dt6

∫ bn

an
$(|un(t)|)|un(t)|�H (t; un(t)) dt

6 $(R)K�
n

∫ bn

an
H (t; un(t)) dt6 $(R)K�

n

∫
{Hn(t;un(t)¿0}

H (t; un(t)) dt

6 $(R)M3K�
n :

Hence we have

H (bn; un(bn)) − H (an; un(an))6 $(R)M3K�
n :

On the other hand, we have

H (bn; un(bn)) − H (an; un(an))¿ a|un(bn)|� − b− max
|u|6R; t∈ST

|H (t; u)|

= aK�
n −

(
b + max

|u|6R; t∈ST
|H (t; u)|

)
:
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Combine above two formulas, we have

(a− $(R)M3)K�
n 6 b + max

|u|6R; t∈ST
|H (t; u)|:

Since a− $(R)M3 ¿ 0 and Kn → ∞ as n → ∞, the left-hand side tends to in:nite,
but the right-hand side is a constant independent of u and n. This leads a contradiction.
Hence there exists m∈N, which is determined by H (t; u) and N only, such that for
any n¿m, if u(t) is a critical point of In such that In(u)6N , we have |u|C0 6Kn.

For n¿m, if ‖u‖C0 does not have an n-independent upper bound M0, then following
the above proof with change Kn by Mn where Mn → ∞ as n → ∞, we can get the
contradiction too. For n¡m, as the Proof in last part of Lemma 2.1, we have

|u(t)|6M1 + N1 + DkT + Ck; ∀t ∈ ST ;

where Ck and Dk are determined by Hk; k = 1; 2; : : : ; m− 1.
Hence we have

‖u‖C0 6max{M0; M1 + N1 + DkT + Ck; k = 1; 2; : : : ; m− 1} = M:

Case II: suppose we have limr→∞ /(r) = 0.

We need only to modify the proof of Case I a little. By the de:nition of /(r), we
have /(r) is increasing to 0. Fix a large R¿r0 such that

a + /(R)M3 ¿ 0:

Firstly we show |u|C0 6Kn for large n. If not, by passing a subsequence we may
assume for each n, there exists un(t), an and bn such that

(an; bn) ⊂ {t ∈ ST |R¡ |un(t)|¡Kn}
and |un(an)| = Kn, |un(bn)| = R. Here we have

H (bn; un(bn)) − H (an; un(an)) =
∫ bn

an
Ht(t; un(t)) dt

¿
∫ bn

an
/(|un(t)|)|un(t)|�H (t; un(t)) dt

¿ /(R)K�
n

∫
{Hn(t;un(t)¿0}

H (t; un(t)) dt

¿ /(R)M3K�
n :

Hence we have

H (bn; un(bn)) − H (an; un(an))¿ /(R)M3K�
n :

On the other hand, we have

H (bn; un(bn)) − H (an; un(an))6 max
|u|6R; t∈ST

|H (t; u)| − a|un(an)|� + b

=
(
b + max

|u|6R; t∈ST
|H (t; u)|

)
− aK�

n :
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Combine above two formulas, we have

(a + /(R)M3)K�
n 6 b + max

|u|6R; t∈ST
|H (t; u)|:

Since a + /(R)M3 ¿ 0 and Kn → ∞ as n → ∞, the left-hand side tends to in:nite,
but the right-hand side is a constant independent of u and n. This leads a contradiction.
Hence |u|C0 6Kn holds for large n. Using the same discuss as those in Case I, we
have

‖u‖C0 6M:

Combine above two Cases, we know our Lemma holds.

3. Symmetric Hamiltonian systems

In this section, we consider the Hamiltonian system

Ju̇ + ∇H (t; u) = 0; (t; u)∈ ST × R2N ;

where H (t; u) being T -periodic in t-variable and is symmetric in the u-variable, i.e.,
there is a compact Lie group G acting on R2N via a representation % : G → O(2N ) and
H is invariant under this action: H (t; gu) =H (t; u) for every t ∈R, g∈G, u∈Rn. We
let V denote the vector space R2N considered as a G-space. If the action is symplectic,
i.e., %(g)tJ%(g) = J for every g∈G, then every periodic solution u of (1) gives rise
to a G-orbit gu, g∈G, of periodic solutions of (1).

De#nition 3.1. We call V (or %) admissible if given k¿ 1 and an open bounded
G-invariant neighborhood O ⊂ V k of 0 in V k; any continuous map f : EO → V k−1 which
commutes with the action has a zero in @O; where G acts on V k via g(v1; : : : ; vk) :=
(gv1; : : : ; gvk).

In [2], the authors have the following main result:

Theorem 3.1 (Theorem 4.1 in [2]). If H ∈C1(R × R2N ;R) satis1es (G); (H1); and
(H2)p; then (1) possesses an unbounded sequence of classical solutions.

In [2] the solutions are obtained as the critical points of the functional

I(u) =
1
2

∫ T

0
−Ju̇ · u dt −

∫ T

0
H (t; u) dt

by using the following critical point theorem.

Theorem 3.2 (Theorem 3.1 in [2]). Let E be a G-Hilbert space and 4∈C1(E;R) be
a G-invariant functional satisfying

(A1). There exists an admissible representation V of G such that E = ⊕j∈Z Ej is
a G-Hilbert space with Ej = V as a representation of G, for every j∈Z.
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(A2). There exists a∈R such that for each k¿ 1

inf
R¿0

sup
u∈Ek ;‖u‖¿R

4(u)¡a;

where Ek = ⊕j6k Ej.
(A3). bk = supr¿0 inf u∈E⊥

k−1 ;‖u‖=r 4(u) → ∞, as k → ∞.
(A4). dk = supu∈Ek 4(u)¡∞.
(A5). Every sequence un ∈Fn = E⊥

−n−1 = ⊕j¿−n Ej such that 4(un)¿ a is bounded
and (4|Fn)′(un) → 0 as n → ∞ contains a subsequence which converges in E to a
critical point of 4.
Then 4 has an unbounded sequence of critical values. In fact, for each k¿ 1 with

bk ¿a, there exists a critical value ck ∈ [bk ; dk ].

Now we will prove our Theorems 1.1 and 1.2 by truncating the potential H (t; u)
with Hn(t; u) as Proposition 2.1 in Section 2 to obtain a sequence of new systems such
that the new systems satisfy the conditions of Theorem 4.1 in [2]. Replacing H by Hn,
we study a sequence of new systems

Ju̇ + ∇Hn(t; u) = 0: (2)

From Proposition 2.1, we know each Hn satis:es (H1) and (G).

Remark 3.1. For condition (G); we need only to let

Hn(t; u) =
∫
G
Hn(t; gu) dg

where dg is the standard Haar measure on compact Lie group G.

And from (iii) of Proposition 2.1, we have

Hn(t; u) = ('n + 1)|u|&�; for |u|¿K ′
n;

let pn = &�=(&� − 1)∈ (1; 2), we can check Hn satis:es (H2)pn for some Cn and Dn

which are determined by Hn(t; u). Hence from Theorem 4.1 of [2], we know (2) has
a sequence of classic solutions {unk} with unbounded critical values and we also have
In(unk)∈ [bnk ; d

n
k ] where bnk ; d

n
k are de:ned as those in Theorem 3.1 in [2]. Now we will

study bnk , d
n
k and an which obtain from Theorem 3.1 in [2] corresponding to In.

Lemma 3.1. Given n∈N; for each k¿ 1; Ek = ⊕j6k Ej;

lim
R→∞

sup
u∈Ek ;‖u‖¿R

In(u) = inf
R¿0

sup
u∈Ek ;‖u‖¿R

In(u) = −∞:

Proof. For any given n∈N; integrating (v) of Proposition 2.1; we have

Hn(t; u)¿ a|u|�$ − b; ∀u∈R2N ;
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where a and b are independent of n. Hence by Sobolev embedding theorem we have

In(u) =
1
2

∫ T

0
−Ju̇ · u dt −

∫ T

0
Hn(t; u)

6
1
2
(‖u+‖2 − ‖u−‖2) − aT‖u‖$�L$� + bT

6
1
2
(‖u+‖2 − ‖u−‖2) − a1‖u‖$�L2 − a2‖u‖$�L$� + b1

6
1
2
(‖u+‖2 − ‖u−‖2) − a1‖u+‖$�L2 − a2‖u‖$�L$� + b1

6
(

1
2
‖u+‖2 − a1‖u+‖$�L2

)
− 1

2
‖u−‖2 − a2‖u‖$�L$� + b1;

where a1; a2 and b1 are some suitable positive constants. Since for u∈Ek; u+ ∈⊕k
j=1 E

j

which is :nite dimensional space; ‖u+‖ and ‖u+‖L2 are equivalent norms for u+ ∈⊕k
j=1

Ej. Hence for $�¿ 2; 1
2‖u+‖2−a1‖u+‖$�L2 is bounded for any u+ ∈⊕k

j=1E
j. This implies

lim
R→∞

sup
u∈Ek ;‖u‖¿R

In(u) = −∞:

Lemma 3.2. Given k ∈N; {dnk} is decreasing as n → ∞ and bounded by d1
k and

dk = supu∈Ek I(u).

Proof. From (iv) of Proposition 2.1; for any n∈N we have

Hn(t; u)6Hn+1(t; u)6H (t; u); ∀(t; u)∈ ST × R2N :

This implies

In(u)¿ In+1(u)¿ I(u); ∀u∈H 1=2(ST ;R2N ):

By the de:nition of dnk we have

d1
k¿dnk¿dn+1

k ¿dk ; ∀n∈N
hence our lemma holds.

Proof of Theorems 1.1 and 1.2. From Lemma 3.1; for any given n∈N; we can choose
an an negative enough such that bnk ¿an for every k ∈N; since from the de:nition of
bnk ; they are increasing to ∞ as k → ∞. Then we know from Theorem 3.1 in [2] that
In has an unbounded sequence of critical values {cnk}; for each k ∈N; and cnk ∈ [bnk ; d

n
k ];

that means that there exist a sequence of critical points {unk(t)} such that In(unk) = cnk .
From Lemma 3.2 we have In(unk) = cnk6dnk6d1

k ; for all n; k ∈N.
Hence for any given k ∈N, since H (t; u) satis:es (H1); (H2) (or (H3)), and unk is

a critical point of In such that In(unk)6d1
k holds for all k ∈N. From Lemma 2.1 (or

Lemma 2.2) of Section 2, we have constant Mk , which is dependent on d1
k and H (t; u)

only, such that ‖unk‖C0 6Mk holds for all n∈N.
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Hence for large n∈N such that Kn¿Mk , we have

‖unk‖C0 6Mk ¡Kn:

On the other hand, we have

Hn(t; u) = H (t; u); ∀|u|¡Kn:

This implies that unk(t) is a classic solution of (1) when ‖unk‖C0 ¡Kn.
Hence for any given k ∈N, there exists a large enough n∈N such that un1(t); : : : ; u

n
k(t)

are classic T -periodic solutions of (1), i.e., Theorems 1.1 and 1.2 hold.

4. Hamiltonian systems without symmetry

In this section we will study the Hamiltonian systems without symmetry

J u̇ + B(t)u + ∇ EH (t; u) = 0; (t; u)∈R× R2N ; (3)

let H (t; u) = 1
2 (B(t)u; u) + EH (t; u), where B(t) is a given continuous T -periodic and

symmetric 2N × 2N -matrix value function and EH (t; u) is T -periodic in t-variable. In
[6] there is the following result:

Theorem 4.1 (Theorem 1.1 in [6]). For T ¿ 0; EH ∈C1(ST × R2N ;R) satis1es (H1);
(H4) and (H3′); then (3) has a non-zero T -periodic solution in each case (i); (ii) in
Theorem 1:3.

We will use our estimates in Section 2 to replace those estimates in Proof of [6].
Here we will only give the sketch proof of Theorems 1.3 and 1.4.

Sketch Proof of Theorems 1.3 and 1.4. As Proof in [6]; we :rst truncate the potential
H (t; u) by {Hn(t; u)} obtaining from Proposition 2.1 in Section 2 to get a sequence of
new systems. As in Section 2; we de:ne In(u) for these new systems. Use the same
discuss as in Proof of Theorem 1.1 in [6]; we have an n-independent constant N ¿ 0;
for each n∈N; there exists a non-trivial critical point un of In; such that In(un)6N
holds for all n∈N.

Since H (t; u) satis:es (H1) and (H3) (or (H2)), by Lemma 2.2 (or Lemma 2.1),
we have a n-independent constant M such that

‖un‖C0 6M; for all n∈N:
On the other hand, we have

Hn(t; u) = H (t; u); for |u|¡Kn:

Hence for large n∈N such that Kn¿M , un is a non-trivial T -periodic solution of
(3), i.e. Theorems 1.3 and 1.4 hold.

In the following part we will study the sub-harmonic solutions (i.e. kT -periodic
solutions) for non-autonomous systems (3). In [9] Rabinowitz :rst studied the existence



X. Xu /Nonlinear Analysis 51 (2002) 941–955 953

of sub-harmonic solutions for systems (3) under some certain conditions. One can also
:nd some results on sub-harmonic solutions at [12,13]. Here we have the following
result:

Theorem 4.2. For T ¿ 0; H ∈C1(ST ×R2N ;R) satis1es (H1); (H3); (H4) and (H5)
H (t; u)¿0; for all (t; u)∈ ST×R2N ; then there is a sequence {ki}⊂N such that ki →∞
as i→∞; and corresponding distinct kiT -periodic solutions {uki} of system (3).

Proof. We :rst show that there exists at least one non-zero T -periodic solution of (3)
under our conditions. We truncate the potential H (t; u) by {Hn(t; u)} obtaining from
Proposition 2.1 in Section 2 to get a sequence of new systems. As in Section 2; we
de:ne In(u) for these new systems.

We will use Theorem 1.4 in [1] to obtain the existence of the non-zero critical
point of In. Let X :=H 1=2(ST ;R2N ), by [7] and standard spectral theory, there exists a
decomposition X =X+⊕X 0⊕X− according to the selfadjoint operator B by extending
the bilinear form

B(u; v) =
1
2

∫ T

0
−Ju̇ · v dt −

∫ T

0
(B(t)u; v) dt

with dim X 0 = ker B¡∞; dim X+ = dim X− = ∞.
We verify the conditions of Theorem 1.4 in [1] for In, set X1 = X+; X2 = X 0 ⊕ X−

and

In(u) =
1
2

∫ T

0
−Ju̇ · u dt −

∫ T

0
Hn(t; u) dt

=
1
2
(‖u+‖2 − ‖u−‖2) −

∫ T

0

EHn(t; u) dt:

As the proof of Theorem 6:10 in [11], we have In ∈C1(X;R) and In satis:es (I1)–(I3)
of Theorem 1.4 in [1]. To vertify (I4), we construct S = @B ∩ X1 which is the same
as that in [1]. To obtain Q with r1 and r2 independent of n, following the proof of
Theorem 1.4 in [9], we let e∈ @B1 ∩ X1 and u = u0 + u− ∈X2, then

In(u + se) = s2 − ‖u−‖2 −
∫ T

0

EHn(t; u) dt

6 s2 − ‖u−‖2 − a3(‖u0‖$� + s$�) + a4

with n-independent constants a3 and a4 which are determined by (v) of Proposition
2.1 in Section 2. Choose r1 so that

4(s) = s2 − a3s� + a46 0 (4)

for all s¿ r1. Choose r2 large enough as [9], we have In6 0 on @Q with Q =
{se|06 s6 r1} ⊕ (Br2 ∩ X2). So from Theorem 1.4 in [1], In possesses a non-zero
critical point un with In(un)¿ "n ¿ 0.

Now we need to :nd an n-independent upper bound for {‖un‖C0}. In Theorem 1.4 in
[1], the critical value c can be characterized as the minimax of In over an appropriate
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class of sets (cf. [1]). Observe that Q is one of such sets and Hn(t; u) satis:es (H5),
therefore we have

In(un) = cn6 sup
u∈Q

In(u)

6 sup
‖u0+u−‖6r2 ; s∈[0;r1]

(
s2 − ‖u−‖2 −

∫ T

0
Hn(t; u) dt

)
6 r2

1 :

Hence from Lemma 2.2 of Section 2, we have an n-independent constant M such that

‖un‖C0 6M; for all n∈N:
On the other hand, we have

Hn(t; u) = H (t; u); for |u|¡Kn:

Hence for large n∈N such that Kn¿M , un is a non-zero T -periodic solution of (3).
Now we show that (3) has in:nitely many sub-harmonic solutions. We will follow

the idea of Proof of Theorem 1:36 in [9]. For a given k ∈N, we make the change of
variables s = k−1t. Thus if u(t) is a kT -periodic solution of (3), :(s) = u(ks) satis:es

J
d:
ds

+ k(B(ks): + ∇ EH (ks; :)) = 0: (5)

Since k EH (ks; u) satis:es the conditions of our Theorem, there is a solution :k(s) of
(5), which is a critical point of

Ik(:) =
1
2

∫ T

0
−J:̇ · : ds− k

∫ T

0
H (ks; :) ds:

Note that :1(ks) also satis:es (5), then if :1(ks) = :k(s), we have ck = Ik(:k) =
kI1(:1) = kc1.

Next we show that ck is bounded from above and the upper bound is independent of
k. In the proof for the existence of one solution, we have ck6 r2

1(k) and the parameter
r1(k) is determined by condition (4). The corresponding condition satis:ed by r1(k) is

4k(s) = s2 − ka3s$� + ka46 0

for all s¿ r1(k). It follows that we can let

r1(k)6max

((
2
ka3

)1=($�−2)

;
(

2a4

a3

)1=$�
)
6
(

2
a3

)1=($�−2)

+
(

2a4

a3

)1=$�

: (6)

Now, for any given m∈N, if for some k ¿m, :k(s) = :m(s) holds for all s∈R, we
have that :k(s) as kT -periodic function is k=l folds of :l(s) as lT -period function and
:m(s) as mT -periodic function is m=l folds of :l(s) as lT -period function, for some
l∈N such that l|k and l|m and some corresponding :l(s). Hence we have

ck = Ik(:k) =
k
l
Il(:l); cm = Im(:m) =

m
l
Il(:l);

that means

ck =
k
m
cm:
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On the other hand, we have cm¿ 0 and {ck} is bounded by a k-independent constant
from (6). This implies that there are at most :nitely many k ¿m such that :k(s)=:m(s)
for any given m∈N. Hence our theorem holds.
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