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Abstract

In this paper new estimates on the C0-norm of homoclinic orbit are shown for first
order convex Hamiltonian systems possessing super-quadratic potentials. Applying
these estimates, some new results on the existence of infinitely many geometrically
distinct homoclinic orbits are proved, which generalize the main results in [2] and [10].
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1 Introduction

Let H(t, u) ∈ C2(R×R2N ,R) and consider the Hamiltonian system

(HS) J u̇ +∇H(t, u) = 0, (t, u) ∈ ST ×R2N ,

with H(t, u) = 1
2 (Au, u) + W (t, u), where J =

(
0 −IN

IN 0

)
, A = A∗ are 2N × 2N

symmetric matrices, and W (t, u) is T -periodic in t-variable and satisfies globally super-
quadratic in the u-variable, i.e., the potential W satisfies
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(H1). There is a constant µ > 2 such that

0 < µW (t, u) ≤ u∇W (t, u), ∀|u| > 0.

Recall that a solution u of the system (HS) is said to be homoclinic to 0 if u 6= 0 and
u(t) → 0 as |t| → ∞. In recent years there have been many papers devoted to the existence
of homoclinic orbits for the system (HS) (e.g., [1]- [4], [6]- [11]) by variational approach.
In these papers, a condition is required on the growth of H(t, u) at infinity as

(H4)p. There are constants c > 0 and p ≥ µ, such that

|W (t, u)| ≤ c|u|p, for |u| large.

In the author’s recent paper [12] and [15], the existence of homoclinic orbits for the
system (HS) with (or without) symmetry was studied under some weaker conditions as

(H4). There are constant c,R > 0, such that

|∇W (t, u)| ≤ c(∇W (t, u), u),∀|u| ≥ R.

or

(H5). lim sup
|u|→∞

Wt(t, u)
|u|µW (t, u)

= 0, or lim inf
|u|→∞

Wt(t, u)
|u|µW (t, u)

= 0, uniformly.

When W (t, u) is further assumed to be strictly convex in u variable, the existence of
infinitely many geometrically distinct homoclinic orbits for the system (HS) was proved
under condition (H4)p in [10] by using the dual action principle of Clarke and a precise
studying at the level c and the level 2c of the functional f .

In this paper, we shall show the existence of infinitely many geometrically distinct
homoclinic orbits for the convex Hamiltonian systems with potentials satisfying (H4) or
(H5). The reason that we can’t apply directly the results in [12] to the convex Hamiltonian
systems (HS) here is that in [10], the critical points are obtained through the dual action
principle of Clarke and we can’t get the uniformly bounded estimates on the critical values
as required in [12]. In [14], we study the periodic solutions for the convex Hamiltonian
systems (HS), where we need to deal with the same problem for the periodic solutions.
Combining the ideas in [12] and [14], we prove two new estimates for C0 bound for the
homoclinic orbits with respect to bounded potentials under condition (H4) or (H5); we also
proved the same estimates for C0 bound for periodic solutions in [8] and [13]. Using the
ideas from [12], [14] and [15], we have the following results:

Theorem 1.1 Suppose H(t, u) satisfies (H1), (H4) (or (H5)), and
(A) JA is a constant matrix, all eigenvalues of which have non-zero real part,
(H2) H(t, u) is T -periodic in t-variable and strictly convex in u-variable,
(H3) for some constant c > 0, W (t, u) ≥ c|u|µ for all (t, u) ∈ R×R2N .
Then there are infinitely many homoclinic orbits of system (HS), geometrically dis-
tinct in the following sense u 6= v if and only if u(·) 6= v(·+ nT ) for all n ∈ Z.
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Remark 1.1 In [10], the systems are restricted to those of which the potential grows as
|u|µ at infinity from the condition (H4)p. Here by our condition (H4) or (H5), the same
results hold for systems with a much larger class potentials, including those with growth
rates exp(|u|α) at infinity. Especially from condition (H5), one can add any super-quadratic
autonomous potential to the system (HS) and the results will still hold.

We organize this paper as following: In Section 2, we prove two new estimates on
the bound of C0-norm of homoclinic orbits of the system (HS) under the conditions (H1)
and (H4)(or (H5)). In Section 3, we firstly study the homoclinc orbits of a sequence of
modified systems and show there is a uniform C0 bound for all orbits, then we obtain our
main results, and we also get some results when the quadratic term of the potential depends
on t-variable.

2 Two estimates

In this section, we shall study the C0 bound of homoclinic orbits for a sequence of modified
systems

(HS)n J u̇ +∇Hn(t, u) = 0, (t, u) ∈ ST ×R2N .

where the potentials {Hn = 1
2 (Au, u) + Wn(t, u)} satisfy

Proposition 2.1 H satisfies (H1), σ ∈ (0, 1] such that µσ > 2, and there exist two
sequences {Kn} and {K ′

n} in R such that {Hn} satisfies
(i) 0 < K0 < Kn < Kn+1,∀n ∈ N, and Kn → ∞ as n → ∞, and Kn < K ′

n for
each n ∈ N.
(ii) for any given t ∈ ST , Hn(t, u) ∈ C2(R2N ,R), for every n ∈ N.
(iii) Hn(t, u) = H(t, u),∀|u| ≤ Kn, for every n ∈ N; and for some λ ∈ [σ, 1], such
that Wn(t, u) = (τn + 1)|u|µλ,∀|u| ≥ K ′

n, for every n ∈ N.
(iv) 0 < µσWn(t, u) ≤ (∇Wn(t, u), u),∀|u| > 0, for every n ∈ N.

Remark 2.1 Proposition 2.1 was first proved in [7], where the author studied the multi-
plicity of periodic solutions of perturbed superquadratic Hamiltonian systems. In fact, in
[7] the author proved also that one can choose {Hn(t, u)}monotone increasing as n →∞.
Here we don’t need this monotone property. Later, this proposition was widely used in [8],
[12]-[15] to studying the existence and multiplicity of periodic solutions and homoclinic
orbits for first order Hamiltonian systems with general superquadratic potentials.

Here, combining the ideas from [12], where we study the existence of periodic solutions
for the convex Hamiltonian system, and [14], where we study the existence of homoclinic
orbits for the general Hamiltonian systems, we prove two new estimates on the C0 bound
of homoclinic orbits of the modified systems (HS)n under the condition (H4) or (H5).

Lemma 2.1 Suppose H(t, u) satisfies (H1) and (H4), {Hn} satisfies Proposition 2.1,
and u(t) is a solution of system (HS)n such that∫

R

∇Wn(t, u)udt ≤ C,

∫
R

Wn(t, u)dt ≤ C. (2.1)
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Then we have the following estimate

||u||C0 ≤ M

where M is independent of u and n .

Proof. Integrating (iv) of Proposition 2.1 we yield

Wn(t, u) ≥ a|u|µσ, ∀|u| ≥ 1,

Wn(t, u) ≤ b|u|µσ, ∀|u| ≤ 1

Where a = min|u|=1,t∈ST
W (t, u) and b = max|u|≤1,t∈ST

|W (t, u)| are independent of
n. We first show that for large enough n,

||u||C0 ≤ Kn.

If not, by passing a subsequence, without loss generality, for each n ∈ N, there exists
un(t) and tn ∈ R+, such that |un(tn)| = Kn, |un(0)| = 1 and 1 ≤ |un(t)| ≤ Kn for
t ∈ [0, tn). Since

C ≥
∫
R

Wn(t, un)dt ≥
∫ tn

0

Wn(t, un)dt ≥ a

∫ tn

0

|un|µdt ≥ a

∫ tn

0

|un|dt

we have
∫ tn

0
|un|dt ≤ C/a. Hence we have

Kn − 1 = |un(tn)| − |un(0)| =
∫ tn

0

d

ds
|un(s)|ds

=
∫ tn

0

(un(s), u̇n(s))/|un(s)|ds

≤
∫ tn

0

|u̇(s)|ds (since |un(s)| ≤ Kn)

≤
∫ tn

0

(|Aun(s)|+ |∇W (s, un(s))|)ds (by (H4))

≤ ||A||L∞
∫ tn

0

|un(s)|ds + c

∫ tn

0

(∇W (s, un(s)), un(s))ds

≤ N1C + c

∫
R

(∇Wn(s, un(s)), un(s))ds

≤ N1C + cC

where c, N1 and C are n-independent constants. But we have Kn →∞, as n →∞. This
leads to a contradiction. Hence there exists m ∈ N, which is determined by W (t, u) and
N only, such that for any n ≥ m, if u is a critical point of the modified system (HS)n with
(2.1), then ||u||C0 ≤ Kn holds.

Hence for any critical point u of the modified system (HS)n with (2.1), if n ≥ m,
repeating the about computation, we have

|u(t)| ≤ N1C + cC + 1, ∀ t ∈ R.
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For k < m, from (iii) of Proposition 2.1, we have

|∇Wk(t, u)| ≤ ck(∇Wk(t, u), u), ∀ |u| > 1

for some suitable constant ck, which is determined by Wk for k = 1, 2, · · · ,m− 1. Hence
by the same argument as above we have

|u(t)| ≤ N1C + ckC + 1, ∀ t ∈ R.

Then we have

||u||C0 ≤ max{N1C + cC + 1, N1C + ckC + 1, k = 1, 2, · · · ,m− 1} = M.

Hence our Lemma holds.
Q.E.D.

Lemma 2.2 Suppose H(t, u) satisfies (H1) and (H5), {Hn} satisfies Proposition 2.1,
and u(t) is a solution of system (HS)n such that∫

R

∇Wn(t, u)udt ≤ C,

∫
R

Wn(t, u)dt ≤ C.

Then we have the following estimate

||u||C0 ≤ M

where M is independent of u and n .

Proof. As above proof, we have

Wn(t, u) ≥ a|u|µσ, ∀|u| ≥ 1,

Wn(t, u) ≤ b|u|µσ, ∀|u| ≤ 1.

Since W (t, u) satisfies (H5), defining

σ(r) = sup
|u|≥r,t∈ST

Wt(t, u)
|u|µW (t, u)

and

δ(r) = inf
|u|≥r,t∈ST

Wt(t, u)
|u|µW (t, u)

then (H5) means
lim

r→∞
σ(r) = 0 or lim

r→∞
δ(r) = 0.

Case I: Suppose that we have

lim
r→∞

σ(r) = 0.
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By the definition of σ(r), we have σ(r) is decreasing to 0. Fix a large R > 1 such that

a− σ(R)C > 0.

Firstly we show |u|C0 ≤ Kn for large n. If not, by passing a subsequence we may
assume for each n, there exist un(t), an and bn such that

(an, bn) ⊂ {t ∈ R|R < |un(t)| < Kn}

and |un(an)| = R, |un(bn)| = Kn. Since we have

C ≥
∫
R

Wn(t, un)dt ≥
∫ bn

an

W (t, un)dt ≥
∫ bn

an

a|un(t)|µdt ≥
∫ bn

an

a|un(t)|2dt

hence
∫ bn

an
a|un(t)|2dt ≤ C/a. Here we have

H(bn, un(bn))−H(an, un(an))

=
∫ bn

an

d

dt
Hn(t, un(t))dt (since |un(t)| ≤ Kn)

=
∫ bn

an

∇Hn(t, un(t)) · u̇n(t)dt +
∫ bn

an

Ht(t, un(t))dt

=
∫ bn

an

1
2
(

d

dt
A)un · undt +

∫ bn

an

Wt(t, un)dt

≤ ||A′||L∞
∫ bn

an

a|un(t)|2dt +
∫ bn

an

σ(|un|)|un|µW (t, un)dt

≤ N1C + σ(R)Kµ
n

∫ bn

an

W (t, un)dt

≤ N1C + σ(R)Kµ
n

∫
R

Wn(t, un)dt

≤ N1C + σ(R)CKµ
n .

Hence we have

H(bn, un(bn))−H(an, un(an)) ≤ N1C + σ(R)CKµ
n .

On the other hand, we have

H(bn, un(bn))−H(an, un(an))

=
1
2
(Aun(bn), un(bn)) + W (bn, un(bn))−H(an, un(an))

≥ a|un(bn)|µ − ||A||L∞ |un(bn)|2 − max
|u|≤R,t∈ST

|H(t, u)|

= aKµ
n − ||A||L∞K2

n − max
|u|≤R,t∈ST

|H(t, u)|.
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Combine above two formulas, we have

(a− σ(R)C)Kµ
n − ||A||L∞K2

n ≤ N1C + max
|u|≤R,t∈ST

|H(t, u)|.

Since µ > 2, a− σ(R)C > 0 and Kn → ∞ as n → ∞, the left side tends to infinity,
but the right side is a constant independent of u and n. This leads to a contradiction. Hence
there exists m ∈ N, which is determined by H(t, u) and N only, such that for any n ≥ m,
if u(t) is a critical point of the modified system (HS)n with (2.1), we have |u|C0 ≤ Kn.

For n ≥ m, if the C0-norm of critical points u, which satisfy (2.1), doesn’t have an
n-independent upper bound M0, then repeating the above proof by replacing Kn by Mn

with Mn → ∞ as n → ∞, we can also get the contradiction. For n < m, as the proof in
last part of Lemma 2.1, we have

|u(t)| ≤ N1C + ckC + 1, ∀ t ∈ R

where ck is determined by Wk for k = 1, 2, · · · ,m− 1.
Hence we have

||u||C0 ≤ max{M0, N1C + ckC + 1, k = 1, 2, · · · ,m− 1} = M.

Case II: Suppose that we have limr→∞ δ(r) = 0.
We need only to modify the proof of Case I a little. By the definition of δ(r), we have

δ(r) is increasing to 0. Fix a large R > 1 such that

a + δ(R)C > 0.

We have
(a + δ(R)C)Kµ

n − ||A||L∞K2
n ≤ max

|u|≤R,t∈ST

|H(t, u)|

where a + δ(R)C̄ > 0 and Kn → ∞ as n → ∞. Using the same argument as in Case I,
we have

||u||C0 ≤ M.

By combining these two cases, we obtain the Lemma. Q.E.D.

3 Proof of Theorem 1.1

In order to prove our Theorem 1.1, we first modify the H by a sequence {Hn} which
satisfies Proposition 2.1 and (H2) such that we can apply the results in [10] to the modified
system (HS)n, which are the systems replacing H by Hn in the system (HS). We do
the truncation the same way as done in page 185 of [5], where the authors dealt with the
truncation for H under autonomous case. Here we do the same truncation to H(t, ·) for
any fixed t ∈ ST as they did to H(·), and we can also let σ = 1 in Proposition 2.1 from the
construction in [5]. Then we have a sequence of modified systems:

(HS)n J u̇ +∇Hn(t, u) = 0, (t, u) ∈ ST ×R2N
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where each Hn = 1
2 (Au, u) + Wn(t, u) satisfies (A), (H1), (H2), (H3) and (H4)p.

Now following the setting in [2] and [10], we state the following Lemmas without
proofs; one can find the further details and proofs in [2] and [10]. Before studying the
non-linear equation (HS)n, we first study the linear operator: u 7→ −J u′−Au. We have:

Lemma 3.1 (Lemma 1 in [10]) Assuming (A) and choosing β ∈ (1, 2), the opera-
tor D : W 1,β → Lβ

u 7→ −J u′ −Au

is a bicontinuous bijection, whose inverse L is a convolution kernel:

x = −J u′ −Au ⇔ Lx(t) = u(t) = (L ∗ x)(t)

with
L(t) = etE(χR+(t)Ps + χR−(t)Pu).

Here ∗ is the convolution operator, Ps and Pu are the projections on the stable and
unstable spaces of the hyperbolic flow etE, and χI is the characteristic function of
set I.

The variational formulation used here is inspired by Clarke’s dual action principle. As
in [10], define the Legendre transform G of W by

G(t, x) = sup
u∈R2N

[(x, u)−W (t, u)].

Now we define the functional f .

Lemma 3.2 (Lemma 2 in [10]) Suppose (A), (H1), (H2), (H3) and (H4)p are
true for H. Define β ∈ (1, 2) by 1

µ + 1
β = 1. Consider the functional fn on

Lβ(R,R2N )

f(x) =
∫
R

Gn(t, x)dt− 1
2

∫
R

(x, Lx)dt.

f is well defined and of class C1. Denote

C = {x ∈ Lµ/(µ−1)|x 6= 0 and f ′(x) = 0},

if x ∈ C, we have u(t) = Lx(t) is a classical solution of the system (HS).

Now define Γ = {γ ∈ C0([0, 1], Lµ/(µ−1))|γ(0) = 0, f(γ(1)) < 0}. We are in a
minimax situation:

Lemma 3.3 (Lemma 5 in [10]) Assume (A), (H1), (H2), (H3) and (H4)p are
true for H. Then Γ is non-empty, and c = infγ∈Γ(max f(γ(·))) > 0. C has therefore
at least one element x, with f(x) ≤ c. Moreover, if C/Z is finite, then there is x ∈ C
with f(x) = c.
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These Lemmas were stated in [10] and proved in [2]. In [10], for the convex Hamilto-
nian system with potential H satisfying (A), (H1), (H2), (H3) and (H4)p, by studying
the level 2c of the functional f for the system (HS), the author proved the following main
result:

Theorem 3.1 (Multiplicity Theorem in [10]) Assuming H satisfies (A), (H1),
(H2), (H3) and (H4)p, there are infinitely many homoclinic orbits of system (HS),
geometrically distinct in the sense that u 6= v if and only if u(·) 6= v(·+ nT ) for all
n ∈ Z.

To prove Theorem 1.1, we shall apply Theorem 3.1 to the modified systems (HS)n, and
using the Lemmas in last section and the estimates on the homoclinic orbits of the modified
system (HS)n, which is based on the construction of the homoclinic orbits in [10]. We
show that for n large enough, the homoclinic orbits of the modified system (HS)n are
exactly the homoclinic orbits of system (HS).

Proof of Theorem 1.1 . From Proposition 2.1 and condition (A) and (H3), for the
each modified system (HS)n, the conditions of Theorem 3.1 are satisfied. Then we have
infinitely many geometrically distinct homoclinic orbits {un,k}k∈N for every modified sys-
tem (HS)n.

Next we study the bound of {||un,k||C0}n,k∈N. Define the Legendre transform {Gn}
of {Wn} by

Gn(t, x) = sup
u∈R2N

[(x, u)−Wn(t, u)].

From Proposition 2.1, we have Wn(t, u) ≥ a|u|µ for all |u| ≥ 1, where we may let
a = min|u|=1,t∈ST

W (t, u) as in Lemma 2.1. Define W0(t, u) = min{a, c}|u|µ, where
c comes from condition (H3), which implies Wn(t, u) ≥ W0(t, u),∀|u| ≥ 0, for every
n ∈ N. By duality, the assumptions on {Wn} imply the following properties of {Gn}:

(G1). Gn(t, x) ≤ G0(t, x),∀|x| ≥ 0, for every n ∈ N, where G0(t, x) is the Legendre
transform of W0(t, u).

(G2). µ
µ−1Gn(t, x) ≥ (∇Gn(t, x), x) > 0,∀|x| > 0, for every n ∈ N.

For each integer n ∈ N ∪ {0} as in Lemma 3.2, with β = µ/(µ − 1), we define the
functional fn on Lµ/(µ−1)(R,R2N )

fn(x) =
∫
R

[Gn(t, x)− 1
2
(x, Lx)]dt,

where Lx(t) is defined in Lemma 3.1. From Lemma 3.2, we know fn is well defined and
of class C1 for each n ∈ N ∪ {0}. Let

Cn = {x ∈ Lµ/(µ−1)|x 6= 0 and f ′n(x) = 0}.

If x ∈ C, we have u(t) = Lx(t) is a classical solution of the modified system (HS)n.
Define

Γn = {γ ∈ C0([0, 1], Lµ/(µ−1))|γ(0) = 0, fn(γ(1)) < 0}.
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From Lemma 3.3, we know that Γ is non-empty, and

cn = inf
γ∈Γ

(max fn(γ(·))) > 0,∀n ∈ N.

From (G1), we have
cn ≤ c0, ∀n ∈ N.

From the Remark at the end of [10], we know that for each integer n ∈ N ∪ {0},
(Cn ∩ f2cn+1

n )/Z is infinite; here we choose ε = 1 in the results of that Remark. Hence
we may assume that for every system (HS)n, the homoclinic orbits un,k = Lxn,k, which
obtained from Theorem 3.1, satisfy

fn(xn,k) ≤ 2cn + 1 ≤ 2c0 + 1, ∀n, k ∈ N.

Since xn,k is a critical point for fn on Lµ/(µ−1), we have

un,k(t) = Lxn,k(t) = ∇Gn(t, xn,k(t)), ∀t ∈ R.

Using the Lgendre reciprocity formula

∇Gn(t, x) = u, iff ∇Wn(t, u) = x,

together with (G2) and (H1), we have

2c0 + 1 ≥
∫
R

[Gn(t, xn,k)− 1
2
(xn,k, Lxn,k)]dt

≥ [
µ− 1

µ
− 1

2
]
∫
R

(xn,k,∇Gn(t, xn,k(t)))dt

= [
1
2
− 1

µ
]
∫
R

(un,k,∇Wn(t, un,k(t)))dt

≥ [
µ

2
− 1]

∫
R

Wn(t, un,k(t))dt.

Hence we have∫
R

∇Wn(t, un,k)un,kdt ≤ C,

∫
R

Wn(t, un,k)dt ≤ C ∀n, k ∈ N

where C is independent of n, k. Now applying Lemma 2.1 and Lemma 2.2 to the homo-
clinic orbit sequences {un,k}n,k∈N, we have a uniform bound M such that

||un,k||C0 ≤ M, ∀n, k ∈ N.

Since Kn → ∞ as n → ∞, we have Kn > M for n large enough. For such a system
(HS)n, from (iii) of Proposition 2.1, which says

Hn(t, u) = H(t, u), ∀|u| ≤ Kn
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we know that the homoclinic orbits of system (HS)n, each of which satisfies

|un,k(t)| < Kn, ∀t ∈ R,

are exactly the homoclinic orbits of system (HS). Q.E.D.

Notice that condition (A) is only used in Lemma 3.1 in the proof. For the potential
H(t, u) = 1

2L(t)u · u + W (t, u), we replace condition (A) by:

(L). L(t) depends on t with period T , and there is α > 0 such that (0, α)∩σ(A) =
∅ where A = −(J d

dt + L(t)) is the selfadjoint operator acting on L2(R,R2N ) with
the domain D(A) = H1(R,R2N ) and σ(A) is the spectrum of A.

or

(L̄). L(t) depends on t with period T , and there is α > 0 such that (−α, 0) ∪
σ(A) = ∅ where A = −(J d

dt +L(t)) is the selfadjoint operator acting on L2(R,R2N )
with the domain D(A) = H1(R,R2N ) and σ(A) is the spectrum of A.

In [3] and [4], the same results on the linear operator D : u 7→ −J u′−Au are studied,
and our Lemma 2.1 and Lemma 2.2 hold for the potentials H(t, u) = 1

2L(t)u ·u+W (t, u).
Hence we have the following results:

Theorem 3.2 Suppose H(t, u) = 1
2L(t)u · u + W (t, u), where L ∈ C1(R,R4N2

) is
a 2N × 2N symmetric matrix valued function and W ∈ C2(R ×R2N ,R) satisfies
(L)(or (L̄)), (H1), (H2), (H3) and (H4) (or (H5)), there are infinitely many
homoclinic orbits of system (HS), geometrically distinct in the sense that u 6= v if
and only if u(·) 6= v(·+ nT ) for all n ∈ Z.
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