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Abstract. In this paper some new existence results for sub-harmonics are

proved for first order Hamiltonian systems with super-quadratic potentials by

using two new estimates on C0 bound for the periodic solutions. Applying
the uniform estimates on the sub-harmonics, the asymptotic behaviors of sub-
harmonics is studied when the systems have globally super-quadratic poten-
tials.

1. Introduction and Main Results. In this paper we study the existence of
sub-harmonic solutions (i.e. kT -periodic solutions) and the asymptotic behavior of
the sub-harmonics for the following first order Hamiltonian system

(HS) − Ju̇ − B(t)u = ∇H(t, u), u ∈ R2N , t ∈ R, (1)

where B(t) is a given continuous T -periodic and symmetric 2N × 2N -matrix func-
tion, H ∈ C1(R × R2N ,R) is T -periodic in t, ∇H := ∇uH(t, u) and J is the

standard symplectic matrix
(

0 −IN

IN 0

)
. The first result on subharmonics of

the system (HS) was obtained by Rabinowitz in his pioneering work [13] for con-
stant matrix B and certain conditions on H. Since then there are many papers
on the existence of sub-harmonics of the system (HS), such as [4], [5], [6], [11],
[15], [16], [18], [19]. Especially, in [5] and [15], the authors studied the asymptotic
behaviors of subharmonics of the system (HS) under certain conditions on B(t)
and H(t, u).

In this paper, we firstly obtain two a priori estimates on the C0 bound for the
periodic solutions of the modified systems of the system (HS) following the ideas
in [17], [18] and [19]. Applying these estimates to the system (HS) and the ideas
from [13], we have the following existence results on subharmonics:

Theorem 1.1. For T > 0, suppose H(t, u) ∈ C1(ST × R2N ,R) satisfies:
(H1) there are constants µ > 2 and r0 > 0 such that

0 < µH(t, u) ≤ (∇H(t, u), u), ∀|u| ≥ r0,

(H2) H(t, u) ≥ 0, for all (t, u) ∈ ST × R2N ,

(H3 ) lim sup
|u|→∞

Ht(t , u)
|u|µH (t , u)

= 0 , or lim inf
|u|→∞

Ht(t , u)
|u|µH (t , u)

= 0 , uniformly in t .

(H4) H(t, u) = o(|u|2), uniformly in t as u → 0,
then there is a sequence {ki} ⊂ N such that ki → ∞ as i → ∞, and corresponding
distinct kiT -periodic solutions {uki

} of the system (HS).
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Remark 1. (H1), (H2) and (H4) are usual conditions when one studies the ex-
istence of periodic solutions for non-autonomous Hamiltonian systems possessing
super-quadratic potentials. There are many papers (cf. [4], [5], [6], [11], [15])
studying the existence of subharmonics of the system (HS) with some growth con-
ditions on H(t, u) at infinity of u variable. It is well known that for autonomous
Hamiltonian systems the existence of infinite many periodic solutions was proved
in Rabinowitz’s pioneering work [12] under condition (H1) only. Here the condi-
tion (H3) is on Ht(t, u)/(|u|µH(t, u)), which measures how far the system (HS)
is away from the autonomous system , or one may consider the system (HS) with
condition (H3) as a perturbed system with a large perturbation. Especially from
condition (H3), one can add any super-quadratic autonomous potential to the sys-
tem (HS) and the results will still hold. Such a condition on Ht(t, u)/H(t, u) as
(H3) was first introduced in [10] to study the existence of periodic solutions of the
system (HS).

Using the same conditions on H(t, u) as in [13], we have a slightly more general
existence result on subharmonics for the system (HS) as following:

Theorem 1.2. Suppose H(t, u) ∈ C1(ST ×R2N ,R) satisfies (H1), (H2), (H4) and:
(H5) There is a constant c > 0, such that

|∇H(t, u)| ≤ c(∇H(t, u), u),∀u ≥ r0.

then there is a sequence {ki} ⊂ N such that ki → ∞ as i → ∞, and corresponding
distinct kiT -periodic solutions {uki

} of the system (HS).

Remark 2. In [13], B(t) was further assumed to be a constant matrix and the same
result as Theorem 1.2 was proved there.

In the second part of this paper, we study the asymptotic behaviors of sub-
harmonics. Firstly we show there is a uniform C1 bound for the subharmonics of
the system (HS) when the system has the globally super-quadratic potential

(H1)’ there is constant µ > 2 such that

0 < µH(t, u) ≤ z∇H(t, u), ∀|u| > 0,

Theorem 1.3. Suppose H(t, u) satisfies the globally super-quadratic condition (H1)′,
(H2)- (H4), then there exists infinitely many distinct sub-harmonics {uk} of the
system (HS) and there is a uniform bound M for {||uk||C1}k∈N.

Using the uniform bound on the subharmonics from Theorem 1.3 and the ideas
in [5] and [13], when B(t) satisfies condition:

(B)c σ(A) ∩ R 
= ∅, where A = −(J(d/dt) + B(t)) and σ(A) is the spectrum of
the self-adjoint operator A on W 1/2(ST ,R2N ).
we have the following result:

Theorem 1.4. Assume B(t) satisfies (B)c and H(t, u) satisfies the conditions
of Theorem 1.3, then there is a sequence of pairwise geometrically distinct sub-
harmonics {uk(t)}k∈N ⊂ C1(R,R2N ) of the system (HS) such that ||uk||C1 → 0 as
k → ∞.

Using the uniform bound on the subharmonics from Theorem 1.3 and the ideas
in [15], when B(t) satisfies condition:

(B) σ(A) ∩ R = ∅, where A = −(J(d/dt) + B(t)) and σ(A) is the spectrum of
the self-adjoint operator A on W 1/2(ST ,R2N ).
we have the following result:
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Theorem 1.5. Assume B(t) satisfies condition (B) and H(t, u) satisfies the con-
ditions of Theorem 1.3, then there is a sequence of pairwise geometrically distinct
subharmonics {uk(t)}k∈N ⊂ C1(R,R2N ) of the system (HS) such that

(i) there are constants m,M > 0 independent of k ∈ N such that

m ≤
∫ kT

0

[
1
2
(−Ju̇k, uk) − H(t, uk)] dt ≤ M ;

(ii) moreover {uk(t)}k∈N is compact in the following sense: for any sequence of
integers kn → ∞, there exists a subsequence {kni

}i∈N and a nontrivial homoclinic
orbit u∞(t) emanating from 0 such that

ukni
(t) → u∞(t) in C1

loc(R,R2N ), as i → ∞.

Remark 3. in [5], [13] and [15], the authors dealt with the system (HS) with a
constant matrix B and conditions on H(t, u) as these in Theorem 1.2. Here we use
the functional setting for the linearized system as used in [3], by which one can let
B(t) depend on t variable. And applying the uniform C1 bound on the subharmonics
of the system (HS), one can directly apply those results in [5], [13] and [15] to our
situation.

We organize this paper as following: in Section 2, two a priopi estimates on C0

bound of the periodic solutions of the modified systems of the system (HS) are
proved. In Section 3, Theorem 1.1 and Theorem 1.2 are proved by applying these
estimates. In Section 4, the asymptotic behaviors of sub-harmonic solutions of the
system (HS) are studied and Theorem 1.3 - 1.5 are proved.

Acknowledgements: The author of this paper would like to express his thanks
to his advisor of Master degree, Professor Yiming Long, for many years instruction
and valuable suggestions on his thesis for Master degree when the author studied
in Nankai Institute of Mathematics. This paper grows from partial results of the
author’s thesis for Master degree. The author also want to express his thanks to
the referees for their helpful suggestions on this paper.

2. Two Estimates. In this Section we study the C0 bound of the periodic solu-
tions of the following modified systems

(HS)n Ju̇ + ∇Hn(t, u) = 0, (t, u) ∈ ST × R2N .

Here {Hn} satisfy

Proposition 2.1. For H satisfying (H1), σ ∈ (0, 1] such that µσ > 2, and two
sequences {Kn} and {K ′

n} in R, {Hn} satisfies
(i) Kn is monotonous increasing to infinity, as n → ∞, and Kn < K ′

n, ∀n ∈ N.
(ii) for any given t ∈ ST , Hn(t, ·) ∈ C2(R2N ,R), for every n ∈ N.
(iii) Hn(t, u) = H(t, u),∀|u| ≤ Kn, for every n ∈ N; and for some λ ∈ [σ, 1], such
that Hn(t, u) = cn|u|µλ,∀|u| ≥ K ′

n, for every n ∈ N.
(iv) 0 < σµHn(t, u) ≤ (∇Hn(t, u), u),∀|u| ≥ r0, for every n ∈ N.

Remark 4. The truncated results on H(t, u) as Proposition 2.1 was first proved by
Long in [7] and [8], where Long got a better monotone truncated sequence {Hn} on
H for H(t, u) C2 in u variable. In next two sections, we don’t need the monotone
property and we can choose λ = σ = 1 when we define the truncated sequence {Hn}
as in [13] by

Hn(t, u) = χn(|u|)H(t, u) + (1 − χn(|u|))cn|u|µ
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where χn(s) = 1 for s ≤ Kn, χn(s) = 0 for s ≥ K ′
n, and χ′

n(s) < 0 for s ∈
(Kn,K ′

n), and cn (depend on n) be sufficiently large constant. In this truncation,
H need only be C1.

Let X := W 1/2,2(ST ,R2N ), and define the functional In : X → R by

In(u) =
1
2

∫ T

0

(−Ju′ − B(t)u) · u dt −
∫ T

0

Hn(t, u) dt.

It is well known that In ∈ C1(X,R), and the periodic solutions of (HS)n are
obtained as critical points of the functional In. Using the ideas in [17], [18], [19],
we prove the following two Lemmas on the C0 bound of the periodic solutions of
the following modified systems (HS)n.

Lemma 2.1. Suppose that H satisfies (H1) and (H5), {Hn} satisfies Proposition
2.1, and u(t) is a T-periodic solution of (HS)n such that∫ T

0

(∇Hn(t, u), u) dt ≤ C,

∫ T

0

Hn(t, u) dt ≤ C,

then there is a constant M independent of u and n and depend on C only such that

||u||C0 ≤ M.

Proof. Integrating (iv) of Proposition 2.1 gives

Hn(t, u) ≥ a|u|µσ − b, ∀u ∈ R2N ,

where a and b are independent of n by (iii) of Proposition 2.1. Hence we have

C ≥
∫ T

0

Hn(t, u) dt ≥ aT

∫ T

0

|u|µσ dt − bT ≥ aT (min
t∈ST

|u(t)|)µσ − bT.

Therefore we have mint∈ST
|u(t)| ≤ C0 where C0 is independent of u and n. Without

loss generality, we may assume |u(t)| obtains its minimum at t = 0, and |u(0)| ≥ r0,

|u(t)|−|u(0)| =
∫ t

0

d

ds
|u(s)| ds ≤

∫ t

0

|u̇(s)| ds ≤
∫ t

0

(|B(s)u(s)|+ |∇Hn(s, u(s))|) ds

From (H5) and (iii) of Proposition 2.1 we have

|∇Hn(t, u)| ≤ c(∇Hn(t, u), u), for r0 ≤ |u| ≤ Kn

We first show for large enough n,

||u||C0 ≤ Kn

If not, by passing a subsequence, for each n ∈ N, there exists un(t) and tn ∈ ST ,
such that |un(tn)| = Kn and |un(t)| ≤ Kn for t ∈ [0, tn). Let

d = max
{(t,u)∈ST ×R2N |H(t,u)<0}

{|(∇Hn(t, u), u)|},

we then have

|un(tn)| ≤
∫ tn

0

|∇Hn(s, un(s))| ds + ||B||∞
∫ tn

0

|u(s)| ds + |un(0)|

≤ c

∫ tn

0

(∇Hn(s, un(s)), un(s)) ds + c

∫ tn

0

|u(s)|σµ ds + |un(0)|

≤ c

∫ T

0

(∇Hn(s, un(s)), un(s)) ds + c

∫ tn

0

|H(s, u(s))| ds + c dt + C0

≤ cC + cdT + C0,
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where c(may different in each step), d, C and C0 are independent of u and n. But
then Kn → ∞, as n → ∞, which leads to a contradiction. Hence there exists
m ∈ N, depending only on H and C such that for any n ≥ m, ||u||C0 ≤ Kn holds.
Repeating this argument, we find that for any n ≥ m,

|u(t)| ≤ cC + cdT + C0, ∀ t ∈ ST .

For k < m, from (iii) of Proposition 2.1, we have

|∇Hk(t, u)| ≤ ck(∇Hk(t, u), u) ∀ |u| ≥ r0,

for some suitable constant ck. By the same argument,

|u(t)| ≤ ckC + dkT + C0, ∀ t ∈ ST

where ck and dk are determined by Hk for k = 1, 2, · · · ,m − 1. Therefore

||u||C0 ≤ max{cC + cdT + C0, ckC + dkT + C0, k = 1, 2, · · · ,m − 1} = M,

which completes the proof. Q.E.D.

Lemma 2.2. Suppose that H(t, u) satisfies (H1) and (H3), {Hn} satisfies Propo-
sition 2.1, and u(t) is a T-periodic solution of system (HS)n such that∫ T

0

∇Hn(t, u)u dt ≤ C,

∫ T

0

Hn(t, u) dt ≤ C.

then there is a constant M independent of u and n and dependent on C only such
that

||u||C0 ≤ M.

Proof. Since Hn(t, u) > 0 for |u| ≥ r0, we have

C ≥
∫ T

0

Hn(t, u) dt ≥
∫
{Hn(t,u)≥0}

Hn(t, u) dt − T sup
H(t,u)<0,t∈ST

|H(t, u)|.

Hence we have∫
{Hn(t,u)≥0}

Hn(t, u) dt ≤ C + T sup
H(t,u)<0,t∈ST

|H(t, u)| = C̄,

where C̄ is a constant independent of n and u. Define

σ(r) = sup
|u|≥r,t∈ST

Ht(t, u)
|u|µH(t, u)

, and δ(r) = inf
|u|≥r,t∈ST

Ht(t, u)
|u|µH(t, u)

.

Then (H3) means
lim

r→∞σ(r) = 0 or lim
r→∞ δ(r) = 0.

Case I: Suppose we have limr→∞ σ(r) = 0.
By the definition of σ(r), we have that σ(r) is decreasing to 0. Fix a large R > r0,

such that
a − σ(R)C̄ > 0.

First, we show |u|C0 ≤ Kn for large n. If not, by passing to a subsequence we
may assume for each n, there exists un(t), an and bn such that

(an, bn) ⊂ {t ∈ ST |R < |un(t)| < Kn}
and |un(an)| = R, |un(bn)| = Kn. Denote

Ĥn(t, u) =
1
2
(B(t)u, u) + Hn(t, u); Ĥ(t, u) =

1
2
(B(t)u, u) + H(t, u)
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Therefore we have

Ĥ(bn, un(bn)) − Ĥ(an, un(an))

=
∫ bn

an

d

dt
Ĥn(t, un(t)) dt

=
∫ bn

an

[(∇Ĥn(t, un(t)), u̇(t)) + Ĥt(t, un(t))] dt

=
∫ bn

an

Ht(t, un(t)) +
1
2
(Bt(t)un(t), un(t))] dt

≤
∫ bn

an

σ(|un(t)|)|un(t)|µH(t, un(t)) dt + ||Bt||∞
∫ bn

an

|un(t)|2 dt

≤ σ(R)Kµ
n

∫ bn

an

H(t, un(t)) dt + c

∫ bn

an

H(t, un(t)) dt

≤ σ(R)C̄Kµ
n + cC̄.

On the other hand,

Ĥ(bn, un(bn)) − Ĥ(an, un(an))

≥ a|un(bn)|µ − b − ||B||∞|un(bn)|2 − max
|u|≤R,t∈ST

|Ĥ(t, u)|

= aKµ
n − ||B||∞K2

n − (b + max
|u|≤R,t∈ST

|H(t, u)|)

Combine these two formulas, we get that

(a − σ(R)C̄)Kµ
n − ||B||∞K2

n ≤ b + cC̄ + max
|u|≤R,t∈ST

|H(t, u)|

Since a − σ(R)C̄ > 0, µ > 2, and Kn → ∞ as n → ∞, the left side tends to
infinity, but the right side is a constant independent of u and n. This leads to a
contradiction. Hence there exists m ∈ N, which is determined by H(t, u) and C
only, such that for any n ≥ m, |u|C0 ≤ Kn.

For n ≥ m, if ||u||C0 doesn’t have an n-independent upper bound M0, then
following the above proof with Kn replaced by Mn where Mn → ∞ as n → ∞, we
also get a contradiction. For n < m, as the proof in last part of Lemma 2.1, we
have

|u(t)| ≤ ckC + dkT + C0, ∀ t ∈ ST ,

where ck and dk are determined by Hk, k = 1, 2, · · · ,m − 1.
Hence we have

||u||C0 ≤ max{M0, ckC + dkT + C0, k = 1, 2, · · · ,m − 1} = M

Case II: Suppose we have limr→∞ δ(r) = 0.
We need only to modify the proof of Case I a little. We have

(a + δ(R)C̄)Kµ
n − ||B||∞K2

n ≤ b + cC̄ + max
|u|≤R,t∈ST

|H(t, u)|

where a + δ(R)C̄ > 0, µ > 2, and Kn → ∞ as n → ∞. Using the same argument
as in Case I, we have

||u||C0 ≤ M

By combining these two cases, we prove this Lemma. Q.E.D.
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Remark 5. Here we proved the Lemmas for general potentials H, which doesn’t
assume any condition nearby u = 0 on the potential H(t, u). Such kind estimates
was first proved in [18] when the author studied the existence of periodic solutions
of the first order Hamiltonian systems possessing super-quadratic potentials. In
this paper H(t, u) ≥ 0 is satisfied, which implies d = dk = 0 and C̄ = C, then the
bound M is independent of the period T and depends only on C and H(t, u) from
the proofs of the Lemmas. This is one key observation to apply these estimates
to get the existence of subharmonics and to get the uniform estimates for sub-
harmonics {uk} in the next sections.

3. Existence of subharmonics. We first show that there exists at least one
nonzero T -periodic solution of (HS) under the conditions of Theorem 1.1 and The-
orem 1.2. as did in [13]. We truncate the potential H(t, u) by {Hn(t, u)} as done
in [13] satisfying Proposition 2.1 with λ = σ = 1 to get a sequence of modified
systems, and we define In(u) for these new systems.

We use Theorem 1.4 in [1] to obtain the existence of the nonzero critical point
of In. One may check the details of the proof in [13], here we only give a sketched
proof. Let X := H

1
2 (ST ,R2N ), By [9] and standard spectral theory, there exists

a decomposition X = X+ ⊕ X0 ⊕ X− according to the self-adjoint operator B by
extending the bilinear form

(Bu, v) =
1
2

∫ T

0

−Ju̇ · v dt −
∫ T

0

(B(t)u, v) dt

with dim X0 = ker B < ∞, dim X+ = dim X− = ∞.
We verify the conditions of Theorem 1.4 in [1] for In, set X1 = X+, X2 =

X0 ⊕ X− and

In(u) =
1
2

∫ T

0

−Ju̇ · u dt − 1
2

∫ T

0

(B(t)u, u) dt −
∫ T

0

Hn(t, u) dt

=
1
2
(||u+||2 − ||u−||2) −

∫ T

0

Hn(t, u) dt.

As the proof of Theorem 6.10 in [14], we have In ∈ C1(X,R) and In satisfies (I1)-
(I3) of Theorem 1.4 in [1]. To verify (I4), we construct S = ∂Bρ ∩ X1 which is the
same as that in [1]. To obtain Q with r1 and r2 independent of n, following the
proof of Theorem 1.4 in [13], we let e ∈ ∂B1 ∩ X1 and u = u0 + u− ∈ X2, then

In(u + se) = s2 − ||u−||2 −
∫ T

0

Hn(t, u) dt

≤ s2 − ||u−||2 − a3(||u0||µ + sµ) + a4

with n-independent constants a3 and a4 which are determined by (iv) of Proposition
2.1. Choose r1 so that

φ(s) = s2 − a3s
µ + a4 ≤ 0 (2)

for all s ≥ r1. Choose r2 large enough as [13], we have In ≤ 0 on ∂Q with
Q = {se|0 ≤ s ≤ r1} ⊕ (Br2 ∩ X2). So from Theorem 1.4 in [1], In possesses a
nonzero critical point un with In(un) ≥ αn > 0.

Now we need to find an n-independent upper bound for {‖un‖C0}. In Theorem
1.4 in [1], the critical value c can be characterized as the minimax of In over an
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appropriate class of sets (cf.[1]). Observe that Q is one of such sets and Hn(t, u)
satisfies (H2), therefor we have

In(un) = cn ≤ sup
u∈Q

In(u) ≤ sup
||u0+u−||≤r2,s∈[0,r1]

(s2 − ||u−||2 −
∫ T

0

Hn(t, u) dt) ≤ r2
1.

Since un is a critical point of In and each Hn(t, u) satisfies Proposition 2.1, we
have

In(un) =
1
2

∫ T

0

(−Ju̇n, un) dt −
∫ T

0

Hn(t, un) dt

=
1
2

∫ T

0

∇Hn(t, un)un dt −
∫ T

0

Hn(t, un) dt

≥ (
1
2
− 1

µ
)
∫ T

0

∇Hn(t, un)un dt − C1

≥ (
µ

2
− 1)

∫ T

0

Hn(t, un) dt − C2

Where C1, C2 are independent of n. From above we have∫ T

0

∇Hn(t, un)un dt ≤ C,

∫ T

0

Hn(t, un) dt ≤ C

for some constant C independent of n. Hence from Lemma 2.1 and Lemma 2.2, we
have an n-independent constant M such that

||un||C0 ≤ M, for all n ∈ N.

On the other hand, we have

Hn(t, u) = H(t, u), for |u| < Kn.

Hence for large n ∈ N such that Kn > M , un is a nonzero T -periodic solution of
the system (HS).

Next we show that the system (HS) has infinitely many distinct sub-harmonics.
We will follow the ideas in Proof of Theorem 1.36 in [13]. For a given k ∈ N, we
make the change of variables s = k−1t. Thus if u(t) is a kT -periodic solution of the
system (HS), η(s) = u(ks) satisfies

J
dη

ds
+ k(B(ks)η + ∇H(ks, η)) = 0 (3)

Since kH̄(ks, u) satisfies the conditions of our Theorem too, there is a solution ηk(s)
of (3), which is a critical point of

Ik(η) =
1
2

∫ T

0

−Jη̇ · η ds − k

∫ T

0

(B(ks)η, η) ds − k

∫ T

0

H(ks, η) ds.

Note that η1(ks) also satisfies (3), then if η1(ks) = ηk(s), we have ck = Ik(ηk) =
kI1(η1) = kc1.

Next we show that ck = Ik(ηk) is bounded from above and the upper bound
is independent of k. In the proof for the existence of one solution, we have ck ≤
r2
1(k) and the parameter r1(k) is determined by condition (2). The corresponding

condition satisfied by r1(k) is

φk(s) = s2 − ka3s
µ + ka4 ≤ 0,
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for all s ≥ r1(k). It follows that we can let

r1(k) ≤ max

((
2

ka3

) 1
µ−2

,

(
2a4

a3

) 1
µ

)
≤

(
2
a3

) 1
µ−2

+
(

2a4

a3

) 1
µ

. (4)

Now, for any given m ∈ N, if for some k > m, ηk(s) = ηm(s) holds for all s ∈ R,
we have that ηk(s) as kT -periodic function is k

l folds of ηl(s) as lT -period function
and ηm(s) as mT -periodic function is m

l folds of ηl(s) as lT -period function, for
some l ∈ N such that l|k and l|m and some corresponding ηl(s). Hence we have

ck = Ik(ηk) =
k

l
I l(ηl), cm = Im(ηm) =

m

l
I l(ηl),

that means

ck =
k

m
cm.

On the other hand, we have cm > 0 and {ck} is bounded by a k-independent
constant from (4). This implies that there are at most finitely many k > m such
that ηk(s) = ηm(s) for any given m ∈ N. Hence Theorem 1.1 and Theorem 1.2 are
proved.

In [6], by using the iterated Maslov-type index theory and estimating the Maslov-
type indices of the critical points of the direct variational calculus, Liu studied the
existence of subharmonic solutions for the system (HS) under some conditions on
H. Replacing the condition (H4) in [6] by our condition (H3), we have the following
result:

Theorem 3.1. Suppose H ∈ C2(ST × R2N ,R) and satisfies (H1)-(H4), and
(H6) B(t) is a symmetric continuous matrix with period T , |B|C0 ≤ ω for some

ω > 0, and B(t) is a semi-positive definite matrix for all t ∈ [0, T ].
then for each integer 1 ≤ k < 2π

ωT there is a kT -periodic nonconstant solution uk

of the system (HS). If all {uk} are non-degenerate, uj and upj are geometrically
distinct for p > 1.

Especially for B(t) ≡ 0, for each integer k ≥ 1 there is a kT -periodic nonconstant
solution uk of the system (HS). If all {uk} are non-degenerate, uj and upj are
geometrically distinct for p > 1.

If one doesn’t assume non-degenerate condition on {uk}, uj and upj are geomet-
rically distinct for p > 2n + 1.

The proof of this Theorem follows the proof of Theorem 1.1 in [6]. The only
difference is how to remove the growth restriction on H under our condition (H3),
and notice that apply our Lemma 2.2, we get a K-independent upper bound for
{uk

K} for each k ∈ N, where uk
K is the kT -periodic solution obtained in [6] for the

modified system (HS)K . The Theorem is proved.

4. Asymptotic behaviors of subharmonics. In this section the asymptotic
behaviors of the sub-harmonics of the system (HS) are studied when the potential
H(t, u) of the system (HS) satisfies the globally super-quadratic condition (H1)′.
We firstly show that there is a C1 uniform bound for sub-harmonics {uk} as stated
in Theorem 1.3.

Proof of Theorem 1.3. From the proofs of Theorem 1.1, we need only to show
there exist a uniform bound for all {||un,k||C0}n,k∈N where {un,k}n,k∈N are those
sub-harmonics that we obtain for (HS)n.
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Let cn,k = Ik
n(un,k), where Ik

n is the functional defined by Hn for kT -periodic
solution. From the Proof in Section 3, we have cn,k ≤ r2

1(k), where

r1(k) ≤
(

2
a3

) 1
µ−2

+
(

2a4

a3

) 1
µ

which are independent of n and k. Hence from the globally super-quadratic condi-
tion (H1)′, we have

C ≥ In,k(un,k) =
1
2

∫ kT

0

(−Ju̇n,k − B(t)un,k) · un,k dt −
∫ kT

0

H(t, un,k) dt

=
1
2

∫ kT

0

∇H(t, un,k) · un,k dt −
∫ kT

0

H(t, un,k) dt

≥ (
1
2
− 1

µ
)
∫ kT

0

∇H(t, un,k) · un,k dt

≥ (
µ

2
− 1)

∫ kT

0

H(t, un,k) dt

which implies∫ kT

0

∇Hn(t, un,k)un,k dt ≤ C,

∫ kT

0

Hn(t, un,k) dt ≤ C.

Here C is independent of k. From Lemma 2.1, Lemma 2.2 and Remark 2.1, we
know there is a constant M independent of n and k such that

||un,k||C0 ≤ M.

And un,k satisfies the equation of (HS), then there is a uniform C1 bound M for
all sub-harmonics {un,k}n,k∈N.

Q.E.D.
Now we study the asymptotic behaviors of sub-harmonics {uk}k∈N as k → ∞

under some further conditions as in Theorem 1.4 and Theorem 1.5. Here we apply
the uniform C1 estimates on subharmonics as in Theorem 1.3 to make use of those
argument in [5], [13] and [15]. Since in those paper, B(t) was further assumed to be
constant matrix, we need make a new functional setting as done in [3] as following.

Let A = −(J d
dt + B(t)) is the self-adjoint operator acting on L2(R,R2N ) with

the domain D(A) = H1(R,R2N ) and σ(A) is the spectrum of A. We use the norm
|| · ||E , which is defined as

||u||E = (||A| 12 u|22 + |u|22)
1
2 ,

instead of the norm || · ||µ in [3], and the Banach space E, which is the completion
of the set D(A) = H1(R,R2N ) under the norm || · ||E , instead of the space Eµ in
[3]. As Section 2 in [3], we have these facts: E has the direct sum decomposition
E = E− ⊕ E+, and E is embedded continuous in Lν for any ν ∈ [2,∞) and
compactly in Lν

loc for any ν ∈ [2,∞). Notice that using our norm || · ||E instead of
|| · ||µ, the reader can check the details of these facts following the Proofs in Section
2 in [3]. Set

Φn(u) =
∫
R

Hn(t, u) dt

It is easy to check Φn ∈ C1(E,R) since each Hn satisfies (H1) and (iii) of Propo-
sition 2.1, and E is embedded continuous in Lν for any ν ∈ [2,∞). We will use
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this functional setting to replace those in [5], [13] and [15], where only deal with
the case that B(t) is a constant matrix.

In [5] and [13], the authors show that the sub-harmonics converge to 0 when the
constant matrix B satisfies:
(A)c σ(JB) ∩ iR 
= ∅, where σ(A) is the spectrum of the matrix A.
Notice that it is the same condition as our condition (B)c when B(t) is a constant
matrix. From Theorem 1.3 we have the uniform C1 bound M for all sub-harmonics
{un,k}n,k∈N, we can see all sub-harmonics of the system (HS) are the same as
those of the modified system (HS)n for some large n. Now fixed a large n, from
Proposition 2.1, the modified system (HS)n satisfies the conditions on H in [5] and
[13], and we use the functional setting on A = −(J d

dt + B(t)) instead of those used
in [5] and [13] for constant matrix B, we prove Theorem 1.4.

Remark 6. In [13], the author proved that the subharmonics converge to 0 when
σ(JB) ⊂ iR, and in [5], the author proved the subharmonics converge to 0 under
condition (A)c.

In [15], the author shows that there exists a nontrivial homoclinic orbit for the
system (HS) as the limit of the subharmonics uk when the constant matrix A
satisfies:
(A) A is a 2N × 2N symmetric matrix such that σ(JA) ∩ iR = ∅.
Notice that it is the same condition as our condition (B) when B(t) is a constant
matrix. Now as above fixed a large n, we see that the modified system (HS)n

satisfies the conditions of Theorem 0.1 in [15], and we use the functional setting
on A = −(J d

dt + B(t)) instead of those used in [15] for constant matrix A, and we
prove Theorem 1.5.

In the last part of this section, we study when the sub-harmonics {uk(t) =
ηk(t/k)} obtained in Theorem 1.1 and Theorem 1.2 are uniformly bounded in C1.
Let T l−1

k denote the minimal period of ηk(t). Then uk(t) = η(kt) has minimal
period Tkl−1

k .

Theorem 4.1. Under the conditions (H1),(H2), (H3)(or (H5)),(H4), if kl−1
k don’t

tend to infinity along some subsequence, then the functions uk(t)′s are uniformly
bounded in || · ||C1 .

Proof. We have

ck = Ik(uk) − 1
2
((Ik)′(uk), uk)

=
∫ kT

0

[
1
2
(uk(s),∇H(s, uk)) − H(s, uk)

]
ds

= k−1lk

∫ kl−1
k T

0

[
1
2
(uk(s),∇H(s, uk(s))) − H(s, uk(s))

]
ds

From (H1), we have

ck ≥ k−1lk

{
(
1
2
− 1

µ
)
∫ kl−1

k T

0

(uk(s),∇H(s, uk(s))) ds − a1kl−1
k T

}

≥ k−1lk

{
(
µ

2
− 1)

∫ kl−1
k T

0

H(s, uk(s)) ds − a2kl−1
k T

}
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for some constants a1 and a2 independent of k. Since kl−1
k is bounded, we have∫ kl−1

k

0

∇H(t, uk)uk dt ≤ C,

∫ kl−1
k T

0

H(t, uk) dt ≤ C

for some constant C independent of k. From Lemma 2.1 and Lemma 2.2, we have
‖uk‖∞ ≤ M , for some constant M independent of k. And uk satisfies the equation
of (HS), then there is a uniform C1 bound M for all sub-harmonics {uk}k∈N.

Q.E.D.
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