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In this paper new estimates on the C0-norm of solutions are shown for first
order convex Hamiltonian systems possessing super-quadratic potentials.
Applying these estimates, some new results on the existence of subharmonics are
obtained, which generalize the main results in Ekeland and Hofer [5], and a
question about a priori estimates on subharmonics raised by Ekeland and Hofer
[5] is answered when the convex Hamiltonian systems have globally super-
quadratic potentials. Using the uniform estimates on the subharmonics, the
behavior of convergence of subharmonics is studied too.
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1. INTRODUCTION AND MAIN RESULTS

In this paper, we study periodic solutions of the following Hamiltonian
system

(HS) Ju̇+NH(t, u)=0, (t, u) ¥ ST × R2N, (1)

where J denotes the standard symplectic matrix

J=R 0
IN

− IN

0
S

and H ¥ C2(R × R2N, R) is T-periodic in t-variable, and NH(t, u) denotes
the partial gradient with respect to the u-variable.



Here we are interested in the existence of kT-periodic solutions of
(HS) for k ¥ N, which solve the boundary-value problem

(HS)k
˛Ju̇+NH(t, u)=0, (t, u) ¥ ST × R2N,

u(0)=u(kT).

The kT-periodic solutions of (HS)k, for k \ 2, are called subharmonics.
Here as Ekeland and Hofer [5] we define the following notations. Given
an integer j ¥ Z and a kT-periodic solution uk of (HS)k, define j f uk, the
phase shift, as

(j f uk)(t)=uk(t+jT).

Since H is T-periodic in t, whenever uk solves (HS)k, so do its phase shifts
j f uk, for all j ¥ Z. For two solutions uk of (HS)k and uh of (HS)h, we say
they are geometrically distinct if

j f uk ] i f uh, -i, j ¥ Z.

We say that kT is a simple period of uk if

j f uk ] uk, -j ] 0 mod k.

Rabinowitz [9] first showed the existence of infinitely many distinct
subharmonics for the first order Hamiltonian systems (HS). After that,
there are many other people studied the existence of subharmonics, for
example, Clarke and Ekeland [1], Ekeland and Hofer [5], Felmer [6], Liu
[7], Tanaka [11], and Xu [12–15]. Especially in Ekeland and Hofer [5],
the authors proved the following results:

Theorem 1.1 (Ekeland and Hofer). Suppose that H ¥ C2(R × R2N, R)
satisfies:

(H0) H(t, u) is T-periodic in t and strictly convex in u, i.e., for
any u ] 0, there is some function a(t, u) > 0 such that
Hessu(H(t, u)) \ a(t, u) Id2N.

(H1) there are constants m > 2 and r0 > 0 such that

0 < mH(t, u) [ (NH(t, u), u), - |u| \ r0.

(H2) H(t, u) \ 0, -(t, u) ¥ R × R2N, and H(t, u)=o(|u|2), as u Q 0.

(H3)p There is a constant c > 0, such that

|NH(t, u)| [ c |u|m − 1, -u \ r0.
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Then there is a solution uk of (HS)k for each k ¥ N such that uk, k ¥ N, are
pairwise geometrically distinct. Furthermore, for almost all H satisfies above
conditions, there exists a sequence of {uk}k ¥ N such that each uk is a solution
of (HS)k with simple kT-period.

Remark 1.1. In Section 6 of Ekeland and Hofer [5], the authors
asked the following question: what a priori estimates can be given on the
subharmonics {uk}? For the subharmonics {uk}, the authors show that
there exists a uniform bound:

1
kT

F
kT

0
H(t, uk(t)) dt [ C, for all k \ 1. (2)

In the autonomous case, (2) implies that the amplitudes |uk(t)| themselves
are uniformly bounded since H satisfies the superquadratic condition and
H(uk(t))=constant. And the authors stated: No such conditions seem pos-
sible in the nonautonomous case.

In this paper, we first generalize the main results of Ekeland and
Hofer [5] on the existence of subharmonics for system (HS) by loosing the
growth condition (H3)p on the potential H, and obtain the following:

Theorem 1.2. Suppose that H ¥ C2(R × R2N, R) satisfies (H0), (H1),
(H2), and:

(H3) There is a constant c > 0, such that

|NH(t, u)| [ c(NH(t, u), u), -u \ r0.

Then there is a solution uk of (HS)k for each k ¥ N such that uk, k ¥ N, are
pairwise geometrically distinct. Furthermore, for almost all H satisfies above
conditions, there exists a sequence of {uk}k ¥ N such that each uk is a solution
of (HS)k with simple kT-period.

Theorem 1.3. Suppose that H ¥ C2(R × R2N, R) satisfies (H0), (H1),
(H2), and

(H4) lim sup
|u| Q .

Ht(t, u)
|u|m H(t, u)

=0, or lim inf
|u| Q .

Ht(t, u)
|u|m H(t, u)

=0, uniformly in t.

Then the results of above Theorem also hold.
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Remark 1.2. In Ekeland and Hofer [5], the potential H is required
to have growth rate |u|m at infinity by condition (H1) and (H3)p. Here we
use a much weaker condition (H3) (or (H4)), which include those poten-
tials H growing like exp(|u|p) at infinity. The condition (H3), which is first
introduced in Rabinowitz [10], inquires the angle between NH(t, u) and u
is O(1/|u|) at infinity. And the condition (H4) is on Ht(t, u)/(|u|m H(t, u)),
which measures how far the system (HS) is away from the autonomous
system, or one may consider the system (HS) with condition (H3) as a per-
turbed system with a large perturbation. Especially from condition (H3),
one can add any superquadratic autonomous potential to the system (HS)
and the results will still hold. Such a condition on Ht(t, u)/H(t, u) as (H4)
was first introduced in Long and Xu [8] and Xu [14] to study the exis-
tence of periodic solutions of the system (HS).

Next we answer the question about a priori estimates on subharmonics
raised by Ekeland and Hofer [5] when the system (HS) has globally
superquadratic potential H, which means the superquadratic condition
(H1) holds for all u ] 0. We have the following result:

Theorem 1.4. Suppose H satisfies (H0), the globally superquadratic
condition (H1), (H2), and (H3) (or (H4)), then there exists subharmonics
{uk} of the system (HS) such that uk, k ¥ N, are pairwise geometrically dis-
tinct. Furthermore there is a uniform bound M for {||uk ||C0}k ¥ N.

Here is the outline of this paper. In Section 2, we introduce the
modified systems (HS)n with potentials Hn having growth rate |u|lm at
infinity, which makes us be able to apply the existence results of Ekeland
and Hofer [5] to the modified systems. We prove two new a priori esti-
mates on the C0 norm of solutions for the modified systems.

In Section 3, we first construct the modified systems (HS)n to approx-
imate the system (HS) as done in Ekeland [2] and Ekeland and Hofer [4],
which satisfy the assumptions of the Theorems in Ekeland and Hofer [5].
Then we obtain the existence of subharmonics {un

k}k ¥ R for each modified
system (HS)n by applying the Theorems in Ekeland and Hofer [5] to the
modified system. Applying the estimates of Section 2 to the subharmonics
{un

k}k ¥ R, we obtain the existence of subharmonics {uk}k ¥ R for the system
(HS). At the end of Section 3, we answer the question of Ekeland and
Hofer in [5] for the system (HS) with globally superquadratic poten-
tials H.

In Section 4, we consider the system (HS) with potential
H(t, u)=1

2 (Au, u)+W(t, u), where A is a 2N × 2N symmetric matrix,
W(t, u) satisfies globally superquadratic condition. We study the con-
vergence of the subharmonics {uk}k ¥ R for the system (HS). When
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s(JA) 5 iR ] ”, following the ideas in Rabinowitz [9] and Felmer [6],
we have ||uk ||C1 Q 0 as k Q .. When s(JA) 5 iR ] ”, following the ideas
in Tanaka [11] and using the uniform estimates on the subharmonics
{uk}k ¥ R for the system (HS), we show that there exists a nontrivial
homoclinic orbit u. of the system (HS) such that uk(t) Q u.(t) in
C1

loc(R, R2N) as k Q ..

2. TWO ESTIMATES

In this section, we consider the modified systems

(HS)n Ju̇+NHn(t, u)=0, (t, u) ¥ ST × R2N.

Here we define {Hn} as

Definition 2.1. For H satisfying (H1), s ¥ (0, 1] such that ms > 2,
and two sequences {Kn} and {K −

n} in R, {Hn} satisfies

(i) Kn is monotonous increasing to infinity, as n Q . and Kn < K −

n,
-n ¥ N.

(ii) for any given t ¥ ST, Hn(t, · ) ¥ C2(R2N, R), for every n ¥ N.
(iii) Hn(t, u)=H(t, u), - |u| [ Kn, for every n ¥ N; and for some

l ¥ (s, 1], such that Hn(t, u)=cn |u|ml, - |u| \ K −

n, for every n ¥ N.
(iv) 0 < smHn(t, u) [ (NHn(t, u), u), - |u| \ r0, for every n ¥ N.

Now we prove two new estimates on the C0 norm of solutions of
the modified systems (HS)n for potential H with growth condition (H3)
or (H4).

Lemma 2.1. Suppose that H satisfies (H1) and (H3), {Hn} satisfies
Definition 2.1, and u(t) is a solution of (HS)n such that

F
T

0
(NHn(t, u), u) dt [ C, F

T

0
Hn(t, u) dt [ C,

then we have the following estimate

||u||C0 [ M

where M is independent of u and n.

Proof. Integrating (iv) of Definition 2.1 gives

Hn(t, u) \ a |u|ms − b, -u ¥ R2N,
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where a and b are independent of n using (iii) of Definition 2.1. Hence we
have

C \ F
T

0
Hn(t, u) dt \ aT F

T

0
|u|ms dt − bT \ aT(min

t ¥ ST

|u(t)|)ms − bT.

Therefore we have min t ¥ ST
|u(t)| [ C0 where C0 is independent of u and n.

Without loss generality, we may assume |u(t)| obtains its minimum at t=0,
and |u(0)| \ r0,

|u(t)| − |u(0)|=F
t

0

d
ds

|u(s)| ds [ F
t

0
|u̇(s)| ds=F

t

0
|NHn(t, u(s))| ds.

From (H3) and (iii) of Definition 2.1 we have

|NHn(t, u)| [ c(NHn(t, u), u), for r0 [ |u| [ Kn .

We first show for large enough n,

||u||C0 [ Kn .

If not, by passing a subsequence, for each n ¥ N, there exists un(t) and
tn ¥ ST, such that |un(tn)|=Kn and |un(t)| [ Kn for t ¥ [0, tn). Let

d= max
{(t, u) ¥ ST × R2N | H(t, u) < 0}

{|(NHn(t, u), u)|},

we then have

|un(tn)| [ F
tn

0
|NHn(s, un(s))| ds+|un(0)|

[ c F
tn

0
(NHn(s, un(s)), un(s)) ds+|un(0)|

[ c F
T

0
(NHn(s, un(s)), un(s)) ds+c dT+C0

[ cC+c dT+C0,

where c, d, C, and C0 are independent of u and n. But then Kn Q ., as
n Q ., which leads a contradiction. Hence there exists m ¥ N, depending
only on H and C such that for any n \ m, ||u||C0 [ Kn holds. Repeating this
argument, we find that for any n \ m,

|u(t)| [ cC+c dT+C0, -t ¥ ST.
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For k < m, from (iii) of Definition 2.1, we have

|NHk(t, u)| [ ck(NHk(t, u), u) - |u| \ r0,

for some suitable constant ck. By the same argument,

|u(t)| [ |u(0)|+F
t

0
ck(NHk(s, u(s)), u(s)) ds+dkT

[ ckC+dkT+C0, -t ¥ ST

where ck and dk are determined by Hk for k=1, 2,..., m − 1. Therefore

||u||C0 [ max{cC+c dT+C0, ckC+dkT+C0, k=1, 2,..., m − 1}=M,

which completes the proof. i

Lemma 2.2. Suppose that H(t, u) satisfies (H1) and (H4), {Hn}
satisfies Definition 2.1, and u(t) is a solution of system (HS)n such that

F
T

0
NHn(t, u) u dt [ C, F

T

0
Hn(t, u) dt [ C.

Then we have the following estimate

||u||C0 [ M

where M is independent of u and n.

Proof. As the first part of Proof of Lemma 2.1, we have min t ¥ ST
|u(t)|

[ C0 and

H(t, u) \ a |u|m − b, -u ¥ R2N,

where a and b are independent of n. Define

s(r)= sup
|u| \ r, t ¥ ST

Ht(t, u)
|u|m H(t, u)

, and d(r)= inf
|u| \ r, t ¥ ST

Ht(t, u)
|u|m H(t, u)

.

Then (H4) means

lim
r Q .

s(r)=0 or lim
r Q .

d(r)=0.
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Case I. Suppose we have lim r Q . s(r)=0.

Since Hn(t, u) > 0 for |u| \ r0, we have

C \ F
T

0
Hn(t, u) dt \ F

{Hn(t, u) \ 0}
Hn(t, u) dt − T sup

H(t, u) < 0, t ¥ ST

|H(t, u)|.

Hence we have

F
{Hn(t, u) \ 0}

Hn(t, u) dt [ C+T sup
H(t, u) < 0, t ¥ ST

|H(t, u)|=C̄,

where C̄ is a constant independent of n and u. By the definition of s(r), we
have that s(r) is decreasing to 0. Fix a large R > r0, such that

a − s(R) C̄ > 0.

First, we show |u|C0 [ Kn for large n. If not, by passing a subsequence
we may assume for each n, there exists un(t), an, and bn such that

(an, bn) … {t ¥ ST | R < |un(t)| < Kn}

and |un(an)|=R, |un(bn)|=Kn. Therefore we have

H(bn, un(bn)) − H(an, un(an))=F
bn

an

d
dt

Hn(t, u(t)) dt

=F
bn

an

[(NHn(t, un(t)), u̇n(t))+Ht(t, un(t))] dt

=F
bn

an

Ht(t, un(t)) dt

[ F
bn

an

s(|un(t)|) |un(t)|m H(t, un(t)) dt

[ s(R) Km
n F

bn

an

H(t, un(t)) dt

[ s(R) C̄Km
n .

On the other hand,

H(bn, un(bn)) − H(an, un(an)) \ a |un(bn)|m − b − max
|u| [ R, t ¥ ST

|H(t, u)|

=aKm
n − (b+ max

|u| [ R, t ¥ ST

|H(t, u)|).
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If we combine these two formulas, we get that

(a − s(R) C̄) Km
n [ b+ max

|u| [ R, t ¥ ST

|H(t, u)| .

Since a − s(R) C̄ > 0 and Kn Q . as n Q ., the left side tends to
infinity, but the right side is a constant independent of u and n. This leads a
contradiction. Hence there exists m ¥ N, which is determined by H(t, u)
and N only, such that for any n \ m, if u(t) is a critical point of In such
that In(u) [ N, we have |u|C0 [ Kn.

For n \ m, if ||u||C0 doesn’t have an n-independent upper bound M0,
then following the above proof with Kn replaced by Mn where Mn Q . as
n Q ., we also get a contradiction. For n < m, as the proof in last part of
Lemma 2.1, we have

|u(t)| [ ckC+dkT+C0, -t ¥ ST,

where ck and dk are determined by Hk, k=1, 2,..., m − 1.
Hence we have

||u||C0 [ max{M0, ckC+dkT+C0, k=1, 2,..., m − 1}=M.

Case II. Suppose we have lim r Q . d(r)=0.

We need only to modify the proof of Case I a little. We have

(a+d(R) C̄) Km
n [ b+ max

|u| [ R, t ¥ ST

|H(t, u)|,

where a+d(R) C̄ > 0 and Kn Q . as n Q .. Using the same argument as
in Case I, we have

||u||C0 [ M.

By combining these two cases, we obtain the Lemma. i

Remark 2.1. Here we proved these two Lemmas for general poten-
tials H, where we don’t make any assumptions on the potential H nearby
u=0 and convexity. In next part of this paper H(t, u) \ 0 is satisfied,
which implies d=dk=0 and C̄=C, then the bound M is independent of
the period T and depends on C and H only from the proofs of two
Lemmas. This is one key observation to get a priori estimates for subhar-
monics {uk} and answer the question of Ekeland and Hofer [5].
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Remark 2.2. When H(t, u)=1
2 (Au, u)+W(t, u), where A is a

2N × 2N symmetric matrix, and W(t, u) satisfies (H1) and (H3) (or (H4)),
notice that in the Proof of Lemma 2.1, the quadratic part doesn’t show up,
and in the Proof of Lemma 2.2, the quadratic part add a CK2

n term only,
Lemmas 2.1 and 2.2 still hold for such potentials.

3. PROOFS OF MAIN THEOREMS

In this section, following the ideas in Xu [12–16], and using the
estimates obtained in the last section, we first prove Theorems 1.2 and 1.3.

Proof of Theorems 1.2 and 1.3. We first modify the H by a sequence
{Hn} which satisfies Definition 2.1 and (H0). We do the truncation the
same as done in p. 533 of Ekeland [2] or p. 185 of Ekeland and Hofer [4].
In Ekeland [2] or Ekeland and Hofer [4], the authors dealt with the
truncation for H under autonomous case. Here we do the same truncation
to H(t, · ) for any fixed t ¥ ST as they did to H( · ). Hence for the new
systems (HS)n, the conditions of Theorem 1.1 are satisfied, then we have
subharmonics {un, k}k ¥ N for each system (HS)n.

Next we study the bound of {||un, k ||C0}n ¥ N for any fixed k ¥ N. As in
Ekeland and Hofer [5], define the Legendre transform {Gn} of {Hn} by

Gn(t, x)= sup
u ¥ R2N

[(x, u) − Hn(t, u)],

and by duality, the assumptions on {Hn} imply the following properties
of {Gn}:

(G1) ms
ms − 1 Gn(t, x) \ (NGn(t, x), x) > 0, - |x| \ r0, for every n ¥ N.

(G2) Gn(t, x) [ 1
a |x|

ms

ms − 1+b=G0(t, x), -x ¥ R2N.

For each integer n, k ¥ N define

Fn, k(x)=
1

kT
F

kT

0

51
2
1Jx(t), F

t

0
x(s) ds2+Gn(t, −Jx(t))6 dt.

If Fn, k has a critical point xn, k, then the system (HS)n, obtained from the
system (HS) by replacing H by Hn, has a kT-periodic solution un, k(t) with
u̇n, k(t)=xn, k(t). For fixed k ¥ N, define

cn, k=Fn, k(xn, k)

=
1

kT
F

kT

0

51
2
1Jxn, k(t), F

t

0
xn, k(s) ds2+Gn(t −Jxn, k(t))6 dt
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and by duality, there are the equivalent formula for {cn, k}:

cn, k=
1

kT
F

kT

0

51
2

(Ju̇n, k(t), un, k(t)) − Hn, k(t, un, k(t))6 dt.

Since {Hn(t, u)} satisfy (iv) of Definition 2.1 and un, k is a kT-periodic solu-
tion of the system (HS)n, we have

cn, k=
1

kT
F

kT

0

51
2

(NHn(t, un, k(t)), un, k(t)) dt − Hn, k(t, un, k(t))6 dt

\
1

kT
F

kT

0

11
2

−
1

ms
2 (NHn(t, un, k(t)), un, k(t)) dt+L

\
1

kT
F

kT

0

1ms

2
− 12 Hn, k(t, un, k(t)) dt+L, (3)

where L is a constant coming from (H1) or (iv) of Definition 2.1. Note that
L=0 if H satisfies the globally superquadratic condition which means
(H1) holds for r0=0.

In Ekeland and Hofer [5], all solutions {xn, k} are obtained via the
mountain pass theorem, i.e.,

cn, k=Fn, k(xn, k)=inf
c ¥ C

max
0 [ t [ 1

Fn, k(c(t)),

where C is the set of all continuous paths c: [0, 1] Q XkT, such that
c(0)=0 and c(1)=x0 for some suitable x0 such that Fn, k(x0) [ 0. Define

F0, k(x)=
1

kT
F

kT

0

51
2
1Jx(t), F

t

0
x(s) ds2+G0(t, −Jx(t))6 dt.

Since (G2) holds, for fixed k ¥ N, we have Fn, k(x) [ F0, k(x) for any path x
hold for all n ¥ N. Taking the path c0,

c0(s)=(sẏk, sq̇k),

with yk(t)=(0,..., 0, R) sin 2p
kT t, and qk(t)=(0,..., 0, R) cos 2p

kT t, where
R > 0 large enough such that F0, k(ẏk, q̇k) [ 0. Then we have

cn, k [ max
0 [ s [ 1

Fn, k(c0(s)) [ max
0 [ s [ 1

F0, k(c0(s)).

Define a= ms
ms − 1 ¥ (1, 2), then we have

F0, k(c0(s))=
1
a
12pRs

kT
2a

+b −
kT
2p

12pRs
kT

22

,
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also,

cn, k [ max
0 [ s [ 1

F0, k(c0(s))

[ max
0 [ s [ .

51
a

sa+b −
kT
2p

s26

=
1
a
11 −

a

2
21 ap

akT
2

a

2 − a

+b. (4)

If we combine (3) and (4), we get

F
kT

0
(NHn(t, un, k(t)), un, k(t)) dt [ D(kT)

− 2
2 − a+kT(b+D1L)=Ck,

F
kT

0
Hn(t, un, k(t)) dt [ D(kT)

− 2
2 − a+kT(b+D1L)=Ck.

Hence if k ¥ N is fixed, applying Lemma 2.1 (or Lemma 2.2) to
{un, k}n ¥ N, we get a constant Mk, which is dependent on Ck and H only,
such that ||un, k ||C0 [ Mk holds for all n ¥ N. Now for large n ¥ N such that
Kn > Mk, we have

||un, k ||C0 [ Mk < Kn.

On the other hand, we have

Hn(t, u)=H(t, u), - |u| < Kn.

This implies that un, k(t) is a solution of system (HS)k when ||un, k ||C0 < Kn.
Hence for any given k ¥ N, there exists a large enough n ¥ N such that

un, 1,..., un, k are subharmonics of the system (HS), i.e., Theorems 1.2 and
1.3 are proved. i

In next part we answer the question about a priori estimates on
subharmonics raised by Ekeland and Hofer in [5] when the system (HS)
has globally superquadratic potential H, which means the superquadratic
condition (H1) holds for all u ] 0.

Proof of Theorem 1.4. From the proofs of Theorems 1.1 and 1.2, we
need only to show there exist a uniform bound for {||un, k ||C0}n, k ¥ N where
{un, k}n, k ¥ N are those subharmonics that we obtain for (HS)n.

Since H satisfies (H0), we have

H(t, u) \ a(t, u) |u|2 \ A(|u|) |u|2, -(t, u) ¥ ST × R2N,
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where A(r)=min t ¥ ST, |u|=r a(t, u) > 0 for r > 0, from (H2) we have
A(r) Q 0, as r Q 0. By duality, G satisfies

G(t, x) [ B(|x|) |x|2, -(t, x) ¥ ST × R2N,

where B(r) Q . as r Q 0 and B(r)=o(1
r) near r=0.

Hence we have

Hn(t, u) \ max{a |u|ms − b, A(|u|) |u|2},

and by the duality,

Gn(t, x) [ min 31
a

|x|ms+b, B(|x|) |x|24=G0(t, x).

Using this G0, we get

cn, k [ max
0 [ s [ 1

F0, k(c0(s)).

Here

F0, k(c0(s))=min 31
a
12pRs

kt
2a

+b, B 12pRs
kT

2 : 2pRs
kT

:24−
kT
2p

12pRs
kT

22

.

Since 1
a ta+b − kT

2p t2 obtains its maximum at t=( ap
akT)1/(2 − a), which is

close to t=0, and for such a value t, B(t) |t|2 < 1
a ta+b for large k ¥ N.

Hence we need to estimate the maximum of

f(t)=B(t) t2 −
kT
2p

t2.

Since B(t) > kT
2p implies t [

2c1p

kT for some constant c1 depending on B only.
Hence from B(t)=o(1/t), we have B(t) [

c2
t for t [

2c1p

kT where c2 depending
on B only. Hence we have

f(t) [ c2t −
kT
2p

t2 [
c2

2

2kT
,

which yields

cn, k [
c2

2

2kT
,

where c2 is dependent on H only.
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Now H satisfies the globally super-quadratic potential, which implies
L=0 as said in the proof of Theorems 1.2 and 1.3. We have

F
kT

0
(NHn(t, un, k(t)), un, k(t)) dt [ C, F

kT

0
Hn(t, un, k(t)) dt [ C,

where C=c2
2D
2 depends on H only. Then from Lemma 2.1 (or Lemma 2.2),

and the Remark 2.1, we know that there is a uniform bound M for
{||un, k ||C0}n, k ¥ N, and M is dependent on H only. i

Remark 3.1. Notice that for large k, cn, k is small from above proof,
and the dependence of the related constants, we can find that ||uk ||C0 Q 0 as
k Q .. We will study the convergence of the subharmonics with more
general potential H in next section, which includes above as a special case.

4. CONVERGENCE OF SUBHARMONICS

In this section, we study the convergence of the subharmonics {uk}k ¥ R

for the system (HS), which potential H(t, u) has the form

H(t, u)=1
2(Au, u)+W(t, u),

satisfying

(A) A is a 2N × 2N symmetric matrix such that

s(JA) 5 iR ] ”

or

(A)c A is a 2N × 2N symmetric matrix such that

s(JA) 5 iR ] ”

and W(t, u) is T-periodic in t variable and globally superquadratic in u
variable; more precisely W(t, u) satisfies (H0), (H1) with r0=0, (H2), (H3)
(or (H4)) and

(H5) there are a \ m and c > 0 such that

W(t, u) \ c |u|a, -(t, u) ¥ R × R2N.

Following the ideas in Felmer [6] and Rabinowitz [10], we have
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Theorem 4.1. Assume A satisfies (A)c and W(t, u) satisfies above
conditions, then there is a sequence of pairwise geometrically distinct
subharmonics {uk(t)}k ¥ N … C1(R, R2N) of the system (HS) such that
||uk ||C1 Q 0 as k Q ..

Remark 4.1. In [6] and [10], without assuming the convex condi-
tion on the potential W(t, u), the above result without pairwise geometri-
cally distinct for each k ¥ N was proved under conditions (A)c, (H1) with
r0=0, (H2), (H3), and (H5) in Rabinowitz [10], and the existence of
subharmonics was proved under conditions (A)c, (H1) with r0=0, (H2),
a stronger condition similar to (H4) and (H5) in Xu [12] and [14]. Here
we study the convex Hamiltonian systems, we obtain pairwise geometri-
cally distinct subharmonics.

Following the ideas in Tanaka [11], we have

Theorem 4.2. Assume A satisfies (A) and W(t, u) satisfies above
conditions, then there is a sequence of pairwise geometrically distinct sub-
harmonics {uk(t)}k ¥ N … C1(R, R2N) of the system (HS) such that

(i) there are constants m, M > 0 independent of k ¥ N such that

m [ F
kT

0
[1

2(−Ju̇k, uk) − H(t, uk)] dt [ M;

(ii) moreover {uk(t)}k ¥ N is compact in the following sense: for any
sequence of integers kn Q ., there exists a subsequence {kni

}i ¥ N

and a nontrivial homoclinic orbit u.(t) emanating from 0 such that

ukni
(t) Q u.(t) in C1

loc(R, R2N), as i Q ..

Remark 4.2. In Tanaka [11], without assuming the convex condi-
tion on the potential W(t, u), the above result without pairwise geometri-
cally distinct for each k ¥ N was proved under conditions (A)c, (H1) with
r0=0, (H2), (H3), and (H5). Here we study the convex Hamiltonian
systems, we obtain pairwise geometrically distinct subharmonics. When
W(t, u) satisfies (H3), our result on the existence of the homoclinic orbit is
a special case of Tanaka [11], but when W(t, u) satisfies (H4), our result
on the existence of the homoclinic orbit is new. In Xu [13] and [16], one
can find the existence of homoclinic orbits for Hamiltonian system (HS)
under general setting.
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To prove the existence of pairwise geometrically distinct subharmonics
{uk(t)}k ¥ N for the system (HS) with potential H(t, u)=1

2 (Au, u)+W(t, u),
we need only modify the argument of Section 3 a little by adding the
quadratic part of H(t, u) to the quadratic term in the variational functional
F(u). As Section 3, define the Legendre transform {Vn} of {Wn} by

Vn(t, x)= sup
u ¥ R2N

[(x, u) − Wn(t, u)].

For each integer n, k ¥ N define

Fn, k(x)=
1

kT
F

kT

0

51
2
1Jx(t)+F

t

0
x(s) ds, F

t

0
x(s) ds2+Vn(t, −Jx(t))6 dt.

If Fn, k has a critical point xn, k, then the system (HS)n, obtained from the
system (HS) by replacing W by Wn, has a kT-periodic solution un, k(t) with
u̇n, k(t)=xn, k(t). For fixed k ¥ N, define

cn, k=Fn, k(xn, k)

=
1

kT
F

kT

0

51
2
1Jxn, k(t)+F

t

0
x(s) ds, F

t

0
xn, k(s) ds2+Vn(t, −Jxn, k(t))6 dt

and by duality, there are the equivalent formula for {cn, k}:

cn, k=
1

kT
F

kT

0

51
2

(Ju̇n, k(t), un, k(t)) − Hn, k(t, un, k(t))6 dt.

Then using the same argument as Section 3, we obtain the existence of
subharmonics {uk(t)}k ¥ N for the system (HS) and {uk(t)}k ¥ N has uniform
C0 upper bound since W(t, u) satisfies the globally superquadratic con-
dition. {uk(t)}k ¥ N has uniform C1 upper bound since each uk(t) satisfies
the equation, so we can regard {uk(t)}k ¥ N as the subharmonics of some
modified system (HS)n for a fixed large n ¥ N.

Now for the convergent result in Theorem 4.1, we can use the same
argument in Felmer [6] and Rabinowitz [10], where got the same conver-
gence results as Theorem 4.1 for the potential H having growth rate |u|m at
infinity, since all the subharmonics {uk} are obtained from some modified
system (HS)n for some large n, whose potential grows as |u|m at infinity. We
omit the details here. Hence Theorem 4.1 holds.

For the convergent result in Theorem 4.2, since we have had uniform
C1 upper bound of {uk(t)}k ¥ N, we need only follow the argument of
Sections 2.2 and 2.3 in Tanaka [11], then we have Theorem 4.2 holds.
Here we omit the details also.
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Remark 4.3. In Xu [15], the author deals with similar problem on
subharmonics and their asymptotic behaviors of the first order Hamilto-
nian systems without assuming the convexity on u-variable.
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