
The Chromatic Polynomial
March 6, 2021

Given a set of k colors, there is a certain number of ways to color a graph G with those
colors. If k is too small , that number is 0 (because you don’t have enough colors to color
G). If k is large enough, that number is a positive number. So we can define a function on
positive integers, which I call χG, by letting χG(k) = the number of colorings of G with k
colors. Let’s call this function the chromatic function of G. (Don’t confuse χG, the function,
with χ(G), the chromatic number.)

This function has the property that it equals 0 for every k < χ(G) and is positive for
every k ≥ χ(G), because if you can color a graph with k colors, you can also color it with
any larger set of colors. (Remember, it’s not necessary to use all the colors.)

Look at examples. You have k colors. Consider complete graphs, where all vertices are
adjacent so no two can have the same color.

Ex. 1 For the tiny complete graph K1 you only pick one color. There is one way to do that,
so χK1(k) = k.

Ex. 2 For the very small complete graph K2, say the vertices are v1, v2. You pick one color
for v1; there are k ways to do that. Then you pick a different color for v2; there are
k− 1 ways to do that (for each choice of color for v1) because you used one color. The
number of ways to do this process is k · (k − 1), so χK1(k) = k(k − 1).

Ex. 3 For the small complete graph K3, say the vertices are v1, v2, v3. First choose a color
for v1: there are k ways to choose it. Now there are k − 1 colors left, from which you
choose one for v2; there are k − 1 choices for this color. Then you choose one of the
k − 2 remaining colors for v3. The total number of ways to choose the three colors is
k · (k − 1) · (k − 2), so χK1(k) = k(k − 1)(k − 2).

Ex. 4 Let’s do any Kp. For the first vertex (it doesn’t matter which vertex this is) we choose
from k colors. For the next vertex we have k − 1 colors to choose from. For the third
vertex we have k − 2 colors to choose from. Etc. For the p-th vertex, we used p − 1
colors so we have k − (p − 1) = k − p + 1 colors to choose from. The total number
of ways to color the p vertices is the product, k(k − 1)(k − 2) · · · (k − [p− 1]), so this
equals χKp(k).

But suppose we don’t have enough colors, i.e., k < p? The formula should give
0. E.g., if we have p − 1 colors, there is no way to color Kp. But that’s okay:
our formula has the factor k − [p − 1] = 0, which is the number of colorings with
p − 1 colors. Similarly, for any number of colors m < p, there is a factor k − m in
χKp(k) = k(k − 1)(k − 2) · · · (k − [p− 1]); then with k = m colors we have the factor
k −m = 0 so we get the right answer, χKp(m) = 0, from our formula.

Every chromatic function χKp(k) is a polynomial of degree p and it is monic (the leading
coefficient is 1). Here is the surprising fact:

Theorem 1. Let G be any graph with p vertices. The chromatic function of G is a polynomial
of degree p and is monic.

So we change the name of the function and call it the chromatic polynomial of G. Just
to explain: I’m saying there is a polynomial, χG(x), such that for each positive integer k,
χG(k) is the number of ways to color G in k colors. This is not an obvious fact.

The chromatic polynomial turns out to have applications in geometry and in physics, but
I will ignore that.



A theorem should have a proof, so here it is.

Proof. Let’s define another function: ψG(k) = the number of ways to color G using every one
of the k colors. This is a very different function from the chromatic polynomial. ψG(k) = 0
if k is too small (specifically, k < χ(G)) and also if k is too large (k > p, because there are
too many colors to use them all).

We can compute the chromatic polynomial from the numbers ψG(1), ψG(2), . . . , ψG(p) as
follows: Suppose we have k colors available. We can pick the number of colors to use, say
m (where m ≤ k) and then use all those m colors to color G. There are

(
k
m

)
ways to choose

the m colors out of our k available colors. For each choice of the m colors, there are ψG(m)
ways to color G using those m colors. So the total number of ways to color G using exactly
m colors from our set of k colors is ψG(m)

(
k
m

)
. But we could have picked any value of m

from 1 to p, so we should sum them up to get the total number of ways to color G with our
k available colors, i.e.,

χG(k) =

p∑
m=1

ψG(m)

(
k

m

)
.

Now we do a little algebra. You probably know that
(
k
m

)
= k!

m!(k−m)!
. You may have seen

that this equals k(k−1)···(k−m+1)
m!

. Let’s write this out:(
k

m

)
=

k!

m!(k −m)!
=
k(k − 1) · · · (k −m+ 1)(k −m)(k −m− 1) · · · (2)(1)

m!(k −m)(k −m− 1) · · · (2)(1)

=
k(k − 1) · · · (k −m+ 1)

m!
by cancelling common factors in the numerator and denominator.

So now I can write

χG(k) =

p∑
m=1

ψG(m)
k(k − 1) · · · (k −m+ 1)

m!
=

p∑
m=1

ψG(m)

m!
k(k − 1) · · · (k −m+ 1).

Notice that k(k−1) · · · (k−m+1) is a monic polynomial in k of degree m. So we are adding
up polynomials of degrees m = 1, 2, . . . , p with coefficients ψG(m)/m!. The highest degree is
p, so our sum is a polynomial of degree at most p.

The term kp arises only fromm = p and the coefficient is ψG(p)/p!. I claim that ψG(p) = p!.
That is because to color using exactly p colors, we must give every vertex a separate one
of the p colors, and there are p! ways to do that. So the coefficient of kp is 1. That means
the highest-degree term in the polynomial χG(k) is 1kp, i.e., we have a monic polynomial of
degree p. Done! �

I didn’t have to know the values of the numbers ψG(m). All I need to know is that they
don’t depend on k, the actual number of colors. In fact, most of the numbers ψG(m) are
virtually impossible to calculate. We need a different way to find the chromatic polynomial.
A method exists; it uses deletion and contraction of one edge at a time. This will come later,
if time allows.
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