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Subject Classification Codes

A code in lower case means the topic appears implicitly but not explicitly. A code
may be refined through being suffixed by a parenthesised code, as S(M) denoting signed
matroids (while S: M would indicate matroids of signed objects; thus S(M): M means
matroids of signed matroids).

A Adjacency matrix, eigenvalues.
Alg Algorithms.
Aut Automorphisms, symmetries, group actions.
Bic Bicircular matroids.
Col Vertex coloring.

D Duality (graphs, matroids, or matrices).
E Enumeration of types of signed graphs, etc.

EC Even-circle matroids.
Exp Expository.
Exr Interesting exercises (in an expository work).

G Connections with geometry, including linear programming, toric varieties, complex
complement, etc.

Gen Generalization.
GG Gain graphs, voltage graphs, biased graphs; includes Dowling lattices.
GN Generalized or gain networks. (Multiplicative real gains.)

I Incidence matrix, Kirchhoff or Laplacian matrix.
M Matroids and geometric lattices, chain-groups, flows.

MF Matroidal families.
N Numerical and algebraic invariants (e.g., counts, polynomials, degrees) of signed,

gain, biased graphs: number of bases, etc.
O Orientations, bidirected graphs.
P All-negative or antibalanced signed graphs; parity-biased graphs.

Ref Many references.
SG Signed graphs: mathematical properties.
SM Signed matroids.
Str Structure theory.
T Topology applied to graphs; surface embeddings. (Not applications to topology.)
X Extremal problems.

Standard symbols and terminology:

Γ is a graph (V,E) of order n = |V | , undirected, possibly allowing loops and multiple
edges. It is normally finite unless otherwise indicated.

Σ is a signed graph (V,E, σ).
Φ is a gain graph (V,E, ϕ). ‖Φ‖ is its underlying graph.
Ω is a biased graph. ‖Ω‖ is its underlying graph.

G( ) is the frame (bias) matroid of a signed, gain, or biased graph.

L( ), L0( ) are the lift and extended lift matroids.
polygon, circle: The graph of a simple closed path, or its edge set.

cycle: In an oriented graph or signed, gain, or biased graph, a frame matroid circuit
oriented to have no source or sink.
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Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin
1993a Network Flows: Theory, Algorithms, and Applications. Prentice Hall, Englewood

Cliffs, N.J., 1993. MR 94e:90035.
Ch. 16: “Generalized flows”. Sect. 15.5: “Good augmented forests and

linear programming bases”, Thm. 15.8, makes clear the connection between
flows with gains and the frame matroid of the underlying gain graph. Some
terminology: “breakeven cycle” = balanced polygon; “good augmented for-
est” = basis of the frame matroid, assuming the gain graph is connected and
unbalanced. (GN: M(Bases), Alg: Exp, Ref)

Martin Aigner
1979a Combinatorial Theory. Grundl. math. Wiss., Vol. 234. Springer-Verlag, Berlin,

1979. Reprint: Classics in Mathematics. Springer-Verlag, Berlin, 1997. MR
80h:05002. Zbl. 415.05001, 858.05001 (reprint).

In §VII.1, pp. 333–334 and Exerc. 13–15 treat the Dowling lattices of
GF(q)× and higher-weight analogs. (GG: Gen: M: N, Str)

Gautam Appa, Balázs Kotnyek, Konstantinos Papalamprou, and Leonidas Pit-
soulis
2007a Optimization with binet matrices. Operations Res. Letters 35 (2007), 345–352.

MR 2008a:90052. (O: I(Gen), m)

Thomas Andreae
1978a Matroidal families of finite connected nonhomeomorphic graphs exist. J. Graph

Theory 2 (1978), 149–153. MR 80a:05160. Zbl. 401.05070.
Partially anticipates the “count” matroids of graphs (see Whiteley (1996a)).

(MF, Bic, EC)

Christos A. Athanasiadis
†1996a Characteristic polynomials of subspace arrangements and finite fields. Adv. Math.

122 (1996), 193–233. MR 97k:52012. Zbl. 872.52006.
Treats the canonical lift representations (as affine hyperplane arrangements)

of various gain graphs and signed gain graphs with additive gain group Z+ .
The article is largely a series of (sometimes brilliant) calculations of chro-
matic polynomials (mutatis mutandis, the characteristic polynomials of the
representing arrangements) modulo a large integer q using gain graph col-
oring, though disguised as applications of Crapo–Rota’s Critical Theorem.
The fundamental principle is that, if q is larger than the largest gain of a
circle, then Z+ can be replaced as gain group by Z+

q without changing the
chromatic polynomial (a consequence of Zaslavsky (1995b), Thm. 4.2)—and
the analog for signed gain graphs, whose theory needs to be developed. A
non-graphical result of the general method is a unified proof (Thm. 2.4) of
the theorem of Blass and Sagan (1998a).

§3: “The Shi arrangements”: these represent Latb{0, 1} ~Kn and signed-

graph analogs. §4: “The Linial arrangement”: this represents Latb{1} ~Kn .
§5: “Other interesting hyperplane arrangements”, treats: the arrangement
representing Latb AKn where A = {−m, . . . ,m−1,m} [which is the semilat-
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tice of m -composed partitions; see Zaslavsky (2002a), Ex. 10.5, also Edelman
and Reiner (1996a)], and several generalizations, including to arbitrary sign-
symmetric gain sets L and to Weyl analogs; also, an antibalanced analog
of the An Shi arrangement (Thm. 5.4); and more. Most impressive result:
Thm. 5.2: Let A be a finite set of integers such that 0 /∈ A = −A and let
A0 = A ∪ {0} . For Φ = A0Kn and large integral λ , χ∗

Φ(λ)/λ is the coeffi-
cient of xλ−n in (1 − x)−1 − fA(x)/x where fA is the ordinary generating
function for A . From this χ∗

AKn

(λ)/λ is derived.

[The signed affinographic arrangements represent a kind of signed gain
graph whose exact nature has not yet been penetrated by gain graph theory.]

(sg, gg: G, M, N)

1997a A class of labeled posets and the Shi arrangement of hyperplanes. J. Combin.
Theory Ser. A 80 (1997), 158–162. MR 98d:05008. Zbl. 970.66662.

The arrangement represents Latb{0, 1} ~Kn . (gg: G, M, N)

1998a On free deformations of the braid arrangement. European J. Combin. 19 (1998),
7–18. MR 99d:52008. Zbl. 898.52008.

The arrangements considered are the subarrangements of the projectivized
Shi arrangements of type An−1 that contain An−1 . Thms. 4.1 and 4.2 char-
acterize those that are free or supersolvable. The extended Shi arrangements,

representing L0([1− a, a] ~Kn) where a ≥ 1, and a mild generalization, are of
use in the proof. (gg: G, M, N)

1998b On noncrossing and nonnesting partitions for classical reflection groups. Electronic
J. Combin. 5 (1998), Research Paper R42, 16 pp. (electronic).

§5, “Nonnesting partitions of fixed type”, has calculations like those in
(1996a) for affinographic arrangements representing additional types of gain
graphs [of a kind that is not yet fully understood]. (gg: G, m, N)

1999a Extended Linial hyperplane arrangements for root systems and a conjecture of
Postnikov and Stanley. J. Algebraic Combin. 10 (1999), 207–225. MR 2000i:52039.
Zbl. 948.52012. (gg: G, m, N)

1999b Piles of cubes, monotone path polytopes, and hyperplane arrangements. Discrete
Comput. Geom. 21 (1999), no. 1, 117–130. MR 99j:52015. Zbl. 979.52002.

The proof of Proposition 4.2 is essentially gain-graphic. (gg: m: G: N)

2000a Deformations of Coxeter hyperplane arrangements and their characteristic polyno-
mials. In: Singularities and Arrangements (Proc., Arrangements – Tokyo, 1998),
pp. 1–26. Adv. Studies Pure Math., 27. 2000. (gg: G, m, N)

G. David Bailey
20xxa Inductively factored signed-graphic arrangements of hyperplanes. Submitted.

Continues Edelman and Reiner (1994a). (SG: G, M)

V. Balachandran
1976a An integer generalized transportation model for optimal job assignment in com-

puter networks. Oper. Res. 24 (1976), 742–759. MR 55 #12068. Zbl. 356.90028.
(GN: M(bases))

V. Balachandran and G.L. Thompson
1975a An operator theory of parametric programming for the generalized transportation
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problem: I. Basic theory. II. Rim, cost and bound operators. III. Weight operators.
IV. Global operators. Naval Res. Logistics Quart. 22 (1975), 79–100, 101–125,
297–315, 317–339. MR 52 ##2595, 2596, 2597, 2598. Zbl. 331.90048, 90049,
90050, 90051. (GN: M)

Egon Balas
1966a The dual method for the generalized transportation problem. Management Sci. 12

(1966), no. 7 (March, 1966), 555–568. MR 32 #7232. Zbl. 142, 166 (e: 142.16601).
(GN: M(bases))

E. Balas and P.L. Ivanescu [P.L. Hammer]
1965a On the generalized transportation problem. Management Sci. 11 (1965), no. 1

(Sept., 1964), 188–202. MR 30 #4599. Zbl. 133, 425 (e: 133.42505). (GN: M)

Matthias Beck and Thomas Zaslavsky
2006a Inside-out polytopes. Advances in Math. 205 (2006), no. 1, 134–162. MR 2007e:-

52017. Zbl. 1107.52009.
§5: “In which we color graphs and signed graphs.” A geometric interpreta-

tion of signed graph coloring by lattice points and hyperplane arrangements
unifies the chromatic and zero-free chromatic polynomials and gives immedi-
ate proofs of theorems on the chromatic polynomials and acyclic orientations.

(SG: Col: G, M: N)

2006b The number of nowhere-zero flows in graphs and signed graphs. J. Combin. Theory
Ser. B 96 (2006), no. 6, 901–918. MR 2007k:05084. Zbl. 1119.05105.

The nowhere-zero flow polynomial of a signed graph, for flows in an odd
abelian group, and the integral nowhere-zero flow quasipolynomial with pe-
riod 2. (SG: Flows: G: M: N)

Curtis Bennett and Bruce E. Sagan
1995a A generalization of semimodular supersolvable lattices. J. Combin. Theory Ser.

A 72 (1995), 209–231. MR 96i:05180. Zbl. 831.06003.
To illustrate the generalization, most of the article calculates the chromatic

polynomial of ±K
(k)
n (called DBn,k ; this has half edges at k vertices), builds

an “atom decision tree” for k = 0, and describes and counts the bases of

G(±K
(k)
n ) (called Dn ) that contain no broken circuits. (SG: M, N, col)

M.K. Bennett, Kenneth P. Bogart, and Joseph E. Bonin
1994a The geometry of Dowling lattices. Adv. Math. 103 (1994), 131–161. MR 95b:05050.

Zbl. 814.51003.
Drawing an analogy between Desargues’ and Pappus’ theorems in projective

spaces and similar incidence theorems in Dowling geometries. [The rigorous
avoidance of gain graphs makes the results less obvious than they could be.]

(gg: M, G)

Moussa Benoumhani

1996a On Whitney numbers of Dowling lattices. Discrete Math. 159 (1996), 13–33. MR
98a:06005. Zbl. 861.05004. (gg: M: N)

1997a On some numbers related to Whitney numbers of Dowling lattices. Adv. Appl.
Math. 19 (1997), 106–116. MR 98f:05004. Zbl. 876.05001.

Generating polynomials and infinite generating series for multiples of Whit-
ney numbers of the second kind, analogous to usual treatments of Stirling
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numbers. (gg: M: N)

1999a Log-concavity of Whitney numbers of Dowling lattices. Adv. Appl. Math. 22
(1999), 186–189. MR 2000i:05008. Zbl. 918.05003.

Logarithmic concavity of Whitney numbers of the second kind is deduced
by proving that their generating polynomial has only real zeros. [Cf. Dur
(1986a).] (gg: M: N)

Anders Björner and Bruce E. Sagan
1996a Subspace arrangements of type Bn and Dn . J. Algebraic Combin. 5 (1996), 291–

314. MR 97g:52028. Zbl. 864.57031.
They study lattices Πn,k,h (for 0 < h ≤ k ≤ n) consisting of all span-

ning subgraphs of ±K◦
n that have at most one nontrivial component K ,

for which K is complete and |V (K)| ≥ k if K is balanced, K is induced
and |V (K)| ≥ h if K is unbalanced (also a generalization). Characteristic
polynomial, homotopy and homology of the order complex, cohomology of
the real complement. (SG: G, M(Gen): N, col)

Anders Björner, Michel Las Vergnas, Bernd Sturmfels, Neil White, and Günter
M. Ziegler
1993a Oriented Matroids. Encyclop. Math. Appl., Vol. 46. Cambridge University Press,

Cambridge, Eng., 1993. MR 95e:52023. Zbl. 773.52001.
The adjacency graph of bases of an oriented matroid is signed, using circuit

signatures, to make the “signed basis graph”. See §3.5, “Basis orientations
and chirotopes”, pp. 132–3. (M: SG)

Andreas Blass
1995a Quasi-varieties, congruences, and generalized Dowling lattices. J. Algebraic Com-

bin. 4 (1995), 277–294. MR 96i:06012. Zbl. 857.08002. Errata. Ibid. 5 (1996),
167. MR 96i:06012, 1382046. Zbl. 857.08002.

Treats the generalized Dowling lattices of Hanlon (1991a) as congruence
lattices of certain quasi-varieties, in order to calculate characteristic polyno-
mials and generalizations. (M(gg): Gen: N)

Andreas Blass and Bruce Sagan
1997a Möbius functions of lattices. Adv. Math. 127 (1997), 94–123. MR 98c:06001. Zbl.

970.32977.
§3: “Non-crossing Bn and Dn ”. Lattices of noncrossing signed partial

partitions. Atoms of the lattices are defined as edge fibers of the signed
covering graph of ±K◦

n , thus corresponding to edges of ±K◦
n . [The “half

edges” are perhaps best regarded as negative loops.] The lattices studied,
called NCBn, NCDn, NCBDn(S), consist of the noncrossing members of

the Dowling and near-Dowling lattices of the sign group, i.e., LatG(±K
(T )
n )

for T = [n], ∅, [n]\S , respectively. (SG: G, N, cov)

1998a Characteristic and Ehrhart polynomials. J. Algebraic Combin. 7 (1998), 115–126.
MR 99c:05204. Zbl. 899.05003.

Signed-graph chromatic polynomials are recast geometrically by observing
that the number of k -colorings equals the number of points of {−k,−k +
1, . . . , k−1, k}n that lie in none of the edge hyperplanes of the signed graph.
The interesting part is that this generalizes to subspace arrangements of
signed graphs and, somewhat ad hoc, to the hyperplane arrangements of the
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exceptional root systems. [See also Athanisiadis (1996a), Zaslavsky (20xxi).
For applications see articles of Sagan and Zhang.]

(SG, Gen: M(Gen), G: col, N)

T.B. Boffey
1982a Graph theory in Oper. Research. Macmillan, London, 1982. Zbl. 509.90053.

Ch. 10: “Network flow: extensions.” 10.1(g): “Flows with gains,” pp. 224–
226. 10.3: “The simplex method applied to network problems,” subsection
“Generalised networks,” pp. 246–250. (GN: m(bases): Exp)

Ethan D. Bolker
1977a Bracing grids of cubes. Environment and Planning B 4 (1977), 157–172.

The elementary 1-cycles associated with circuits of G(−Γ) (“bicycles”) are
crucial. [Their first publication, I believe.] (EC)

1979a Bracing rectangular frameworks. II. SIAM J. Appl. Math. 36 (1979), 491–503.
MR 81j:73066b. Zbl. 416.70010.

The elementary 1-cycles associated with circuits of G(Σ) (“bicycles”),
mostly for Σ = −Γ. General signed graphs appear at Thm. 7, p. 505.
Dictionary: “Signed bicycle” = elementary 1-cycle (circulation) associated
with a circuit. (EC, SG: M, i)

Joseph E. Bonin
See also M.K. Bennett.

1993a Automorphism groups of higher-weight Dowling geometries. J. Combin. Theory
Ser. B 58 (1993), 161–173. MR 94k:51005. Zbl. 733.05027, (789.05017).

A weight-k higher Dowling geometry of rank n , Qn,k(GF(q)×), is the union
of all coordinate k -flats of PG(n−1, q): i.e., all flats spanned by k elements
of a fixed basis. If k > 2, the automorphism groups are those of PG(n−1, q)
for q > 2 and are symmetric groups if q = 2. (gg: Gen: M, Aut)

1993b Modular elements of higher-weight Dowling lattices. Discrete Math. 119 (1993),
3–11. MR 94h:05018. Zbl. 808.06012.

See definition in (1993a). For k > 2 the only nontrivial modular flats are the
projective coordinate k -flats and their subflats. This gives some information
about the characteristic polynomials [which, however, are still only partially
known]. [Kung (1996a), §6, has further results.] (gg: Gen: M: N)

1995a Automorphisms of Dowling lattices and related geometries. Combin. Probab. Com-
put. 4 (1995), 1–9. MR 96e:05039. Zbl. 950.37335.

The automorphisms of a Dowling geometry of a nontrivial group are the
compositions of a coordinate permutation, switching, and a group automor-
phism. A similar result holds, with two exceptions, if some or all coordinate
points are deleted. [A third exception is missed: Q′

3(Z3).] (gg: M: Aut)

1996a Open problem 6. A problem on Dowling lattices. In: Joseph E. Bonin, James
G. Oxley, and Brigitte Servatius, eds., Matroid Theory (Proc., Seattle, 1995), pp.
417–418. Contemp. Math., Vol. 197. Amer. Math. Soc., Providence, R.I., 1996.

Problem 6.1. If a finite matroid embeds in the Dowling geometry of a
group, does it embed in the Dowling geometry of some finite group? [No;
see Brooksbank, Qin, Robertson, and Seress (2004a).] (gg: M)
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2006a Extending a matroid by a cocircuit. Discrete Math. 306 (2006), no. 8–9, 812–819.
MR 2006m:05045. Zbl. 1090.05008.

§4 concerns Dowling lattices. (GG: M)

Joseph E. Bonin and Kenneth P. Bogart
1991a A geometric characterization of Dowling lattices. J. Combin. Theory Ser. A 56

(1991), 195–202. MR 92b:05019. Zbl. 723.05033. (gg: M)

Joseph E. Bonin and Joseph P.S. Kung
1994a Every group is the automorphism group of a rank-3 matroid. Geom. Dedicata 50

(1994), 243–246. MR 95m:20005. Zbl. 808.05029. (gg: M: Aut)

Joseph E. Bonin and William P. Miller
1999a Characterizing combinatorial geometries by numerical invariants. European J.

Combin. 20 (1999), 713–724. MR 2001a:51007. Zbl. 946.05020.
Dowling geometries are characterized amongst all simple matroids by nu-

merical properties of large flats of ranks ≤ 7 (Thm. 3.4); amongst all ma-
troids by their Tutte polynomials. (gg: M)

Joseph E. Bonin and Hongxun Qin
2000a Size functions of subgeometry-closed classes of representable combinatorial geome-

tries. Discrete Math. 224 (2000), 37–60. MR 2001g:05031. Zbl. 968.52009.

Extremal matroid theory. The Dowling geometry Q3(GF(3)×) appears
as an exceptional extremal matroid in Thm. 2.10. The extremal subset
of PG(n − 1, q) that does not contain the higher-weight Dowling geometry
Qm,m−1(GF(q)×) (see Bonin 1993a) is found in Thm. 2.14.

(GG, Gen: M: X, N)

André Bouchet
1983a Nowhere-zero integral flows on a bidirected graph. J. Combin. Theory Ser. B 34

(1983), 279–292. MR 85d:05109. Zbl. 518.05058.
Introduces nowhere-zero flows on signed graphs. [The bidirection is inessen-

tial; it is a device to keep track of the flow.] A connected, coloop-free signed
graph has a nowhere-zero integral flow with maximum weight ≤ 216. The
value 216 cannot be replaced by 5, but: Conjecture(Bouchet): it can be re-
placed by 6. [See Khelladi (1987a) for some progress on this. See Jensen and
Toft (1995a) for other contributions.] A topological application is outlined.

(SG: M, O, Flows)

Peter Brooksbank, Hongxung Qin, Edmund Robertson, and Ákos Seress
2004a On Dowling geometries of infinite groups. J. Combin. Theory Ser. A 108 (2004),

no. 1, 155–158. MR 2005e:51014. Zbl. 1056.51011.
Solution of Bonin (1996a). They produce a finite gain graph that has gains

in no finite group. (gg: M)

Gerald G. Brown and Richard D. McBride
1984a Solving generalized networks. Management Sci. 30 (1984), 1497–1523. Zbl. 554.-

90032. (GN: M(bases))

Richard A. Brualdi and Nancy Ann Neudauer
1997a The minimal presentations of a bicircular matroid. Quart. J. Math. Oxford (2) 48

(1997), 17–26. MR 97m:05065. Zbl. 938.05023.
Minimal transversal presentations of G(Γ, ∅), given Γ. (Bic)
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Seth Chaiken
1982a A combinatorial proof of the all minors matrix tree theorem. SIAM J. Algebraic

Discrete Methods 3 (1982), 319–329. MR 83h:05062. Zbl. 495.05018.
§4: “Extenson to signed graphs”. Generalizing Zaslavsky (1982a), an all-

minors matrix-tree theorem for weighted signed digraphs and a corollary for
weighted signed graphs. Given: a signed graph on vertex set [n] . For a
Kirchoff (or “Laplace”)-type n×n matrix K (A in the paper), K(Ū , W̄ ) is
K with the rows indexed by U and the columns indexed by W deleted. Take
U,W ⊆ V with |U | = |W | = k ≤ n . Then detK(Ū , W̄ ) is a sum of terms,
one for each independent set F of rank n − k in G(Σ) in which each tree
component contains just one vertex from U and one from W . Each term has
a sign depending partly on the number of negative paths by which F links
U to W and partly on the linking pattern, and with magnitude 4c·(weight
product of F ), where c = # of circles in F . [The credit to Zaslavsky is
overly generous: only the case U = W = ∅ is his; the others are new.] The
digraph version replaces 4 by 2 and imposes conditions on arc directions in
the tree and nontree components of F .
A brief remark describes a gain-graphic (“voltage-graphic”) generalization.

(SG, GG: A, I, m)

Vijaya Chandru, Collette R. Coullard, and Donald K. Wagner
1985a On the complexity of recognizing a class of generalized networks. Oper. Res.

Letters 4 (1985), 75–78. MR 87a:90144. Zbl. 565.90078.
Determining whether a gain graph with real multiplicative gains has a

balanced polygon, i.e., is not contrabalanced, is NP-hard. So is determining
whether a real matrix is projectively equivalent to the incidence matrix of a
contrabalanced real gain graph. (GN, Bic: I, Alg)

Zhi-Hong Chen, Ying-Qiang Kuang, and Hong-Jian Lai
1999a Connectivity of cycle matroids and bicircular matroids. Ars Combin. 52 (1999),

239–250. MR 2001d:05032. Zbl. 977.05027.
The relationship between graph structure and the Tutte, verticial, and

cyclic connectivities of the bicircular matroid. (Bic: Str)

Timothy Y. Chow
2003a Symplectic matroids, independent sets, and signed graphs. Discrete Math. 263

(2003), 35–45. MR 2004a:05033. Zbl. 1014.05017.
§4, “From graphs to symplectic matroids”: The matroid union of G(Γ, σ)

over all signatures of a fixed graph yields a symplectic matroid. (SG: M)

Lane Clark
2004a Limit theorems for associated Whitney numbers of Dowling lattices. J. Combin.

Math. Combin. Comput. 50 (2004), 105–113. MR 2005b:06007. Zbl. 1053.06003.
Aymptotics of numbers introduced by Benoumhani (1997a). (gg: M: N)

Gérard Cornuéjols
See also M. Conforti.

2001a Combinatorial Optimization: Packing and Covering. CBMS-NSF Reg. Conf. Ser.
in Appl. Math., Vol. 74. Soc. Indust. Appl. Math., Philadelphia, 2001. MR
2002e:90004. Zbl. 972.90059.

The topic is linear optimization over a clutter, esp. a “binary clutter”, which
is the class of negative circuits of a signed binary matroid. The class C−(Σ) is
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an important example (see Seymour 1977a), as is its blocker bC−(Σ) [which
is the class of minimal balancing edge sets; hence the frustration index =
minimum size of a member of the blocker.

Ch. 5: “Graphs without odd-K5 minors”, i.e., signed graphs without −K5

as a minor. Some esp. interesting results: Thm. 5.0.7 (special case of Seymour
(1977a), Main Thm.): The clutter of negative polygons of Σ has the “Max-
Flow Min-Cut Property” (Seymour’s “Mengerian” property) iff Σ has no
−K4 minor. Conjecture 5.1.11 is Seymour’s (1981a) beautiful conjecture
(his “weak MFMC” is here called “ideal”). §5.2 reports the partial result of
Guenin (2001a). (See also §8.4.)

Def. 6.2.6 defines a signed graph “G(A)” of a 0,±1-matrix A , whose trans-
posed incidence matrix is a submatrix of A . §6.3.3: “Perfect 0,±1-matrices,
bidirected graphs and conjectures of Johnson and Padberg” (1982a), asso-
ciates a bidirected graph with a system of 2-variable pseudoboolean inequal-
ities; reports on Sewell (1997a) (q.v.).

§8.4: “On ideal binary clutters”, reports on Cornuéjols and Guenin (2002a),
Guenin (1998a), and Novick and Sebö (1995a) (qq.v.).

(SM, SG: M, G, I(Gen), O: Exp, Ref, Exr)

Gérard Cornuéjols and Bertrand Guenin
2002a Ideal binary clutters, connectivity, and a conjecture of Seymour. SIAM J. Discrete

Math. 15 (2002), no. 3, 329–352. MR 2003h:05057. Zbl. 1035.90045.

A partial proof of Seymour’s (1981a) conjecture. Main Thm.: A binary
clutter is ideal if it has as a minor none of the circuit clutter of F7 , C−(−K5)
or its blocker, or C−(−K4) or its blocker. Important are the lift and extended
lift matroids, L(M,σ) and L0(M,σ), defined as in signed graph theory. [See
Cornuéjols (2001a), §8.4.] (SM, SG: M, G)

Collette R. Coullard
See also V. Chandru.

Collette R. Coullard, John G. del Greco, and Donald K. Wagner
††1991a Representations of bicircular matroids. Discrete Appl. Math. 32 (1991), 223–240.

MR 92i:05072. Zbl. 755.05025.
§4: §4.1 describes 4 fairly simple types of “legitimate” graph operation

that preserve the bicircular matroid. Thm. 4.11 is a converse: if Γ1 and
Γ2 have the same connected bicircular matroid, then either they are related
by a sequence of legitimate operations, or they belong to a small class of
exceptions, all having order ≤ 4, whose bicircular matroid isomorphisms are
also described. This completes the isomorphism theorem of Wagner (1985a).
§5: If finitely many graphs are related by a sequence of legitimate operations
(so their bicircular matroids are isomorphic), then they have contrabalanced
real gains whose incidence matrices are row equivalent. These results are
also found by a different approach in Shull et al. (1989a, 20xxa).

(Bic: Str, I)

1993a Recognizing a class of bicircular matroids. Discrete Appl. Math. 43 (1993), 197–
215. MR 94i:05021. Zbl. 777.05036. (Bic: Alg)

1993b Uncovering generalized-network structure in matrices. Discrete Appl. Math. 46
(1993), 191–220. MR 95c:68179. Zbl. 784.05044. (GN: Bic: I, Alg)
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George B. Dantzig
1963a Linear Programming and Extensions. Princeton Univ. Press, Princeton, N.J.,

1963. MR 34 #1073. Zbl. (e: 108.33103).
Chapter 21: “The weighted distribution problem.” 21-2: “Linear graph

structure of the basis.” (GN: M(Bases))

John G. del Greco
See also C.R. Coullard.

1992a Characterizing bias matroids. Discrete Math. 103 (1992), 153–159. MR 93m:05050.
Zbl. 753.05021.

How to decide, given a matroid M and a biased graph Ω, whether M =
G(Ω). (GG: M)

Michael Doob
See also D.M. Cvetković.

1973a An interrelation between line graphs, eigenvalues, and matroids. J. Combin. The-
ory Ser. B 15 (1973), 40–50. MR 55 #12573. Zbl. 245.05125, (257.05132).

Along with Simões-Pereira (1973a), introduces to the literature the even-
circle matroid G(−Γ) [previously invented by Tutte, unpublished]. The mul-
tiplicity of −2 as an eigenvalue (in characteristic 0) equals the number of
independent even polygons = n − rkG(−Γ). In characteristic p there is a
similar theorem, but the pertinent matroid is G(Γ) if p = 2 and, when p|n ,
the matroid has rank 1 greater than otherwise [a fact that mystifies me].

(EC: I)

1974a Generalizations of magic graphs. J. Combin. Theory Ser. B 17 (1974), 205–217.
MR 51 #274. Zbl. 271.05128, (287.05124).

Thm. 3.2 is the theorem of van Nuffelen (1973a), supplemented by the
observation that it remains true in any characteristic except 2. (EC: I)

Peter Doubilet
1971a Dowling lattices and their multiplicative functions. In: Möbius Algebras (Proc.

Conf., Waterloo, Ont., 1971), pp. 187–192. Univ. of Waterloo, Ont., 1971, re-
printed 1975. MR 50 #9605. Zbl. 385.05008. (GG: M)

Peter Doubilet, Gian-Carlo Rota, and Richard Stanley
1972a On the foundations of combinatorial theory (VI): The idea of generating func-

tion. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statis-
tics and Probability (Berkeley, Calif., 1970/71), Vol. II: Probability Theory, pp.
267–318. Univ. of California Press, Berkeley, Calif., 1972. MR 53 #7796. Zbl.
267.05002. Reprinted in: Gian-Carlo Rota, Finite Operator Calculus, pp. 83–134.
Academic Press, New York, 1975. MR 52 #119. Zbl. 328.05007. Reprinted again
in: Joseph P.S. Kung, ed., Gian-Carlo Rota on Combinatorics: Introductory Pa-
pers and Commentaries, pp. 148–199. Birkhäuser, Boston, 1995. MR 99b:01027.
Zbl. 841.01031.

Section 5.3: Brief gain-graphic treatment of Dowling lattices. (GG: M)

T.A. Dowling
1971a Codes, packings, and the critical problem. In: Atti del Convegno di Geometria

Combinatoria e sue Applicazioni (Perugia, 1970), pp. 209–224. Ist. Mat., Univ.
di Perugia, Perugia, Italy, 1971. MR 49 #2438. Zbl. 231.05029.



the electronic journal of combinatorics #DS8 10

Pp. 221–223: The first intimations of Dowling lattices/geometries, as in
(1973a, 1973b), and their higher-weight relatives (see Bonin 1993a).

(gg, Gen: M)

1973a A q -analog of the partition lattice. Ch. 11 in: J.N. Srivastava et al., eds., A Survey
of Combinatorial Theory (Proc. Internat. Sympos., Ft. Collins, Colo., 1971), pp.
101–115. North-Holland, Amsterdam, 1973. MR 51 #2954. Zbl. 259.05023.

Linear-algebraic progenitor of (1973b). Treats the Dowling lattice of group
GF(q)× as naturally embedded in PGn−1(q). Interesting is p. 105, Remark:
One might generalize some results to any ambient (simple) matroid.

(gg: G, M: N)

††1973b A class of geometric lattices based on finite groups. J. Combin. Theory Ser. B 14
(1973), 61–86. MR 46 #7066. Zbl. 247.05019. Erratum. Ibid. 15 (1973), 211. MR
47 #8369. Zbl. 264.05022.

Introduces the Dowling lattices of a group, treated as lattices of group-
labelled partial partitions. Equivalent to the frame matroid of complete G-
gain graph GK•

n . [The gain-graphic approach was known to Dowling (1973a,
p. 109) but first published in Doubilet, Rota, and Stanley (1972a).] Isomor-
phism, vector representation, Whitney numbers and characteristic polyno-
mial. [The first and still fundamental paper.] (gg: M: N)

Thomas Dowling and Hongxun Qin
2005a Reconstructing ternary Dowling geometries. Advances in Applied Mathematics 34

(2005), no. 2, 358–365. MR 2005j:05017. Zbl. 1068.52017.

Thm. 1.5: The Dowling geometry Qr(Z2) is the only matroid of rank r ≥ 4
such that every contraction by a point is Qr−1(Z2). (sg: M)

20xxa Excluded minors for classes of cographic matroids. Submitted. (GG: M, T, SG)

Arne Dür
1986a Möbius Functions, Incidence Algebras and Power Series Representations. Lecture

Notes in Math., Vol. 1202. Springer-Verlag, Berlin, 1986. MR 88m:05005. Zbl.
592.05006.

Dowling lattices are an example of a categorial approach to incidence-
algebra techniques in Ch. IV, §7. Computed are the characteristic poly-
nomial and second kind of Whitney numbers. Binomial concavity, hence
unimodality of the latter [cf. Stonesifer (1975a)] is proved by showing that
a suitable generating polynomial has only distinct, negative roots [cf. Be-
noumhani (1999a)]. (gg: M: N)

Paul H. Edelman and Victor Reiner
1994a Free hyperplane arrangements between An−1 and Bn . Math. Z. 215 (1994), 347–

365. MR 95b:52021. Zbl. 793.05122.
Characterizes all Σ ⊇ +Kn whose frame matroid G(Σ) is supersolvable,

free, or inductively free. Essentially, iff the negative links form a threshold
graph. [Continued in Bailey (20xxa). Generalized in part to arbitrary gain
groups in Zaslavsky (2001a).] (sg: M, G, col)

Richard Ehrenborg and Margaret A. Readdy
1998a On valuations, the characteristic polynomial, and complex subspace arrangements.

Adv. Math. 134 (1998), 32–42. MR 98m:52018. Zbl. 906.52004.
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An abstract additive approach to the characteristic polynomial, applied
in particular to “divisor Dowling arrangements” of hyperplanes and certain
interpolating arrangements. Let Φ = G1K1 ∪ · · · ∪ GnKn , where V (Ki) =
{v1, . . . , vi} and G1 ≥ · · · ≥ Gn is a chain of subgroups of a gain group
G = G1 . When G is finite cyclic, the complex hyperplane representation of
Φ• is a “divisor Dowling arrangement”. [Its polynomial equals the chromatic
polynomial of Φ• , which is easily computed via gain-graph coloring without
the restriction to cyclic gain group. The same appears to be true for the
other arrangements treated herein.] (gg: M: G, N)

1999a On flag vectors, the Dowling lattice, and braid arrangements. Discrete Computat.
Geom. 21 (1999), 389–403. MR 2000a:52037. Zbl. 941.52021.

Canonical complex hyperplane representation of the Dowling lattice of Zk .
P. 395: an interesting EL -labelling of the Dowling lattice by a [disguised
lexicographic] ordering of atoms. Thm. 4.9 is a recursive formula for its
ab-index. Thm. 5.2: the c -2d-index of the face lattices in case k = 1, 2,
i.e., those of the real root system arrangements A∗

n and B∗
n . §6 presents

a combinatorial description of the face lattice of B∗
n [which it is interesting

to compare with that in Zaslavsky (1991b)]. [Dictionary: very confusingly,
“region” = face.] (gg: M: G, N)

2000a The Dowling transform of subspace arrangements. J. Combin. Theory Ser. A 91
(2000), 322–333. MR 2001k:52038. Zbl. 962.05005.

The group expansion of an ordinary graph is generalized to expansion of
an R∗

>0 -gain graph by a finite cyclic subgroup of C∗ , with correspondingly
generalized formulas for the chromatic polynomial. The computations are
technically incorrect; they should be done by gain-graph coloring. [Dictio-
nary: “directed cycle” = polygon (not directed).] (GG: G, N)

Joyce Elam, Fred Glover, and Darwin Klingman
1979a A strongly convergent primal simplex algorithm for generalized networks. Math.

Oper. Res. 4 (1979), 39–59. MR 81g:90049. Zbl. 422.90081. (GN: M(bases), I)

Lori Fern [Lori Koban]
See also L. Koban.

Lori Fern, Gary Gordon, Jason Leasure, and Sharon Pronchik
2000a Matroid automorphisms and symmetry groups. Combinatorics, Probability and

Computing 9 (2000), 105-123. MR 2001g:05034. Zbl. 960.05055.
Consider a subgroup W of the hyperoctahedral group Ocn that is generated

by reflections. Let M(W ) be the vector matroid of the vectors corresponding
to reflections in W . The possible direct factors of any automorphism group
of M(W ) are Sk , Ock , and Oc+

k . The proof is stricly combinatorial, via
signed graphs. (SG: M: Aut, G)

Rigoberto Flórez
2006a Lindström’s conjecture on a class of algebraically non-representable matroids. Eu-

ropean J. Combin. 27 (2006), no. 6, 896–905. MR 2006m:05048. Zbl. 1090.05010.

Lindström conjectured that a certain matroid M(n) is algebraically non-
representable if n is nonprime. Proved by showing that M(n) extends by
harmonic conjugation to L0(ZnK3), which in turn extends to a contradiction
if n is composite. (gg: M)
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20xxb Harmonic conjugation in harmonic matroids. Submitted.
In a harmonic matroid H , harmonic conjugates exist and are unique. If

L0(GK3) ⊆ H and G = Z or Zp , then the closure of L0 under harmonic
conjugation is a projective plane over Q or GF(p), as appropriate. (gg: M)

Rigoberto Flórez and David Forge
2007a Minimal non-orientable matroids in a projective plane. J. Combin. Theory Ser. A

114 (2007), no. 1, 175–183. MR 2007h:05031. Zbl. 1120.52012.

The minimal matroids are contained in lift matroids of ZnK3 . (gg: M)

Rigoberto Flórez and Thomas Zaslavsky
20xxa Biased graphs. VI. Synthetic geometry. In preparation. (GG: M, G)

David Forge
See also P. Berthomé and R. Flórez.

David Forge and Thomas Zaslavsky
2007a Lattice point counts for the Shi arrangement and other affinographic hyperplane

arrangements. J. Combin. Theory Ser. A 114 (2007), no. 1, 97–109. MR 2007i:52026.
Zbl. 1105.52014.

The number of proper integral m -colorings of a rooted integral gain graph
(root v0 and a function h : V → Z such that there are root edges ge0i for
all g ∈ (−∞, hi] ; otherwise the gain graph is finite). (GG: G, N, M)

Toshio Fujisawa
1963a Maximal flow in a lossy network. In: J.B. Cruz, Jr., and John C. Hofer, eds., Pro-

ceedings, First Annual Allerton Conference on Circuit and System Theory (Monti-
cello, Ill., 1963), pp. 385–393. Dept. of Electrical Eng. and Coordinated Sci. Lab.,
Univ. of Illinois, Urbana, Ill., [1963]. (GN: M(bases))

Gilles Gastou and Ellis L. Johnson
1986a Binary group and Chinese postman polyhedra. Math. Programming 34 (1986),

1–33. MR 88e:90060. Zbl. 589.52004.
§10 introduces the co-postman and “odd circuit” problems, treated more

thoroughly in Johnson and Mosterts (1987a) (q.v). “Odd” edges and circuits
are precisely negative edges and polygons in an edge signing. The “odd
circuit matrix” represents L(Σ) (p. 30). (SG: I, M(Bases), Alg)

James F. Geelen and A.M.H. Gerards
2005a Regular matroid decomposition via signed-graphs. J. Graph Theory 48 (2005), no.

1, 74–84. MR 2005h:05037. Zbl. 1055.05024.
The lift matroid. (SG: M: Str)

A.M.H. Gerards
See also M. Chudnovsky and J.F. Geelen.

††1990a Graphs and polyhedra: Binary spaces and cutting planes. CWI Tract, 73. Centrum
voor Wiskunde en Informatica, Amsterdam, 1990. MR 92f:52027. Zbl. 727.90044.

(Very incomplete annotation.) Thm.: Given Σ, the set {x ∈ Rn : d1 ≤
x ≤ d2, b1 ≤ I(Σ)Tx ≤ b2} has Chvatal rank ≤ 1 for all integral vectors
d1, d2, b1, b2 , iff Σ contains no subdivided −K4 . (SG: I, G, Str)

1994a An orientation theorem for graphs. J. Combin. Theory Ser. B 62 (1994), 199–212.
MR 96d:05051. Zbl. 807.05020. (p, sg: M, O)
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1995a On Tutte’s characterization of graphic matroids—a graphic proof. J. Graph The-
ory 20 (1995), 351–359. MR 96h:05038. Zbl. 836.05017.

Signed graphs used to prove Tutte’s theorem. The signed-graph matroid
employed is the extended lift matroid L0(Σ) (“extended even cycle ma-
troid”). The main theorem (Thm. 2): Let Σ be a signed graph with no
−K4 , ±K3 , −Pr3 , or Σ4 link minor; then Σ can be converted by Whit-
ney 2-isomorphism operations (“breaking” = splitting a component in two
at a cut vertex, “glueing” = reverse, “switching” = twisting across a vertex
2-separation) to a signed graph that has a balancing vertex (“blocknode”).
Here Σ4 consists of +K4 with a 2-edge matching doubled by negative edges
and one other edge made negative.

More translation: His “Σ” is our E− . “Even, odd” = positive, negative
(for edges and polygons). “Bipartite” = balanced; “almost bipartite” = has
a balancing vertex. (SG: M, Str, I)

A.M.H. Gerards, L. Lovász, A. Schrijver, P.D. Seymour, C.-S. Shi, and K.
Truemper
†1990a Manuscript in preparation, 1990.

Extension of Gerards and Schrijver (1986b). [Same comments apply. The
proliferating authorship may prevent this major contribution from ever being
published—though one hopes not! See Seymour (1995a) for description of
two main theorems.] (SG: Str, M, T)

A.M.H. Gerards and A. Schrijver
1986b Signed graph – regular matroids – grafts. Research Memorandum, Faculteit der

Economische Wetenschappen, Tilburg Univ., 1986.
Essential, major theorems. The (extended) lift matroid of a signed graph

is one of the objects studied. Some of this material is published in Gerards
(1990a). This paper is in the process of becoming Gerards, Lovász, et al.
(1990a). (SG: Str, M)

Robert Gill
1998a The number of elements in a generalized partition semilattice. Discrete Math. 186

(1998), 125–134. MR 99e:52014. Zbl. 956.52009.
The semilattice is the intersection semilattice of a affinographic hyperplane

arrangement representing [−k, k]Kn [and is therefore isomorphic to the geo-
metric semilattice of all k -composed partitions of a set; see, e.g., Zaslavsky
(2002a), Ex. 10.5]. The rank and the Whitney numbers of the first kind are
calculated. See Kerr (1999a) for homology. (gg: m: G, N)

2000a The action of the symmetric group on a generalized partition semilattice. Elec-
tronic J. Combin. 7 (2000), Research Paper 23, 20 pp. (electronic). MR 2001g:05107.
Zbl. 947.06001.

See (1998a). (gg: m: G, N, Aut)

Omer Giménez, Anna de Mier, and Marc Noy
2005a On the number of bases of bicircular matroids. Ann. Combin. 9 (2005), no. 1,

35–45. MR 2005m:05049. Zbl. 1059.05030.
The number of bases is bounded above by Cn·(number of spanning trees)

in a simple graph but not in a multigraph. More precise results for Kn

and Kn,m . [See Neudauer, Meyers, and Stevens (2001a) and Neudauer and
Stevens (2001a).] (Bic: I)
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Omer Giménez and Marc Noy
2006a On the complexity of computing the Tutte polynomial of bicircular matroids.

Combin. Probab. Comput. 15 (2006), no. 3, 385–395. MR 2007a:05029. Zbl.
1094.05013.

Known NP-hardness results for transversal matroids apply to their proper
subclass, bicircular matroids, with a few possible exceptions. (Bic: I: Alg)

Fred Glover
See also J. Elam.

F. Glover, J. Hultz, D. Klingman, and J. Stutz
1978a Generalized networks: A fundamental computer-based planning tool. Manage-

ment Sci. 24 (1978), 1209–1220. (GN: Alg, M(bases): Exp, Ref)

Fred Glover, Darwin Klingman, and Nancy V. Phillips
1992a Network Models in Optimization and Their Applications in Practice. Wiley-

Interscience, New York, 1992.
Textbook. See especially Ch. 5: “Generalized networks.” (GN: Alg: Exp)

Eric Gottlieb
2003a On the homology of the h, k -equal Dowling lattice. SIAM J. Discrete Math. 17

(2003), no. 1, 50–71. MR 2004k:05209. Zbl. 1033.05098.
The lattice is the subposet of LatG(GKn) consisting of the flats whose

nontrivial balanced components have order ≥ k and whose unbalanced com-
ponent, if any, has order ≥ h . If |G| = 2 and h ≤ k we have the lattice of
Björner and Sagan (1996a).Emanuele Delucchi

2007a Nested set complexes of Dowling lattices and complexes of Dowling trees. J.
Algebraic Combin. 26 (2007), no. 4, 477–494.

Studies Dowling trees (cf. Hultman 2007a). (gg: M: N)

(gg: M: N)

Eric Gottlieb and Michelle L. Wachs
2000a Cohomology of Dowling lattices and Lie (super)algebras. Adv. in Appl. Math. 24

(2000), no. 4, 301–336. MR 2001i:05161. Zbl. 1026.05104.
Two monomorphisms of the cohomology of the order complex of the lattice

of flats of Qn(G), upon which Sn ≀ G acts as operators, into enveloping
algebras of certain Lie algebras and Lie superalgebras. (gg: M: N)

Richard C. Grinold
1973a Calculating maximal flows in a network with positive gains. Oper. Res. 21 (1973),

528–541. MR 50 #3900. Zbl. 304.90043.
Objective: to find the maximum output for given input. Basic solutions

correspond to bases of G(Φ′), Φ′ being the underlying gain graph Φ together
with an unbalanced loop adjoined to the sink. Onaga (1967a) also treats this
problem. (GN: M(bases), Alg)

Jerrold W. Grossman, Devadatta M. Kulkarni, and Irwin E. Schochetman
1994a Algebraic graph theory without orientation. Linear Algebra Appl. 212/213 (1994),

289–307. MR 96b:05111. Zbl. 817.05047.
Incidence matrix D(−Γ) (unoriented incidence matrix of Γ; here called

M ), Kirchoff or “Laplacian” matrix of −Γ, the even-circle (“even circuit”)
matroid G(−Γ), a partial all-minors matrix-tree theorem [completed in Ba-
pat, Grossman, and Kulkarni (1999a)]. [This part is not new. See van
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Nuffelen (1973a) for rank(D(−Γ)); Zaslavsky (1982a), §8 for both matrices;
Tutte (1981a), Doob (1973a), and Simões-Pereira (1973a) for the matroid;
Chaiken (1982a) for the whole matrix-tree theorem.]

§§4, 5: Vector spaces associated with G(−Γ) and its dual, expressed both
combinatorially in terms of vectors associated with matroid circuits and co-
circuits (of two kinds) and as null and row spaces of D(−Γ) and D(−Γ)T .
E.g., in §5 is the all-negative version of: A basis for NulD(Σ)T consists of
one switching function positivizing each balanced component of Σ. [The
viewpoint, going from matroids to vector spaces over fields, usually with
characteristic 6= 2, contrasts sharply with that of Tutte (1981a), who starts
with integral chain groups (Z -modules) and ends with chain-group proper-
ties and matroids. This is the only thorough development I know of vector
spaces of a signed graph before Chen and Wang (20xxa), despite some as-
pects’ having appeared e.g. in Bolker (1977a, 1979a) and Tutte (1981a). It
will be still more valuable if it is extended to R∗ -gain graphs and to F ∗ -gain
graphs for any field F .]

Dictionary: “k -reduced spanning substructure” ∼= independent set of rank
n− k in G(−Γ); “quasi edge cut” = balancing set; “quasibond” = minimal
balancing set; “even circuit” = positive closed walk; “bowtie” = contrabal-
anced handcuff; “marimba stick” = half edge. (EC, p: I, D)

1995a On the minors of an incidence matrix and its Smith normal form. Linear Algebra
Appl. 218 (1995), 213–224. MR 95m:15020. Zbl. 819.05043.

Rank of D(−Γ) (the unoriented incidence matrix of Γ) [as in van Nuffe-
len (1973a)]. Finds all possible values of determinants of minors of D(−Γ)
[repeating and refining Zaslavsky (1982a), §8A] and of maximal nonsingular
minors. Consequences are the Smith normal form of D(−Γ) (§3) and the
total integrality of some integer programs with D(−Γ) as coefficient matrix.

( p: I, ec, G)

Phil Hanlon
1984a The characters of the wreath product group acting on the homology groups of the

Dowling lattices. J. Algebra 91 (1984), 430–463. MR 86j:05046. Zbl. 557.20009.
(gg: M: Aut)

1988a A combinatorial construction of posets that intertwine the independence matroids
of Bn and Dn . Manuscript, 1988.

Computes the Möbius functions of posets obtained from LatG(±K◦
n) by

discarding those flats with unbalanced vertex set in a given lower-hereditary

list. Examples include LatG(±K
(k)
n ), the exponent denoting the addition

of k negative loops. Generalized and superseded by Hanlon and Zaslavsky
(1998a). (sg: M: Gen: N)

1991a The generalized Dowling lattices. Trans. Amer. Math. Soc. 325 (1991), 1–37. MR
91h:06011. Zbl. 748.05043.

The lattices are based on a rank, n , a group, and a meet sublattice of the
lattice of subgroups of the group. The Dowling lattices are a special case.

(gg: M: Gen: N)

Phil Hanlon and Thomas Zaslavsky
1998a Tractable partially ordered sets derived from root systems and biased graphs.
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Order 14 (1997–98), 229–257. MR 2000a:06016. Zbl. 990.03811.

Computes the characteristic polynomials (Thm. 4.1) and hence the Möbius
functions (Cor. 4.4) of posets obtained from LatG(Ω), Ω a biased graph, by
discarding those flats with unbalanced vertex set in a given lower-hereditary

list. Examples include LatG(GK
(k)
n ) where G is a finite group, the expo-

nent denoting the addition of k unbalanced loops. The interval structure,
existence of a rank function, covering pairs, and other properties of these
posets are investigated. There are many open problems.

(GG: M, Gen: N, Str, Col)

Kurt Hässig
1979a Graphentheoretische Methoden des Operations Research. Leitfaden der angew.

Math. und Mechanik, 42. B.G. Teubner, Stuttgart, 1979. MR 80f:90002. Zbl.
397.90061.

Ch. 5: “Verallgemeinerte Fluss- und Potentialdifferenzen-probleme.” The
lift matroid arises from a side condition, i.e., extra row, added to the inci-
dence matrix of the graph. [The side condition is expressed graphically by
additive gains.] (GN: I, M: Exp, Ref)

Patrick Headley
1997a On a family of hyperplane arrangements related to the affine Weyl groups. J.

Algebraic Combin. 6 (1997), 331–338. MR 98e:52010. Zbl. 911.52009.

The characteristic polynomials of the Shi hyperplane arrangements S(W )
of type W for each Weyl group W , evaluated computationally. S(W ) is
obtained by splitting the reflection hyperplanes of W in two in a certain
way; thus S(An−1) splits the arrangement representing LatG(Kn)—more

precisely, it represents Latb{0, 1} ~Kn ; that of type Bn splits the arrangement
representing LatG(±K•

n), and so on. [See also Athanasiadis (1996a).]
(gg: G, M, N)

Anthony Henderson
2006a Plethysm for wreath products and homology of sub-posets of Dowling lattices.

Electronic J. Combin. 13 (2006), no. 1, Research article R87, 25 pp. (electronic).

The subposets are Q1mod d
n (G) where d > 1, whose elements are the flats

A ⊆ E(GK•
n) such that d divides the order of the unbalanced part and the

number of vertices every balanced component is ≡ 1 mod d . (gg: M: Aut)

Yao Ping Hou and Li Juan Wei
1999a Whitney numbers of the second kind for Dowling lattices. (In Chinese. English

and Chinese summaries.) Acta Sci. Natur. Univ. Norm. Hunan. 22 (1999), No. 3,
6–10. MR 2000k:05017. Zbl. 948.05004.

Combinatorial proof of an explicit formula for Wk [possibly the standard
one?]. Studies “associated numbers” W r

k . Proved: Wn−k ≤ Wk for k ≤ 3
[this must mean Wk ≤ Wn−k and must have some restriction on n ; well
known for k = 1]. (gg: M: N)

2007b Link complexes of subspace arrangements. Europ. J. Combin. 28 (2007), no. 3,
781–790. MR 2007m:52029. Zbl. 1113.52038.

Interprets chromatic polynomials of signed graphs in terms of Hilbert poly-
nomials. (SG: N)
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John Hultz and D. Klingman
1979a Solving singularly constrained generalized network problems. Appl. Math. Optim.

4 (1978), 103–119. MR 57 #15414. Zbl. 373.90075. (GN: M(bases))

John J. Jarvis and Anthony M. Jezior
1972a Maximal flow with gains through a special network. Oper. Res. 20 (1972), 678–688.

MR 47 #6286. Zbl. 241.90021. (GN: M(bases))

Paul A. Jensen and J. Wesley Barnes
1980a Network Flow Programming. Wiley, New York, 1980. MR 82f:90096. Zbl. 502.-

90057. Reprinted by: Robert E. Krieger, Melbourne, Fla., 1987. MR 89a:90152.
§1.4: “The network-with-gains model.” §2.8: “Networks with gains—-

example applications.” Ch. 9: “Network manipulation algorithms for the
generalized network.” Ch. 10: “Generalized minimum cost flow problems.”

(GN: M(bases))

Guangfeng Jiang and Jianming Yu
2004a Supersolvability of complementary signed-graphic hyperplane arrangements. Aus-

tralasian J. Combin. 30 (2004), 261–276. MR 2005j:05042.
Characterizes supersolvability of G(Kn, σ). A special case of Zaslavsky

(2001a). (SG: G: m)

Ellis L. Johnson
See also J. Edmonds and G. Gastou.

1965a Programming in networks and graphs. Report ORC 65-1, Operations Research
Center, Univ. of California, Berkeley, Calif., Jan. 1965.

§7: “Flows with gains.” §8: “Linear programming in an undirected graph.”
§9: “Integer programming in an undirected graph.”

(GN: I, M(bases))(ec: I, M(bases), Alg)

1966a Networks and basic solutions. Oper. Res. 14 (1966), 619–623. (GN)

Jeff Kahn and Joseph P.S. Kung
1980a Varieties and universal models in the theory of combinatorial geometries. Bull.

Amer. Math. Soc. (N.S.) 3 (1980), 857–858. MR 81i:05051. Zbl. 473.05025.
Announcement of (1982a). (gg: M)

††1982a Varieties of combinatorial geometries. Trans. Amer. Math. Soc. 271 (1982), 485–
499. MR 84j:05043. Zbl. 503.05010. Reprinted in: Joseph P.S. Kung, A Source
Book in Matroid Theory, pp. 395–409, with commentary, pp. 335–338. Birkhäuser,
Boston, 1986. MR 88e:05028. Zbl. 597.05019.

A “variety” is a class closed under deletion, contraction, and direct summa-
tion and having for each rank a “universal model”, a single member contain-
ing all others. There are two nontrivial types of variety of finite matroids:
matroids representable over GF(q), and gain-graphic matroids with gains
in a finite group G . The universal models of the latter are the Dowling
geometries Qn(G).

It is incidentally proved (Section 7, pp. 490–492) that Dowling geometries
of non-group quasigroups cannot exist in rank n ≥ 4. (gg: M)

1986a A classification of modularly complemented geometric lattices. European J. Com-
bin. 7 (1986), 243–248. MR 87i:06026. Zbl. 614.05018.

A geometric lattice of rank ≥ 4, if not a projective geometry with a few
points deleted, is a Dowling lattice. (gg: M)
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Jeff L. Kennington and Richard V. Helgason
1980a Algorithms for Network Programming. Wiley, New York, 1980. MR 82a:9013.

Zbl. 502.90056.
Ch. 5: “The simplex method for the generalized network problem.”

(GN: M(Bases): Exp)

Julie Kerr
1999a A basis for the top homology of a generalized partition lattice. J. Algebraic Com-

bin. 9 (1999), 47–60. MR 2000k:05265. Zbl. 921.05063.
The lattice is isomorphic to the semilattice of k -composed partitions of a

set with a top element adjoined. (See R. Gill (1998a).) (gg: m: G, T)

A. Khelladi
1987a Nowhere-zero integral chains and flows in bidirected graphs. J. Combin. Theory

Ser. B 43 (1987), 95–115. MR 88h:05045. Zbl. 617.90026.
Improves the result of Bouchet (1983a) about nowhere-zero integral flows on

a signed graph. Σ has such an 18-flow if 4-connected, a 30-flow if 3-connected
and without a positive triangle, and in some cases a 6-flow (proving Bouchet’s
conjecture in those cases). (SG: M: Flows)

1999a Colorations généralisées, graphes biorientés et deux ou trois choses sur François.
Symposium à la Mémoire de François Jaeger (Grenoble, 1998). Ann. Inst. Fourier
(Grenoble) 49 (1999), 955–971. MR 2000h:05083. Zbl. 917.05026.

Comments on the results of Bouchet (1983a) and Khelladi (1987a).
(SG: M, Flows)

Victor Klee
1971a The greedy algorithm for finitary and cofinitary matroids. In: Theodore S. Motz-

kin, ed., Combinatorics, pp. 137–152. Proc. Symp. Pure Math., Vol. 19. Amer.
Math. Soc., Providence, R.I., 1971. MR 48 #10865. Zbl. 229.05031.

Along with Simões-Pereira (1972a), invents the bicircular matroid (here,
for infinite graphs). (Bic)

Lori Koban [Lori Fern]
See also L. Fern.

2004a Comments on “Supersolvable frame-matroid and graphic-lift lattices” by T. Za-
slavsky. European J. Combin. 25 (2004), 141–144. MR 2004k:05054. Zbl.
1031.05032.

Correction to Thm. 2.1 and an improved (and corrected) proof of Thm. 2.2
of Zaslavsky (2001a). (GG: M)

2004b Two Generalizations of Biased Graph Theory: Circuit Signatures and Modular
Triples of Matroids, and Biased Expansions of Biased Graphs. Doctoral disserta-
tion, Binghamton University, 2004.

Chapter 1: “Circuit signatures and modular triples.” When can gains be
applied to matroids, as they are to graphs in Zaslavsky (1991a), to produce
a linear class of circuits and hence a lift matroid? Theorem 1.4.1: When the
group has exponent > 2, one needs a ternary circuit signature, thus a ternary
matroid. Theorem 1.4.5: When the group has exponent 2 the matroid must
be binary (no circuit signature is required). (M: GG: Gen)

Chapter 2: “Biased expansions of biased graphs.” Generalizes group and
biased expansions of a graph and the chromatic (and bias-matroid charac-
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teristic) polynomial formulas (Zaslavsky 1995b, 20xxj) to expansions of a
biased graph. Chapter 3: “When are biased expansions actually group ex-
pansions?” Partial results about characterizing biased expansions of biased
graphs that are group expansions; counterexamples to several plausible con-
jectures. (GG: M, N, G)

2008a A modular triple characterization of circuit signatures. Europ. J. Combin. 29
(2008), no. 1, 159–170.

Several kinds of circuit signatures of a matroid can be characterized through
modular triples of copoints or circuits. These include lift signatures.

(GG: Gen: M)

Joseph P.S. Kung
See also J.E. Bonin and J. Kahn.

1986a Numerically regular hereditary classes of combinatorial geometries. Geom. Dedi-
cata 21 (1986), 85–105. MR 87m:05056. Zbl. 591.05019.

Examples include Dowling geometries, Ex. (6.2), and the frame matroids of
full group expansions of graphs in certain classes; see pp. 98–99. (GG: M)

1990a Combinatorial geometries representable over GF(3) and GF(q). I. The number of
points. Discrete Computat. Geom. 5 (1990), 83–95. MR 90i:05028. Zbl. 697.51007.

The Dowling geometry over the sign group is the largest simple ternary
matroid not containing the “Reid matroid”. (sg: M: X)

1990b The long-line graph of a combinatorial geometry. II. Geometries representable
over two fields of different characteristic. J. Combin. Theory Ser. B 50 (1990),
41–53. MR 91m:51007. Zbl. 645.05026.

Dowling geometries used in the proof of Prop. (1.2). (gg: M)

1993a Extremal matroid theory. In: Neil Robertson and Paul Seymour, eds., Graph
Structure Theory (Proc., Seattle, 1991), pp. 21–61. Contemp. Math., Vol. 147.
Amer. Math. Soc., Providence, R.I., 1993. MR 94i:05022. Zbl. 791.05018.

Survey and new results. See: §2.7: “Gain-graphic matroids.” P. 30, fn. 9.
§4.3: “Varieties.” §4.5. “Framed gain-graphic matroids.” §6.4: “Matroids
representable over two different characteristics.” §8: “Concluding remarks,”
on a possible ternary analog of Seymour’s decomposition theorem.

(GG: M: X, Str, Exp, Ref)

1993b The Radon transforms of a combinatorial geometry. II. Partition lattices. Adv.
Math. 101 (1993), 114–132. MR 95b:05051. Zbl. 786.05018.

Dowling lattices are lower-half Sperner. The proof is given only for partition
lattices. (gg: M)

1996a Matroids. In: M. Hazewinkel, ed., Handbook of Algebra, Vol. 1, pp. 157–184.
North-Holland (Elsevier), Amsterdam, 1996. MR 98c:05040. Zbl. 856.05001.

§6.2: “Gain-graphic matroids.” I.e., frame matroids of gain graphs.
(GG: M: Exp)

1996b Critical problems. In: Joseph E. Bonin, James G. Oxley, and Brigitte Servatius,
eds., Matroid Theory (Proc., Seattle, 1995), pp. 1–127. Contemp. Math., Vol. 197.
Amer. Math. Soc., Providence, R.I., 1996. MR 97k:05049. Zbl. 862.05019.

A remarkable more-than-survey with numerous new results and open prob-
lems. §4.5: “Abstract linear functionals in Dowling group geometries”. §6:



the electronic journal of combinatorics #DS8 20

“Dowling geometries and linear codes”, concentrates on higher-weight Dowl-
ing geometries, extending Bonin (1993b). §7.4: “Critical exponents of classes
of gain-graphic geometries”. §7.5: “Growth rates of classes of gain-graphic
geometries”. §8.5: “Jointless Dowling group geometries”. Corollary 8.30.
§8.11: “Tangential blocks in Z(A)”. Also see pp. 56, 61, 88, 92, 114. The
matroids are the frame matroids of gain graphs. (GG, Gen: M)

1998a A geometric condition for a hyperplane arrangement to be free. Adv. Math. 135
(1998), 303–329. MR 2000f:05023. Zbl. 905.05017.

Delete from a Dowling geometry a subset S that contains no whole plane.
Found: necessary and sufficient conditions for the characteristic polynomial
to factor completely over the integers. When the geometry corresponds to a
hyperplane arrangement, many more of the arrangements are not free than
are free; however, if S contains no whole line, all are free (so the characteristic
polynomial factors completely over Z) while many are not supersolvable.

(gg: M: N)

2000a Critical exponents, colines, and projective geometries. Combin. Probab. Comput.
9 (2000), 355–362. MR 2002f:05048. Zbl. 974.51008.

Higher-weight Dowling geometries yield counterexamples to a conjecture.
(gg: Gen: M: N)

2001a Twelve views of matroid theory. In: Sungpyo Hong et al., eds., Combinatorial &
Computational Mathematics (Proc., Pohang, 2000), pp. 56–96. World Scientific,
Singapore, 2001. MR 2002i:05028.

§5,“Graph theory and lean linear algebra”: “lean” means at most 2 nonzero
coordinates, hence gain graphs. (GG: M)

2002a Curious characterizations of projective and affine geometries. Special issue in
memory of Rodica Simion. Adv. Appl. Math. 28 (2002), 523–543. MR 2003c:51008.
Zbl. 1007.51001.

Dowling geometries G(GK•
n) (if |G| > 2) and jointless Dowling geometries

G(GKn) (if |G| > 4) exemplify Lemma 3.4, which says that 5 numbers
characterize the line sizes in a simple matroid with all lines of size 2, 3, or l .

(gg: M: N)

Joseph P.S. Kung and James G. Oxley
1988a Combinatorial geometries representable over GF(3) and GF(q). II. Dowling ge-

ometries. Graphs Combin. 4 (1988), 323–332. MR 90i:05029. Zbl. 702.51004.
For n ≥ 4, the Dowling geometry of rank n over the sign group is the

unique largest simple matroid of rank n that is representable over GF(3)
and GF(q). (sg: M: X)

M. Loréa
1979a On matroidal families. Discrete Math. 28 (1979), 103–106. MR 81a:05029. Zbl.

409.05050.
Discovers the “count” matroids of graphs (see Whiteley (1996a)).

(MF, Bic(Gen))

Janice R. Lourie
1964a Topology and computation of the generalized transportation problem. Manage-

ment Sci. 11 (1965) (Sept., 1964), no. 1, 177–187. (GN: M(bases))
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Dănuţ Marcu
1987a Note on the matroidal families. Riv. Math. Univ. Parma (4) 13 (1987), 407–412.

MR 89k:05025.
Matroidal families of (multi)graphs (see Simões-Pereira (1973a)) correspond

to functions on all isomorphism types of graphs that are similar to matroid
rank functions, e.g., submodular. This provides insight into matroidal fami-
lies, e.g., it immediately shows there are infinitely many.
[Many of Marcu’s articles known to be plagiarized. See MR 97a:05095 and

Zbl. 701.51004. Also see MR 92a:51002, 92b:51026, 92h:11026, 97k:05050.]
(MF, Bic, EC)

Harry Markowitz
1955a Concepts and computing procedures for certain Xij programming problems. In:

H.A. Antosiewicz, ed., Proceedings of the Second Symposium in Linear Program-
ming (Washington, D.C., 1955), Vol. II, pp. 509–565. Nat. Bur. Standards of U.S.
Dept. of Commerce, and Directorate of Management Analysis, DCS Comptroller,
HQ, U.S. Air Force, 1955. Sponsored by Office of Scientific Res., Air Res. and
Develop. Command. MR 17, 789.

Also see RAND Corporation Paper P-602, 1954. (GN: m(bases))

J.H. Mason
1977a Matroids as the study of geometrical configurations. In: Higher Combinator-

ics (Proc. NATO Adv. Study Inst., Berlin, 1976), pp. 133–176. NATO Adv.
Study Inst. Ser., Ser. C: Math. Phys. Sci., Vol. 31. Reidel, Dordrecht, 1977. MR
80k:05037. Zbl. 358.05017.

§§2.5-2.6: “The lattice approach” and “Generalized coordinates”, pp. 172–
174, propose a purely matroidal and more general formulation of Dowling’s
construction of his lattices. (gg(Gen): M)

1981a Glueing matroids together: A study of Dilworth truncations and matroid ana-
logues of exterior and symmetric powers. In: Algebraic Methods in Graph Theory
(Proc., Szeged, 1978), Vol. II, pp. 519–561. Colloq. Math. Soc. János Bolyai, 25.
North-Holland, Amsterdam, 1981. MR 84i:05041. Zbl. 477.05022.

Dowling matroids are an example in §1. (gg: M)

Laurence R. Matthews
1977a Bicircular matroids. Quart. J. Math. Oxford (2) 28 (1977), 213–227. MR 58

#21732. Zbl. 386.05022.
Thorough study of bicircular matroids, introduced by Klee (1971a) and

Simões-Pereira (1972a). (Bic)

1978a Properties of bicircular matroids. In: Problèmes Combinatoires et Théorie des
Graphes (Colloq. Internat., Orsay, 1976), pp. 289–290. Colloques Internat. du
CNRS, 260. Editions du C.N.R.S., Paris, 1978. MR 81a:05030. Zbl. 427.05021.

(Bic)

1978b Matroids on the edge sets of directed graphs. In: Optimization and Operations
Research (Proc. Workshop, Bonn, 1977), pp. 193–199. Lecture Notes in Economics
and Math. Systems, 157. Springer-Verlag, Berlin, 1978. MR 80a:05103. Zbl.
401.05031. (gg: M)

1978c Matroids from directed graphs. Discrete Math. 24 (1978), 47–61. MR 81e:05055.
Zbl. 388.05005.

Invents poise, modular poise, and antidirection matroids of a digraph.
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(gg: M)

1979a Infinite subgraphs as matroid circuits. J. Combin. Theory Ser. B 27 (1979), 260–
273. MR 81e:05056. Zbl. 433.05018. (Bic: Gen)

Laurence R. Matthews and James G. Oxley
1977a Infinite graphs and bicircular matroids. Discrete Math. 19 (1977), 61–65. MR 58

#16348. Zbl. 386.05021. (Bic)

Jean François Maurras
1972a Optimization of the flow through networks with gains. Math. Programming 3

(1972), 135–144. MR 47 #2993. Zbl. 243.90048. (GN: M)

Dillon Mayhew
2005a Inequivalent representations of bias matroids. Combin. Probab. Comput. 14

(2005), 567–583. MR 2006j:05040. Zbl. 1081.05021.
The number of inequivalent representations of a frame matroid over a fixed

finite field is bounded, if the matroid does not have a free swirl G(2Cn, ∅)
as a minor. (GG: M)

William P. Miller
See also J.E. Bonin.

1997a Techniques in matroid reconstruction. Discrete Math. 170 (1997), 173–183. MR
98f:05039. Zbl. 878.05020.

Dowling matroids are reconstructible from their hyperplanes, their dele-
tions, and their contractions. (gg: M)

Edward Minieka
1972a Optimal flow in a network with gains. INFOR 10 (1972), 171–178. Zbl. 234.90012.

(GN: M(indep))

1978a Optimization Algorithms for Networks and Graphs. Marcel Dekker, New York and
Basel, 1978. MR 80a:90066. Zbl. 427.90058.

§4.6: “Flows with gains,” pp. 151–174. Also see pp. 80–81.
(GN: m(indep): Exp)

Nancy Ann Neudauer
See also R.A. Brualdi.

2002a Graph representations of a bicircular matroid. Discrete Appl. Math. 118 (2002),
249–262. MR 2003b:05047. Zbl. 990.05025.

Survey of parts of Brualdi and Neudauer (1997a), Wagner (1985a), and
Coullard, del Greco, and Wagner (1991a), with supplementary results on
nice graphs whose bicircular matroid, G(Γ, ∅), equals M . (Bic)

Nancy Ann Neudauer, Andrew M. Meyers, and Brett Stevens
2001a Enumeration of the bases of the bicircular matroid on a complete graph. Proc.

Thirty-second Southeastern Intern. Conf. Combinatorics, Graph Theory and Com-
puting (Baton Rouge, La., 2001). Congr. Numer. 149 (2001), 109–127. MR
2002m:05054. Zbl. 1003.05031.

Counts bases and connected bases. Very complicated formulas. [The results
count labelled simple 1-trees and 1-forests. A 1-tree is a tree with one extra
edge forming a circle. A 1-forest is a disjoint union of 1-trees. A connected
basis of the bicircular matroid G(Kn, ∅) for n ≥ 3 is a labelled simple 1-tree;
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a basis is a labelled simple 1-forest. Riddell (1951a) has a less complicated
formula for 1-trees.] (Bic: N(Bases))

Nancy Ann Neudauer and Brett Stevens
2001a Enumeration of the bases of the bicircular matroid on a complete bipartite graph.

Ars Combin. 66 (2003), 165–178. MR 2004a:05034. Zbl. 1075.05510.

Bases are counted and their structure compared to the spanning trees of
the graph. [A basis is a simple, labelled 1-forest (cf. Neudauer, Meyer, and
Stevens 2001a) whose circles are even.] (Bic: N(Bases))

Beth Novick and András Sebö
1995a On combinatorial properties of binary spaces. In: Egon Balas and Jens Clausen,

eds., Integer Programming and Combinatorial Optimization (4th Internat. IPCO
Conf., Copenhagen, 1995, Proc.), pp. 212–227. Lecture Notes in Computer Sci.,
Vol. 920. Springer-Verlag, Berlin, 1995. MR 96h:0503.

The clutter of negative circuits of a signed binary matroid (M,σ). Impor-
tant are the lift and extended lift matroids, L(M,σ) and L0(M,σ), defined
as in signed graph theory. An elementary result: the clutter is signed-graphic
iff L0(M,σ)/e0 is graphic (which is obvious). There are also more substantial
but complicated results. [See Cornuéjols (2001a), §8.4.] (SM, SG: M)

1996a On ideal clutters, metrics and multiflows. In: William H. Cunningham, S. Thomas
McCormick, and Maurice Queyrann, eds., Integer Programming and Combinato-
rial Optimization (5th Internat. IPCO Conf., Vancouver, 1996, Proc.), pp. 275–
287. Lecture Notes in Computer Sci., Vol. 1084. Springer-Verlag, Berlin, 1996.
MR 98i:90075. (SM: M)

Peter Orlik and Louis Solomon
1980a Unitary reflection groups and cohomology. Invent. Math. 59 (1980), 77–94. MR

81f:32017. Zbl. 452.20050. (gg: M, G)

1982a Arrangements defined by unitary reflection groups. Math. Ann. 261 (1982), 339–
357. MR 84h:14006. Zbl. 491.51018. (gg: M, G)

1983a Coxeter arrangements. In: Peter Orlik, ed., Singularities (Arcata, Calif., 1981),
Part 2, pp. 269–291. Proc. Symp. Pure Math., Vol. 40. Amer. Math. Soc., Provi-
dence, R.I., 1983. MR 85b:32016. (gg: M, G)

James B. Orlin
See also R.K. Ahuja, M. Kodialam, and R. Shull.

1985a On the simplex algorithm for networks and generalized networks. Math. Program-
ming Study 24 (1985), 166–178. MR 87k:90102. Zbl. 592.90031.

(GN: M(Bases): Alg)

James G. Oxley
See also J.P.S. Kung and L.R. Matthews.

James Oxley, Dirk Vertigan, and Geoff Whittle
1996a On inequivalent representations of matroids over finite fields. J. Combin. Theory

Ser. B 67 (1996), 325–343. MR 97d:05052. Zbl. 856.05021.

§5: Free swirls, G(2Cn, ∅) (n ≥ 4), mentioning their relationship to Dowl-
ing lattices, and complete free spikes, L0(2Cn, ∅). (GG: M)
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Steven R. Pagano
†1998a Separability and Representability of Bias Matroids of Signed Graphs. Doctoral

thesis, Dept. of Mathematical Sciences, Binghamton University, 1998.
Ch. 1: “Separability”. Graphical characterization of bias-matroid k -separa-

tions of a biased graph. Also, some results on the possibility of k -separations
in which one or both sides are connected subgraphs. (GG: M: Str)

Ch. 2: “Representability”. The frame matroid of every signed graph is rep-
resentable over all fields with characteristic 6= 2. For which signed graphs is
it representable in characteristic 2 (and therefore representable over GF(4),
by the theorem of Geoff Whittle, A characterization of the matroids repre-
sentable over GF(3) and the rationals. J. Combin. Theory Ser. B 65 (1995),
222–261. MR 96m:05046. Zbl. 835.05015.)? Solved (for 3-connected signed
graphs having vertex-disjoint negative circles and hence nonregular matroid).
There are two essentially different types: (i) two balanced graphs joined by
three independent unbalanced digons; (ii) a cylindrical signed graph, possibly
with balanced graphs adjoined by 3-sums. [See notes on Seymour (1995a)
for definition of (ii) and for Lovász’s structure theorem in the case without
vertex-disjoint negative circles.]

Furthermore, the representations of these graphs in characteristic not 2
are all canonical signed-graphic, while any representations over GF(4) are
canonical Z3 -gain graphic. (SG: M: I, Str, T)

Ch. 3: “Miscellaneous results”. (SG: M: I, Str)

20xxa Binary signed graphs. Submitted. (SG: M: I, Str)

20xxb Signed graphic GF(4) forbidden minors. Submitted. (SG: M)

20xxc GF(4)-representations of bias matroids of signed graphs: The 3-connected case.
Submitted. (SG: M: I, Str, T)

Alexander Postnikov
1997a Intransitive trees. J. Combin. Theory Ser. A 79 (1997), 360–366. MR 98b:05036.

Zbl. 876.05042.
§4.2 mentions the lift matroid of {1} ~Kn , i.e., the integral poise gains of a

transitively oriented complete graph, represented by the Linial arrangement.
[See also Stanley (1996a).] (GG: M, G)

Alexander Postnikov and Richard P. Stanley
2000a Deformations of Coxeter hyperplane arrangements. J. Combin. Theory Ser. A 91

(2000), 544–597. MR 2002g:52032. Zbl. 962.05004.
The arrangements are the canonical affine-hyperplane lift representations of

certain additive real gain graphs. Characteristic polynomials of the former,
equalling zero-free chromatic polynomials of the latter, are calculated. And
much more. (gg: G, M, N)

J. Scott Provan
1987a Substitutes and complements in constrained linear models. SIAM J. Algebraic

Discrete Methods 8 (1987), 585–603. MR 89c:90072. Zbl. 645.90049.

§4: “Determinacy in a class of network models.” [Fig. 1 and Thm. 4.7 hint
at possible digraph version of signed-graph or gain-graph frame matroid.]

(?sg, gg: m(?bases): gen)
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Hongxun Qin
See also J.E. Bonin, P. Brooksbank, T.. Dowling, and D.C. Slilaty.

2004a Complete principal truncations of Dowling lattices. Adv. Appl. Math. 32 (2004),
nos. 1–2, 364–379. MR 2005e:06003. Zbl. 1041.05019.

These matroids are determined by their Tutte polynomials, except that
only the order of the group can be determined. (gg: M: I)

Hongxun Qin, Daniel C. Slilaty, and Xiangqian Zhou
20xxa The regular excluded minors for signed-graphic matroids. Submitted.

(SG: M: Str)

Uriel G. Rothblum and Hans Schneider
1980a Characterizations of optimal scalings of matrices. Math. Programming 19 (1980),

121–136. MR 81j:65064. Zbl. 437.65038. (gg: m)

1982a Characterizations of extreme normalized circulations satisfying linear constraints.
Linear Algebra Appl. 46 (1982), 61–72. MR 84d:90047. Zbl. 503.05032. (gg: m)

Bernard Roy
1970a Algèbre moderne et théorie des graphes, orientées vers les sciences économiques

et sociales. Tome II: Applications et problèmes spécifiques. Dunod, Paris, 1970.
MR 41 #5039. Zbl. 238.90073.

§IX.B.3.b: “Flots multiplicatifs et non conditionnels, ou k -flots.” §IX.E.1.b:
“Extension du problème central aux k -flots.” §IX.E.2.c: “Quelques utilisa-
tions concretes des k -flots.” (GN: m(circuit): Exp)

Irasema Sarmiento
1999a A characterisation of jointless Dowling geometries. 16th British Combinatorial

Conference (London, 1997). Discrete Math. 197/198 (1999), 713–731. MR 99m:-
51020. Zbl. 929.05016.

They are 4-closed (determined by their flats of rank 4). They are character-
ized, among all matroids, by the statistics of flats of rank ≤ 7 and therefore
by their Tutte polynomials. There are exceptions in rank 3. (GG: M: N)

Rüdiger Schmidt
1979a On the existence of uncountably many matroidal families. Discrete Math. 27

(1979), 93–97. MR 80i:05029. Zbl. 427.05024.
The “count” matroids of graphs (see Whiteley (1996a)) and an extensive

further generalization of bicircular matroids that includes frame matroids.
His “partly closed set” is a linear class of circuits in an arbitrary “count”
matroid. (MF: GG, M, Bic, EC: Gen)

Gary K. Schwartz
2002a On the automorphism groups of Dowling geometries. Combin. Probab. Comput.

11 (2002), no. 3, 311–321. MR 2004c:20005. Zbl. 1008.06007.
Aut Qn(G) factors in a certain natural way if, but also only if, G factors.

(gg: M: Aut)

Charles Semple and Geoff Whittle
1996a Partial fields and matroid representation. Adv. Appl. Math. 17 (1996), 184–208.

MR 97g:05046. Zbl. 859.05035.
§7: “Dowling group geometries”. A Dowling geometry of a group G has a

partial-field representation iff G is abelian and has at most one involution.
(gg: M: I)
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P.D. Seymour
See also M. Chudnovsky; Gerards, Lovász, et al. (1990a); W. McCuaig; and
N. Robertson.

1977a The matroids with the max-flow min-cut property. J. Combin. Theory Ser. B 23
(1977), 189–222. MR 57 #2960. Zbl. 375.05022.

The central example is Q6 = C−(−K4), the clutter of (edge sets of) negative
polygons in −K4 . P. 199: the extended lift matroid L0(−K4) = F ∗

7 , the dual
Fano matroid. Result (3.4) readily generalizes (by the negative-subdivision
trick) to: every C−(Σ) is a binary clutter, that is, a port of a binary matroid.
[This is also immediate from the construction of L0(Σ).]

P. 200, (i)–(iii): Amongst minor-minimal binary clutters without the “weak
MFMC property” are the circuit clutter of F ∗

7 and C−(−K5) and its blocker.

Main Thm. (§5): A binary clutter is “Mengerian” (I omit the definition)
iff it does not have C−(−K4) as a minor. (See p. 200 for the antecedent
theorem of Gallai.)

[See Cornuéjols (2001a), Guenin (2001a) for more.] (sg, P: M, G)

1981a Matroids and multicommodity flows. European J. Combin. 2 (1981), 257–290.
MR 82m:05030. Zbl. 479.05023.

Conjecture (based on (1977a)). A binary clutter has the weak MFMC
property iff no minor is either the circuit clutter of F7 or C−(−K5) or its
blocker. (sm, sg: M)

Randy Shull, James B. Orlin, Alan Shuchat, and Marianne L. Gardner
1989a The structure of bases in bicircular matroids. Discrete Appl. Math. 23 (1989),

267–283. MR 90h:05040. Zbl. 698.05022.
[See Coullard, del Greco, and Wagner (1991a).] (Bic(Bases))

Randy Shull, Alan Shuchat, James B. Orlin, and Marianne Lepp
1993a Recognizing hidden bicircular networks. Discrete Appl. Math. 41 (1993), 13–53.

MR 94e:90122. Zbl. 781.90089. (GN: Bic: I, Alg)

1997a Arc weighting in hidden bicircular networks. Proc. Twenty-eighth Southeastern In-
ternat. Conf. on Combinatorics, Graph Theory and Computing (Boca Raton, Fla.,
1997). Congressus Numer. 125 (1997), 161–171. MR 98m:05181. Zbl. 902.90157.

(GN: Bic: I, Alg)

Rodica Simion
2000a Combinatorial statistics on type-B analogues of noncrossing partitions and re-

stricted permutations Electronic J. Combin. 7 (2000), Research Paper R9, 27 pp.
(electronic). MR 2000k:05013. Zbl. 938.05003.

“Type-B noncrossing partitions” are certain signed partial partitions of the
ground set; i.e., certain elements of the Dowling lattice of {±} . (gg: M)

J.M.S. Simões-Pereira
1972a On subgraphs as matroid cells. Math. Z. 127 (1972), 315–322. MR 47 #6522. Zbl.

226.05016, (243.05022).

“Cell” = circuit. Along with Klee (1971a), invents the bicircular matroid
(here, for finite graphs) (Thm. 1). Suppose we have matroids on the edge sets
of all [simple] graphs, such that the class of circuits is a [nonempty] union
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of homeomorphism classes of connected graphs. Thm. 2: The polygon and
bicircular matroids [and free matroids] are the only such matroids. (Bic)

1973a On matroids on edge sets of graphs with connected subgraphs as circuits. Proc.
Amer. Math. Soc. 38 (1973), 503–506. MR 47 #3214. Zbl. 241.05114, 264.05126.

A family of (isomorphism types of) [simple] connected graphs is “matroidal”
if for any Γ the class of subgraphs of Γ that are in the family constitute the
circuits of a matroid on E(Γ). Bicircular and even-circle matroids are the
two nicest examples. A referee contributes the even-circle matroid [cf. Tutte
(1981a), Doob (1973a)]. Thm.: The family cannot be finite [unless it is void
or consists of K2 ]. [See Marcu (1987a) for a valuable new viewpoint.]

(MF, Bic, EC)

1975a On matroids on edge sets of graphs with connected subgraphs as circuits II. Dis-
crete Math. 12 (1975), 55–78. MR 54 #7298. Zbl. 307.05129.

Partial results on describing matroidal families of simple, connected graphs.
Five basic types: free [omitted in the paper], cofree, polygon, bicircular, and
even-circle. If the family does not correspond to one of these, then every
member has ≥ 3 independent polygons and minimum degree ≥ 3.

(MF, Bic, EC)

1978a A comment on matroidal families. In: Problèmes Combinatoires et Théorie des
Graphes (Colloq. Internat., Orsay, 1976), pp. 385–387. Colloques Internat. du
CNRS, 260. Editions du C.N.R.S., Paris, 1978. MR 81b:05031. Zbl. 412.05023.

Two small additions to (1973a, 1975a); one is that a matroidal family
not one of the five basic types must contain Kp,q(p) for each m ≥ 3, with
q(p) ≥ p . (MF, Bic, EC)

1992a Matroidal families of graphs. In: Neil White, ed., Matroid Applications, Ch. 4, pp.
91–105. Encycl. Math. Appl., Vol. 40. Cambridge Univ. Press, Cambridge, Eng.,
1992. MR 93c:05036. Zbl. 768.05024.

“Count” matroids (see N. White (1996a)) in §4.3; Schmidt’s (1979a) re-
markable generalization in §4.4. (MF, Bic, EC: Exp, Exr, Ref)

Daniel Slilaty
2000a Orientations of Biased Graphs and Their Matroids. Doctoral dissertation, Dept.

of Mathematical Sciences, Binghamton University, 2000.
Introducing orientation of biased graphs and biased signed graphs by means

of proper circle orientations and their generalization, “graphical orientation
schemes”. The definition is chosen so as to produce orientations of the bias
and complete lift matroids and (though not in the thesis) to model the orien-
tation of the bias or complete lift matroid of, respectively, an R∗- or R+-gain
graph induced by its canonical bias or lift representation (Zaslavsky 2003b).
Characterizations of equivalence of different orientation schemes. The com-
pleteness question: when do graphical orientation schemes yield all orien-
tations of the frame matroid? Always, for additively biased (i.e., signed)
graphs and for some other kinds of biased graphs. (GG: O, M, SG)

2002a Matroid duality from topological duality in surfaces of nonnegative euler charac-
teristic. Combin. Probab. Computing 11 (2002), no. 5, 515–528. MR 2003i:05034.
Zbl. 1009.05036.

Duality of matroids of biased graphs, obtained by defining gains through
embedding in a surface and dualizing the graph in the surface.
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(GG, SG: M, D, T)

2005a On cographic matroids and signed-graphic matroids. Discrete Math. 301 (2005),
no. 12, 207–217. MR 2007c:05049. Zbl. 1078.05017. (SG: M, T)

2006a Bias matroids with unique graphical representations. Discrete Math. 306 (2006),
no. 12, 1253–1256. (GG: M: Str)

2007a Projective-planar signed graphs and tangled signed graphs. J. Combin. Theory
Ser. B 97 (2007), no. 5, 693–717. (SG: T, Str)

20xxa Connectivity in signed-graphic matroids. Submitted. (SG: M:Str)

Daniel C. Slilaty and Hongxun Qin
2007a Decompositions of signed-graphic matroids. Discrete Math. 307 (2007), nos. 17–

18, 2187–2199. (SG: M: Str)

2008a The signed-graphic representations of wheels and whirls. Discrete Math. 308
(2008), no. 10, 1816–1825.

All frame matroids (of biased graphs) that are wheels and whirls, charac-
terized topologically by embeddings in the projective plane (wheels) and the
cylinder (whirls). (GG: M: Str)

2008b Connectivity in frame matroids. Discrete Math. 308 (2008), no. 10, 1994–2001.
Graphical biconnectivity of Ω vs. matroid connectivity of G(Ω), general-

izing concepts developed by Wagner (1985a) for the bicircular matroid.
(GG: M: Str)

Murali K. Srinivasan
1998a Boolean packings in Dowling geometries. European J. Combin. 19 (1998), 727–731.

MR 99i:05059. Zbl. 990.10387.
Decomposes the Dowling lattice Qn(G) into Boolean algebras, indexed in

part by integer compositions, that are cover-preserving and centered above
the middle rank. (GG: M)

Richard P. Stanley
See also P. Doubilet and A. Postnikov.

1996a Hyperplane arrangements, interval orders, and trees. Proc. Nat. Acad. Sci. USA
93 (1996), 2620–2625. MR 97i:52013. Zbl. 848.05005.

Deformed braid hyperplane arrangements, i.e., canonical affine hyperplanar
lift representations of Latb Φ where ‖Φ‖ = Kn and edge ij has gain li ∈ Z

when i < j . In particular (§4), all li = 1. Also (§5), the Shi arrangement,

which represents Latb{0, 1} ~Kn . (gg: G, M, N: Exp)

1998a Hyperplane arrangements, parking functions and tree inversions. In: B.E. Sagan
and R. Stanley, eds., Mathematical Essays in Honor of Gian-Carlo Rota, Progress
in Math., Vol. 161, pp. 359–375. Birkhäuser, Boston, 1998. MR 99f:05006. Zbl.
980.39546. (gg: G, M, N: Exp)

1999a Enumerative Combinatorics, Volume 2. Cambridge Stud. Adv. Math., Vol. 62.
Cambridge University Press, Cambridge, Eng., 1999. MR 2000k:05026. Zbl.
928.05001.

Exercise 5.50: The Shi arrangement [the affinographic hyperplane rep-

resentation of {0, 1} ~Kn with gain group Z+ ]. Exercise 5.41(h–i): The
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Linial arrangement and its characteristic polynomial [= χ∗
{1} ~Kn

(λ)]. Ex-

ercise 6.19(lll) conceals the Catalan arrangement [representing {0,±1} ~Kn ].
(gg: G, m, N: Exr, Exp)

J. Randolph Stonesifer
1975a Logarithmic concavity for a class of geometric lattices. J. Combin. Theory Ser. A

18 (1975), 216–218. MR 50 #9637. Zbl. 312.05019.
The second kind of Whitney numbers of a Dowling lattice are binomially

concave, hence strongly logarithmically concave, hence unimodal. [Famous
Problem (Rota). Generalize this.] (gg: M: N)

W.T. Tutte
†1981a On chain-groups and the factors of graphs. In: L. Lovász and Vera T. Sós, eds.,

Algebraic Methods in Graph Theory (Proc. Colloq., Szeged, 1978), Vol. 2, pp. 793–
818. Colloq. Math. Soc. János Bolyai, 25. János Bolyai Math. Soc., Budapest,
and North-Holland, Amsterdam, 1981. MR 83b:05104. Zbl. 473.05023.

The chain-group approach to the dual even-circle matroid, G(−Γ)∗ . Devel-
oped entirely in terms of the group ∆(Γ) [topologically, B1(Γ, Z)] of integral
1-coboundaries. Assuming Γ connected: “Dendroids of ∆(Γ)” = bases of
G(−Γ); Thms. 8.6–7 give their structure in the bipartite and nonbipartite
cases. Support of an elementary coboundary = circuit of G(−Γ)∗ ; this is a
bond of Γ if Γ is bipartite (Thm. 7.5) and a minimal balancing set other-
wise (Thm. 7.6). Thm. 7.8: Any coboundary times some power of 2 is a sum
of primitive coboundaries. [Problem. Explain how this is related to total
dyadicity of the incidence matrix.] “Rank of ∆(Γ)” = rkG(−Γ); its value is
given at the end of §8. §9 develops a relationship between “homomorphisms”
of ∆(Γ) (linear functionals) and graph factors. §10: The dual chain group;
characterization of circuits of rk G(−Γ). [It is amazing what can be done
with nothing but integral 1-coboundaries. Problem 1. Extend Tutte’s theory
of integral chain groups to all signed graphs. Grossman, Kulkarni, and Scho-
chetman (1994a) have a development over a field but this is very different,
even aside from their opposite viewpoint that goes from matroids to vector
spaces. Problem 2. Extend to signed hypergraphs, where each hyperedge
has a function τe : V (e) → {+,−} , not distinguished from −τe —as with
bidirected graphs, choosing one of them corresponds to orienting e .]

[Tutte knew and lectured on G(−Γ)∗ and/or G(−Γ) before anyone (Doob
1973a, Simões-Pereira 1973a) published it.—information from Neil Robert-
son.] (sg: EC, D, i)

Donald K. Wagner
See also V. Chandru and C.R. Coullard.

††1985a Connectivity in bicircular matroids. J. Combin. Theory Ser. B 39 (1985), 308–324.
MR 87c:05041. Zbl. 584.05019.

Prop. 1 and Thm. 2 show that n -connectivity of the bicircular matroid
B(Γ) is equivalent to “n -biconnectivity” of Γ.

When do two 3-biconnected graphs have isomorphic bicircular matroids?
§5 proves that 3-biconnected graphs with > 4 vertices have isomorphic bicir-
cular matroids iff one is obtained from the other by a sequence of operations
called “edge rolling” and “3-star rotation”. This is the bicircular analog
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of Whitney’s polygon-matroid isomorphism theorem, but it is complicated.
[An important theorem, generalized to all bicircular matroids in Coullard,
del Greco, and Wagner (1991a). Major Research Problems. Generalize to
frame matroids of biased graphs. Find the analog for lift matroids.]

(Bic: Str)

1988a Equivalent factor matroids of graphs. Combinatorica 8 (1988), 373–377. MR
90d:05071. Zbl. 717.05022.

“Factor matroid” = even-circle matroid G(−Γ). Decides when G(−Γ) ∼=
G(B) where B is a given bipartite, 4-connected graph. (EC: Str)

Neil L. White
See also A. Björner.

1986a A pruning theorem for linear count matroids. Congressus Numerantium 54 (1986),
259–264. MR 88c:05047. Zbl. 621.05009. (Bic: Gen, MF)

Neil White and Walter Whiteley
1983a A class of matroids defined on graphs and hypergraphs by counting properties.

Unpublished manuscript, 1983.
See Whiteley (1996a) for an exposition and extension. (Bic: Gen, MF)

Walter Whiteley
1996a Some matroids from discrete applied geometry. In: Joseph E. Bonin, James G. Ox-

ley, and Brigitte Servatius, eds., Matroid Theory (Proc., Seattle, 1995), pp. 171–
311. Contemp. Math., Vol. 197. Amer. Math. Soc., Providence, R.I., 1996. MR
97h:05040. Zbl. 860.05018.

Appendix: “Matroids from counts on graphs and hypergraphs”, which
expounds and extends Loréa (1979a), Schmidt (1979a), and especially White
and Whiteley (1983a), describes matroids on the edge sets of graphs (and
hypergraphs) that generalize the bicircular matroid. The definition: given
m ≥ 0 and k ∈ Z , S is independent iff ∅ ⊂ S′ ⊆ S implies |S′| ≤ m|V (S′)|+
k . (Bic: Gen, MF)(Ref)

Geoff Whittle
See also J. Oxley and C. Semple.

1989a Dowling group geometries and the critical problem. J. Combin. Theory Ser. B 47
(1989), 80–92. MR 90g:51008. Zbl. 628.05018.

A Dowling-lattice version of Crapo and Rota’s critical problem is developed.
Some minimal matroids whose critical exponent is k (i.e., tangential k -
blocks) are given, one being G(±K◦

n). (gg: M: N)

1989b A generalisation of the matroid lift construction. Trans. Amer. Math. Soc. 316
(1989), 141–159. MR 90b:05038. Zbl. 684.05014.

Examples include bicircular and frame matroids. (GG: M, Bic)

Zhaoyang Wu
2003a On the number of spikes over finite fields. Discrete Math. 265 (2003), 261–296.

MR 2004b:05057.
A spike is L0(Ω) where ‖Ω‖ = 2Cn . (gg: M: E)

Young-Jin Yoon
1997a A characterization of supersolvable signed graphs. Commun. Korean Math. Soc.

12 (1997), 1069–1073. MR 99j:05165. Zbl. 945.05051.
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Attempts to characterize supersolvability of G(Σ) in terms of [bias-]simplicial
vertices. [There are fundamental conceptual and technical errors, vitiating
the entire paper; see Koban (2004a). For correct results see Zaslavsky (2001a)
and Koban (2004a).] (SG: M: Str)

Thomas Zaslavsky
1977a Biased graphs. Unpublished manuscript, 1977.

Published, greatly expanded, as (1989a, 1991a, 1995b) and more; as well
as (but restricted to signed graphs) (1982a, 1982b). (GG: M)

1980a Voltage-graphic geometry and the forest lattice. In: Report on the XVth Denison-
O.S.U. Math. Conf. (Granville, Ohio, 1980), pp. 85–89. Dept. of Math., The Ohio
State Univ., Columbus, Ohio, 1980. (GG: M, Bic)

1981a The geometry of root systems and signed graphs. Amer. Math. Monthly 88 (1981),
88–105. MR 82g:05012. Zbl. 466.05058.

Signed graphs correspond to arrangements of hyperplanes in Rn of the
forms xi = xj , xi = −xj , and xi = 0. Consequently, one can compute the
number of regions of the arrangement from graph theory, esp. for arrange-
ments corresponding to “sign-symmetric” graphs, i.e., having both or none
of each pair xi = ±xj . Simplified account of parts of (1982a, 1982b, 1982c),
emphasizing geometry. (SG: M, G, N)

1981c Is there a theory of signed graph embedding? In: Report on the XVIth Denison-
O.S.U. Math. Conf. (Granville, Ohio, 1981), pp. 79–82. Dept. of Math., The Ohio
State Univ., Columbus, Ohio, 1981.

See (1997a). (SG: T, M)

††1982a Signed graphs. Discrete Appl. Math. 4 (1982), 47–74. MR 84e:05095a. Zbl.
476.05080. Erratum. Ibid. 5 (1983), 248. MR 84e:05095b. Zbl. 503.05060.

Basic results on: Switching (§3). Minors (§4). The frame matroid G(Σ) in
many cryptomorphisms (§5) (some erroneous: Thm. 5.1(f,g); partly corrected
in the Erratum [and fully in (1991a)]), consistency of matroid with signed-

graph minors; separators of G(Σ). The signed covering graph Σ̃ (§6).

In §8A, the incidence and Kirchhoff matrices and matrix-tree theorem
[different from that of Murasugi (1989a)] [generalized by Chaiken (1982a) to
a weighted, all-minors version, both directed and undirected]. In §8B, vector
representation of the matroid G(Σ) by the incidence matrix [as multisubsets
of root systems Bn ∪ Cn ].

Conjectures about the interrelation between representability in characteris-
tic 2 and unique representability in characteristic 0 [since answered by Geoff
Whittle (A characterisation of the matroids representable over GF(3) and
the rationals. J. Combin. Theory Ser. B 65 (1995), 222–261. MR 96m:05046.
Zbl. 835.05015) as developed by Pagano (1998a, 20xxc)].

Examples (§7) include: Sign-symmetric graphs and signed expansions ±Γ.
The all-negative graph −Γ, whose matroid (Cor. 7D.3; partly corrected in the
Erratum) is the even-circle matroid (see Doob 1973a) and whose incidence
matrices include the unoriented incidence matrix of Γ.

Generalizations to gain graphs (called “voltage graphs”) mentioned in §9.
(SG, GG: M, I, G; EC)
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††1982b Signed graph coloring. Discrete Math. 39 (1982), 215–228. MR 84h:05050a. Zbl.
487.05027.

A “proper k -coloring” of Σ partitions V into a special “zero” part, possibly
void, that induces a stable subgraph, and up to k other parts (labelled
from a set of k colors), each of which induces an antibalanced subgraph. A
“zero-free proper k -coloring” is similar but without the “zero” part. [The
suggestion is that a signed analog of a stable vertex set is one that induces an
antibalanced subgraph. Problem. Use this insight to develop generalizations
of stable-set notions, such as cliques and perfection. Example. Let α(Σ),
the “antibalanced vertex set number”, be the largest size of an antibalance-
inducing vertex set. Then α(Γ) = α(+Γ ∪ −Kn).] One gets two related
chromatic polynomials. The chromatic polynomial, χΣ(2k + 1), counts all
proper k -colorings; it is essentially the characteristic polynomial of the frame
matroid. It can often be most easily computed via the zero-free chromatic
polynomial, χ∗

Σ(2k), which counts proper zero-free colorings: see (1982c).
(SG, GG: M, Col, N, O, G)

1982c Chromatic invariants of signed graphs. Discrete Math. 42 (1982), 287–312. MR
84h:05050b. Zbl. 498.05030.

Continuation of (1982b). The fundamental balanced expansion formulas,
that express the chromatic polynomial in terms of the zero-free chromatic
polynomial. Many special cases, treated in great detail: antibalanced graphs,
signed graphs that contain +Kn or −Kn , signed Kn ’s (a.k.a. two-graphs),
etc. (SG, GG: M, N, Col, O, G; EC)

1982d Bicircular geometry and the lattice of forests of a graph. Quart. J. Math. Oxford
(2) 33 (1982), 493–511. MR 84h:05050c. Zbl. 519.05020. (GG: M, Bic, G, N)

1982e Voltage-graphic matroids. In: Adriano Barlotti, ed., Matroid Theory and Its Ap-
plications (Proc. Session of C.I.M.E., Varenna, Italy, 1980), pp. 417–423. Liguore
Editore, Naples, 1982. MR 87g:05003 (book). (GG: M, EC, Bic, N)

1987a The biased graphs whose matroids are binary. J. Combin. Theory Ser. B 42 (1987),
337–347. MR 88h:05082. Zbl. 667.05015.

For the frame (bias), lift, and extended lift matroids: forbidden-minor and
structural characterizations. The latter for signed-graphiic frame matroids
is superseded by a result of Pagano (1998a).

[Error in Cor. 4.3: In the last statement, omit “G(Ω) = L(Ω).” That is true
when Ω has no loops, but may not be if Ω has a loop e (because Theorem
3(3) applies with unbalanced block e , but (E \ e, e) is not a 2-separation).]

(GG: M: Str)

1989a Biased graphs. I. Bias, balance, and gains. J. Combin. Theory Ser. B 47 (1989),
32–52. MR 90k:05138. Zbl. 714.05057.

Fundamental concepts and lemmas of biased graphs. Bias from gains;
switching of gains; characterization of balance [for which see also Harary,
Lindstrom, and Zetterstrom (1982a)]. (GG)

1990a Biased graphs whose matroids are special binary matroids. Graphs Combin. 6
(1990), 77–93. MR 91f:05097. Zbl. 786.05020.

A complete list of the biased graphs Ω such that G(Ω), L0(Ω), or L(Ω) is
one of the traditional special binary matroids, G(K5), G(K33), F7 , their du-
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als, and G(Km) (for m ≥ 4) and R10 . [Unfortunately omitted are nonbinary
matroids like the non-Fano plane and its dual.]

[There is an error. The graphs 〈+K◦
n〉 were overlooked in the last statement

of Lemma 1H—due to an oversight in (1987a) Cor. 4.3—and thus in Props.
2A and 5A. A corrected last statement of Lemma 1H: “If Ω has no two vertex-
disjoint negative circles, then G(Ω) = M ⇐⇒ L(Ω) = M .” In Prop. 2A,
add Ω = 〈+K◦

3 〉 to the list for G(K4). In Prop. 5A, add Ω = 〈+K◦
m−1〉 to

the list for G(Km). Thanks to Stefan van Zwam (25 July 2007).] (GG: M)

††1991a Biased graphs. II. The three matroids. J. Combin. Theory Ser. B 51 (1991),
46–72. MR 91m:05056. Zbl. 763.05096.

Basic theory of the bias, lift, and complete lift matroids. Infinite graphs.
Matroids that are intermediate between the bias and lift matroids. Several
questions and conjectures. (GG: M)

1991b Orientation of signed graphs. European J. Combin. 12 (1991), 361–375. MR
93a:05065. Zbl. 761.05095.

Oriented signed graph = bidirected graph. The oriented matroid of an
oriented signed graph. A “cycle” in a bidirected graph is a bias circuit (a
balanced polygon, or a handcuff with both circles negative) oriented to have
no source or sink. Cycles in Σ are compared with those in its signed (i.e.,

derived) covering graph Σ̃. The correspondences among acyclic orientations

of Σ and regions of the hyperplane arrangements of Σ and Σ̃, and dually
the faces of the acyclotope of Σ. Thm. 4.1: the net degree vector d(τ) of an
orientation τ belongs to the face of the acyclotope that is determined by the
union of all cycles. Cor. 5.3 (easy): a finite bidirected graph has a source or
sink. (SG: O, M, G)(SGw: N)

1994a Frame matroids and biased graphs. European J. Combin. 15 (1994), 303–307. MR
95a:05021. Zbl. 797.05027.

A simple matroidal characterization of the frame matroids of biased graphs.
(GG: M)

††1995b Biased graphs. III. Chromatic and dichromatic invariants. J. Combin. Theory
Ser. B 64 (1995), 17–88. MR 96g:05139. Zbl. 857.05088.

Polynomials of gain and biased graphs: a four-variable polynomial special-
izes to the chromatic, dichromatic, and Whitney-number polynomials. The
polynomials come in two flavors: unrestricted and balanced, depending on
the edge sets that appear in their defining sums.

§4: “Gain-graph coloring”. In Φ with gain group G , a “zero-free k -
coloring” is a mapping f : V → [k] × G ; it is “proper” if, when e:vw
is a link or loop and f(v) = (i, g), f(w) = (i, h), then h 6= gϕ(e; v,w).
A “k -coloring” is similar but the color set is enlarged by inclusion of a
color 0; propriety requires the additional restriction that f(v) and f(w)
are not both 0 (and f(v) 6= 0 if v supports a half edge). In particular,
a “group-coloring” of Φ is a zero-free 1-coloring (ignoring the irrelevant
numerical part of the color). A “partial group-coloring” is a group-coloring
of an induced subgraph [which can only be proper if the uncolored vertices
form a stable set]. The unrestricted and balanced chromatic polynomials
count, respectively, unrestricted and zero-free proper k -colorings; the two
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Whitney-number polynomials count all colorings, proper and improper, by
their improper edge sets.

§5: “The matroid connection”. The various polynomials are, in essence,
frame matroid invariants and closely related to corresponding lift matroid
and extended lift matroid invariants.

Almost infinitely many identities, some of them (esp., the balanced expan-
sion formulas in §6) essential. Innumerable examples worked in detail. [The
first half, to the middle of §6, is fundamental. The rest is more or less orna-
mental. Most of the results are, intentionally, generalizations of properties
of ordinary graphs.] (GG: N, M, Col)

1997a Is there a matroid theory of signed graph embedding? Ars Combinatoria 45 (1997),
129–141. MR 97m:05084. Zbl. 933.05067. (SG: M, T)

2001a Supersolvable frame-matroid and graphic-lift lattices. European J. Combin. 22
(2001), 119–133. MR 2001k:05051. Zbl. 966.05013.

Biased graphs whose bias and lift matroids are supersolvable are charac-
terized by a form of simplicial vertex ordering—with a few exceptions. As
preliminary results, modular copoints are characterized [but incompletely in
the bias-matroid case, as observed by Koban (2004a)]. §4: “Examples”: 4a:
“Group expansions and biased expansions”; 4b: “Near-Dowling and Dowling
lift lattices”; 4c: “An extension of Edelman and Reiner’s theorem” to general
gain groups (see Edelman and Reiner (1994a)); 4d: “Bicircular matroids”.
[Written in 1992 and long delayed. Correction in Koban (2004a). Indepen-
dently, Yoon (1997a) incorrectly attempted the case of G(Σ). Jiang and Yu
rediscovered the case of a signed Kn .] (GG, SG: M, G)

2002a Perpendicular dissections of space. Discrete Comput. Geom. 27 (2002), 303–351.
MR 2003i:52026. Zbl. 1001.52011.

Given an additive real gain graph Φ on n vertices and n reference points
Qi in Ed , use Φ to specify perpendicular hyperplanes to each of the lines
QiQj by means of the “Pythagorean coordinate” along QiQj . For generic
points, the number of regions is computable based on the fact that the generic
hyperplane intersection lattice is Latb Φ. Modifications of Pythagorean co-
ordinates give intersection lattice Latb(‖Φ‖, ∅) or a slightly more complex
variant, still for generic reference points. (GG: G, M, N)

2003a Faces of a hyperplane arrangement enumerated by ideal dimension, with applica-
tion to plane, plaids, and Shi. Geom. Dedicata 98 (2003), 63–80. MR 2004f:52025.
Zbl. 1041.52021.

§6, “Affinographic arrangements”: hyperplane arrangements that represent
the extended lift matroid L0(Φ) where Φ is an additive real gain graph. Ex-
amples: the weakly-composed-partition, extended Shi, and extended Linial
arrangements. The faces are counted in terms of dimension and dimension
of the infinite part. (GG: m, G, N)

††2003b Biased graphs IV: Geometrical realizations. J. Combin. Theory Ser. B 89 (2003),
no. 2, 231–297. MR 2005b:05057. Zbl. 1031.05034.

§§2–4: Various ways in which to represent the bias and lift matroids of a
gain or biased graph over a skew field F . Bias matroid: canonical vector
and hyperplanar representations (generalizing those of a graph) based on a



the electronic journal of combinatorics #DS8 35

gain group ⊆ F ∗ , Menelæan and Cevian representations (generalizations of
theorems of Menelaus and Ceva), switching vs. change of ideal hyperplane,
equational logic. Lift matroid: canonical vector and hyperplanar representa-
tions (the latter generalizing the Shi and Linial arrangements among others)
based on a gain group ⊆ F+ , orthographic representation (an affine vari-
ation on canonical representation), Pythagorean representation (Zaslavsky
2002a). Both: effect of switching, nonunique gain-group embedding. §5:
Effect of Whitney operations, separating vertex. §6: Matroids character-
ized by restricted general position. §7, “Thick graphs”: A partial unique-
representation theorem for biased graphs with sufficient edge multiplicity.
§8: The 7 biased K4 ’s. (GG: M, G, N)

2007a Biased graphs. VII. Contrabalance and antivoltages. J. Combin. Theory Ser. B
97 (2007), no. 6, 1019–1040.

Contrabalanced graphs, whose gains are called antivoltages. Emphasis on
the existence of antivoltages in Zµ , Z , and Zk

p for application to canonical
representation of the contrabalanced bias and lift matroids. The number of
such antivoltages is a polynomial function of the group order or (for Z) the
bound on circle gains. (GG: M, bic, G, N)

20xxd Geometric lattices of structured partitions: I. Gain-graphic matroids and group-
valued partitions. Manuscript, 1985 et seq. (GG: M, N, col)

20xxe Geometric lattices of structured partitions: II. Lattices of group-valued partitions
based on graphs and sets. Manuscript, 1985 et seq. (GG: M, N, col)

20xxf Totally frustrated states in the chromatic theory of gain graphs. European J.
Combinatorics, to appear.

Given a set Q of “spins”, a state is s : V → Q . The gain group G acts on
the spin set. In a permutation gain graph Φ with gain group G , edge e:vw
is “satisfied” if s(w) = s(v)ϕ(e), otherwise “frustrated”. A totally frustrated
state (every edge is frustrated) generalizes a proper coloring. Enumerative
theory, including deletion/contraction, a monodromy formula for the number
of totally frustrated states, and a multivariate chromatic polynomial. An
abstract partition function in the edge algebra. (GG: Col: Gen: N, M)

20xxi Big flats in a box. In preparation.
The naive approach to characteristic polynomials via lattice point counting

(in characteristic 0) and Möbius inversion (as in Blass and Sagan (1998a))
can only work when one expects it to. [This is a theorem!]

(GG: G, M, N, col)

20xxj Biased graphs. V. Group and biased expansions. In preparation. (GG: M, G, N)

20xxm Biased graphs. VIII. A cornucopia of examples. In preparation.
Numerous types of examples of biased graphs, many having particular

theory of their own, e.g., Hamiltonian bias. (GG: M, G)

Ping Zhang
1997a The characteristic polynomials of subarrangements of Coxeter arrangements. Dis-

crete Math. 177 (1997), 245–248. MR 98i:52016. Zbl. 980.06614.

Blass and Sagan’s (1998a) geometrical form of signed-graph coloring is
used to calculate (I) characteristic polynomials of several versions of k -equal
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subspace arrangements (these are the main results) and (II) [also in Zhang
(2000a)] the chromatic polynomials (in geometrical guise) of ordinary graphs
extending Kn by one vertex, signed graphs extending ±K◦

n by one vertex,
and ±Kn with any number of negative loops adjoined. (sg: N, G, col)

2000a The characteristic polynomials of interpolations between Coxeter arrangements.
J. Combin. Math. Combin. Comput. 34 (2000), 109–117. MR 2001b:05220. Zbl.
968.32017.

Uses signed-graph coloring (in geometrical guise) to evaluate the chromatic
polynomials (in geometrical guise) of all signed graphs interpolating between
(1) +Kn and +Kn+1 [i.e., ordinary graphs extending a complete graph by
one vertex]; (2) ±K◦

n−1 and ±K◦
n ; (3) ±Kn and ±K◦

n [known already by
several methods, including this one]; (4a) ±Kn−1 and ±Kn−1 ∪ +Kn ; (4b)
±Kn−1∪+Kn and ±Kn ; and certain signed graphs interpolating (by adding
negative edges one vertex at a time, or working down and removing them
one vertex at a time) between (5) +Kn and ±K◦

n ; (6) +Kn and ±Kn . In
cases (1)–(3) the chromatic polynomial depends only on how many edges are
added [which is obvious from the coloring procedure]. (sg: N, col, G)


