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Preface

A signed graph is a graph whose edges are labeled by signs. This is a bibliography of
signed graphs and related mathematics.

Several kinds of labelled graph have been called “signed” yet are mathematically very
different. I distinguish four types:
• Group-signed graphs: the edge labels are elements of a 2-element group and are mul-

tiplied around a polygon (or along any walk). Among the natural generalizations are
larger groups and vertex signs.

• Sign-colored graphs, in which the edges are labelled from a two-element set that is acted
upon by the sign group: − interchanges labels, + leaves them unchanged. This is the
kind of “signed graph” found in knot theory. The natural generalization is to more
colors and more general groups—or no group.

• Weighted graphs, in which the edge labels are the elements +1 and −1 of the integers
or another additive domain. Weights behave like numbers, not signs; thus I regard work
on weighted graphs as outside the scope of the bibliography—except (to some extent)
when the author calls the weights “signs”.

• Labelled graphs where the labels have no structure or properties but are called “signs”
for any or no reason.
Each of these categories has its own theory or theories, generally very different from the

others, so in a logical sense the topic of this bibliography is an accident of terminology.
However, narrow logic here leads us astray, for the study of true signed graphs, which
arise in numerous areas of pure and applied mathematics, forms the great majority of the
literature. Thus I regard as fundamental for the bibliography the notions of balance of a
polygon (sign product equals +, the sign group identity) and the vertex-edge incidence
matrix (whose column for a negative edge has two +1’s or two −1’s, for a positive edge one
+1 and one −1, the rest being zero); this has led me to include work on gain graphs (where
the edge labels are taken from any group) and “consistency” in vertex-signed graphs, and
generalizable work on two-graphs (the set of unbalanced triangles of a signed complete
graph) and on even and odd polygons and paths in graphs and digraphs.

Nevertheless, it was not always easy to decide what belongs. I have employed the
following principles:

Only works with mathematical content are entered, except for a few representative
purely applied papers and surveys. I do try to include:
• Any (mathematical) work in which signed graphs are mentioned by name or signs are put

on the edges of graphs, regardless of whether it makes essential use of signs. (However,
due to lack of time and in order to maintain “balance” in the bibliography, I have
included only a limited selection of items concerning binary clutters and postman theory,
two-graphs, signed digraphs in qualitative matrix theory, and knot theory. For clutters,
see Cornuéjols (20xxa) when it appears; for postman theory, A. Frank (1996a). For



two-graphs, see any of the review articles by Seidel. For qualitative matrix theory, see
e.g. Maybee and Quirk (1969a) and Brualdi and Shader (1995a). For knot theory there
are uncountable books and surveys.)

• Any work in which the notion of balance of a polygon plays a role. Example: gain
graphs. (Exception: purely topological papers concerning ordinary graph embedding.)

• Any work in which ideas of signed graph theory are anticipated, or generalized, or trans-
ferred to other domains. Examples: vertex-signed graphs; signed posets and matroids.

• Any mathematical structure that is an example, however disguised, of a signed or gain
graph or generalization, and is treated in a way that seems in the spirit of signed graph
theory. Examples: even-cycle and bicircular matroids; bidirected graphs; binary clutters
(which are equivalent to signed binary matroids); some of the literature on two-graphs
and double covering graphs.

• And some works that have suggested ideas of value for signed graph theory or that have
promise of doing so in the future.
As for applications, besides works with appropriate mathematical content I include a

few (not very carefully) selected representatives of less mathematical papers and surveys,
either for their historical importance (e.g., Heider (1946a)) or as entrances to the applied
literature (e.g., Taylor (1970a) and Wasserman and Faust (1993a) for psychosociology and
Trinajstic (1983a) for chemistry). Particular difficulty is presented by spin glass theory in
statistical physics—that is, Ising models and generalizations. Here one usually averages
random signs and weights over a probability distribution; the problems and methods are
rarely graph-theoretic, the topic is very specialized and hard to annotate properly, but
it clearly is related to signed (and gain) graphs and suggests some interesting lines of
graph-theoretic research. See Mézard, Parisi, and Virasoro (1987a) and citations in its
annotation.

Plainly, judgment is required to apply these criteria. I have employed mine freely, taking
account of suggestions from my colleagues. Still I know that the bibliography is far from
complete, due to the quantity and even more the enormous range and dispersion of work
in the relevant areas. I will continue to add both new and old works to future editions and
I heartily welcome further suggestions.

There are certainly many errors, some of them egregious. For these I hand over re-
sponsibility to Sloth, Pride, Ambition, Envy, and Confusion. As Diedrich Knickerbocker
says:

Should any reader find matter of offense in this [bibliography], I should heartily grieve, though I would
on no acount question his penetration by telling him he was mistaken, his good nature by telling him

he was captious, or his pure conscience by telling him he was startled at a shadow. Surely when so

ingenious in finding offense where none was intended, it were a thousand pities he should not be suffered
to enjoy the benefit of his discovery.

Corrections, however, will be gratefully accepted by me.



Bibliographical Data. Authors’ names are given usually in only one form, even
should the name appear in different (but recognizably similar) forms on different publi-
cations. Journal abbreviations follow the style of Mathematical Reviews (MR) with mi-
nor ‘improvements’. Reviews and abstracts are cited from MR and its electronic form
MathSciNet, from Zentralblatt für Mathematik (Zbl.) and its electronic version (For early
volumes, “Zbl. VVV, PPP” denotes printed volume and page; the electronic item number
is “(e VVV.PPPNN)”.), and occasionally from Chemical Abstracts (CA) or Computing
Reviews (CR). A review marked (q.v.) has significance, possibly an insight, a criticism, or
a viewpoint orthogonal to mine.

Some—not all—of the most fundamental works are marked with a ††; some almost as
fundamental have a †. This is a personal selection.

Annotations. I try to describe the relevant content in a consistent terminology and
notation, in the language of signed graphs despite occasional clumsiness (hoping that this
will suggest generalizations), and sometimes with my [bracketed] editorial comments. I
sometimes try also to explain idiosyncratic terminology, in order to make it easier to read
the original item. Several of the annotations incorporate open problems (of widely varying
degrees of importance and difficulty).

I use these standard symbols:

Γ is a graph (undirected), possibly allowing loops and multiple edges. It is normally
finite unless otherwise indicated.

Σ is a signed graph. Its vertex and edge sets are V and E ; its order is n = |V | . E+ ,
E− are the sets of positive and negative edges and Σ+ , Σ− are the corresponding
spanning subgraphs (unsigned).

[Σ] is the switching class of Σ.
A( ) is the adjacency matrix.

Φ is a gain graph.
Ω is a biased graph.

l( ) is the frustration index (= line index of imbalance).
G( ) is the bias matroid of a signed, gain, or biased graph.

L( ), L0( ) are the lift and extended lift matroids.

Some standard terminology (much more will be found in the Glossary (Zaslavsky 1998c)):

polygon, circle: The graph of a simple closed path, or its edge set.
cycle: In a digraph, a coherently directed polygon, i.e., “dicycle”. More generally:

in an oriented signed, gain, or biased graph, a matroid circuit (usually, of
the bias matroid) oriented to have no source or sink.

Acknowledgement. I cannot name all the people who have contributed advice and
criticism, but many of the annotations have benefited from suggestions by the authors or
others and a number of items have been brought to my notice by helpful correspondents. I
am very grateful to you all. Thanks also to the people who maintain the invaluable MR and
Zbl. indices (and a special thank-you for creating our very own MSC classification: 05C22).
However, I insist on my total responsibility for the final form of all entries, including such
things as my restatement of results in signed or gain graphic language and, of course, all
the praise and criticism (but not errors; see above) that they contain.



Subject Classification Codes

A code in lower case means the topic appears implicitly but not explicitly. A suffix w
on S, SG, SD, VS denotes signs used as weights, i.e., treated as the numbers +1 and
−1, added, and (usually) the sum compared to 0. A suffix c on SG, SD, VS denotes
signs used as colors (often written as the numbers +1 and −1), usually permuted by
the sign group. In a string of codes a colon precedes subtopics. A code may be refined
through being suffixed by a parenthesised code, as S(M) denoting signed matroids (while
S: M would indicate matroids of signed objects; thus S(M): M means matroids of signed
matroids).

A Adjacency matrix, eigenvalues.
Alg Algorithms.

Appl Applications other than (Chem), (Phys), (PsS) (partial coverage).
Aut Automorphisms, symmetries, group actions.

B Balance (mathematical), cobalance.
Bic Bicircular matroids.

Chem Applications to chemistry (partial coverage).
Cl Clusterability.

Col Vertex coloring.
Cov Covering graphs, double coverings.

D Duality (graphs, matroids, or matrices).
E Enumeration of types of signed graphs, etc.

EC Even-cycle matroids.
ECol Edge coloring.
Exp Expository.
Exr Interesting exercises (in an expository work).

Fr Frustration (imbalance); esp. frustration index (line index of imbalance).
G Connections with geometry, including toric varieties, complex complement, etc.

GD Digraphs with gains (or voltages).
Gen Generalization.
GG Gain graphs, voltage graphs, biased graphs; includes Dowling lattices.
GN Generalized or gain networks. (Multiplicative real gains.)

Hyp Hypergraphs with signs or gains.
I Incidence matrix, Kirchhoff matrix.

K Signed complete graphs.
Knot Connections with knot theory (sparse coverage if signs are purely notational).

LG Line graphs.
M Matroids and geometric lattices, chain-groups, flows.
N Numerical and algebraic invariants of signed graphs, etc.
O Orientations, bidirected graphs.

OG Ordered gains.
P All-negative or antibalanced signed graphs; parity-biased graphs.
p Includes problems on even or odd length of paths or polygons (partial coverage).

Phys Applications in physics (partial coverage).
PsS Psychological, sociological, and anthropological applications (partial coverage).
QM Qualitative (sign) matrices: sign stability, sign solvability, etc. (sparse coverage).

Rand Random signs or gains, signed or gain graphs.
Ref Many references.

S Signed objects other than graphs and hypergraphs: mathematical properties.



SD Signed digraphs: mathematical properties.
SG Signed graphs: mathematical properties.
Sol Sign solvability, sign nonsingularity (partial coverage).
Sta Sign stability (partial coverage).
Str Structure theory.
Sw Switching of signs or gains.

T Topology applied to graphs; surface embeddings. (Not applications to topology.)
TG Two-graphs, graph (Seidel) switching (partial coverage).
VS Vertex-signed graphs (“marked graphs”); signed vertices and edges.

WD Weighted digraphs.
WG Weighted graphs.

X Extremal problems.



A Mathematical Bibliography of
Signed and Gain Graphs and Allied Areas

Robert P. Abelson
See also M.J. Rosenberg.

1967a Mathematical models in social psychology. In: Leonard Berkowitz, ed., Advances
in Experimental Social Psychology, Vol. 3, pp. 1–54. Academic Press, New York,
1967.

§II: “Mathematical models of social structure.” Part B: “The balance princi-
ple.” Reviews basic notions of balance and clusterability in signed (di)graphs
and measures of degree of balance or clustering. Notes that signed Kn is
balanced iff I + A = vvT , v = ±1-vector. Proposes: degree of balance
= λ1/n , where λ1 = largest eigenvalue of I + A(Σ) and n = order of the
(di)graph. [Cf. Phillips (1967a).] Part C, 3: “Clusterability revisited.”

(SG, SD: B, Cl, Fr, A)

Robert P. Abelson and Milton J. Rosenberg
†1958a Symbolic psycho-logic: a model of attitudinal cognition. Behavioral Sci. 3 (1958),

1–13.
Basic formalism: the “structure matrix”, an adjacency matrix R(Σ) with
entries o, p, n [corresponding to 0,+1,−1] for nonadjacency and positive and
negative adjacency and a for simultaneous positive and negative adjacency.
Defines addition and multiplication of these symbols (p. 8) so as to decide
balance of Σ via per (I + R(Σ)). [See Harary, Norman, and Cartwright
(1965a) for more on this matrix.] Analyzes switching, treated as Hadamard
product of R(Σ) with “passive T -matrices” [essentially, matrices obtained by
switching the square all-1’s matrix]. Thm. 11: Switching preserves balance.
Proposes (p. 12) “complexity” [frustration index] l(Σ) as measure of imbal-
ance. [Cf. Harary (1959b).] Thm. 12: Switching preserves frustration index.
Thm. 14: max l(Σ), over all Σ of order n , equals b(n−1)2/4c . (Proof omit-
ted. [Proved by Petersdorf (1966a) and Tomescu (1973a) for signed Kn ’s and
hence for all signed simple graphs of order n .]) (PsS)(SG: A, B, sw, Fr)

B. Devadas Acharya
See also M.K. Gill.

1973a On the product of p -balanced and l -balanced graphs. Graph Theory Newsletter
2, No. 3 (Jan., 1973), Results Announced No. 1. (SG, VS: B)

1979a New directions in the mathematical theory of balance in cognitive organizations.
MRI Tech. Rep. No. HCS/DST/409/76/BDA (Dec., 1979). Mehta Research In-
stitute of Math. and Math. Physics, Allahabad, India, 1979.

(SG, SD: B, A, Ref)(PsS: Exp, Ref)

1980a Spectral criterion for cycle balance in networks. J. Graph Theory 4 (1980), 1–11.
MR 81e:05097(q.v.). Zbl. 445.05066. (SD, SG: B, A)

1980b An extension of the concept of clique graphs and the problem of K -convergence to
signed graphs. Nat. Acad. Sci. Letters (India) 3 (1980), 239–242. Zbl. 491.05052.

(SG: LG, Clique graph)
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1981a On characterizing graphs switching equivalent to acyclic graphs. Indian J. Pure
Appl. Math. 12 (1981), 1187-1191. MR 82k:05089. Zbl. 476.05069.

Begins an attack on the problem of characterizing by forbidden induced
subgraphs the simple graphs that switch to forests. Among them are K5

and Cn , n ≥ 7. Problem. Find any others that may exist. [Forests that
switch to forests are characterized by Hage and Harju (1998a).] (TG)

1982a Connected graphs switching equivalent to their iterated line graphs. Discrete
Math. 41 (1982), 115–122. MR 84b:05078. Zbl. 497.05052. (LG, TG)

1983a Even edge colorings of a graph. J. Combin. Theory Ser. B 35 (1983), 78–79. MR
85a:05034. Zbl. 505.05032, (515.05030).

Find the fewest colors to color the edges so that in each polygon the number
of edges of some color is even. [Possibly, inspired by §2 of Acharya and
Acharya (1983a).] (b: Gen)

1983b A characterization of consistent marked graphs. Nat. Acad. Sci. Letters (India) 6
(1983), 431–440. Zbl. 552.05052.

Converts a vertex-signed graph (Γ, µ) into a signed graph Σ such that (Γ, µ)
is consistent iff every polygon in Σ is all-negative or has an even number of
all-negative components. [See S.B. Rao (1984a) and Hoede (1992a) for the
definitive results on consistency.] (VS, SG: b)

1984a Some further properties of consistent marked graphs. Indian J. Pure Appl. Math.
15 (1984), 837–842. MR 86a:05101. Zbl. 552.05053.

Notably: nicely characterizes consistent vertex-signed graphs in which the
subgraph induced by negative vertices is connected. [Subsumed by S.B. Rao
(1984a).] (VS: b)

1984b Combinatorial aspects of a measure of rank correlation due to Kendall and its
relation to social preference theory. In: B.D. Acharya, ed., Proceedings of the Na-
tional Symposium on Mathematical Modelling (Allahabad, 1982). M.R.I. Lecture
Notes in Appl. Math., 1. Mehta Research Institute of Math. and Math. Physics,
Allahabad, India, 1984.

Includes an exposition of Sampathkumar and Nanjundaswamy (1973a).
(SG: K: Exp)

1986a An extension of Katai-Iwai procedure to derive balancing and minimum balancing
sets of a social system. Indian J. Pure Appl. Math. 17 (1986), 875–882. MR
87k:92037. Zbl. 612.92019.

Expounds the procedure of Katai and Iwai (1978a). Proposes a general-
ization to those Σ that have a certain kind of polygon basis. Construct a
“dual” graph whose vertex set is a polygon basis supplemented by the sum
of basic polygons. A “dual” vertex has sign as in Σ. Let T = set of negative
“dual” vertices. A T -join in the “dual”, if one exists, yields a negation set
for Σ. [A minimum T -join need not yield a minimum negation set. In-
deed the procedure is unlikely to yield a minimum negation set (hence the
frustration index l(Σ)) for all signed graphs, since it can be performed in
polynomial time while l(Σ) is NP-complete. Questions. To which signed
graphs is the procedure applicable? For which ones does a minimum T -join
yield a minimum negation set? Do the latter include all those that forbid an
interesting subdivision or minor (cf. Gerards and Schrijver (1986a), Gerards



the electronic journal of combinatorics #DS8 3

(1988a, 1989a))?] (SG: Fr: Alg)
B. Devadas Acharya and Mukti Acharya [M.K. Gill]

1983a A graph theoretical model for the analysis of intergroup stability in a social system.
Manuscript, 1983.

The first half (most of §1) was improved and published as (1986a).
The second half (§§2–3) appears to be unpublished. Given; a graph Γ, a
vertex signing µ , and a covering F of E(Γ) by cliques of size ≤ 3. Define
a signed graph S by; V (S) = F and QQ′ ∈ E(S) when at least half the
elements of Q or Q′ lie in Q∩Q′ ; sign QQ′ negative iff there exist vertices
v ∈ Q\Q′ , and w ∈ Q′\Q such that µ(v) 6= µ(w). Suppose there is no
edge QQ′ in which |Q| = 3, |Q′| = 2, and the two members of Q\Q′ have
differing sign. [This seems a very restrictive supposition.] Main result (Thm.
7): S is balanced. The definitions, but not the theorem, are generalized
to multiple vertex signs µ , general clique covers, and clique adjacency rules
that differ slightly from that of the theorem. (GG, VS, SG: B)

1986a New algebraic models of social systems. Indian J. Pure Appl. Math. 17 (1986),
150–168. MR 87h:92087. Zbl. 591.92029.

Four criteria for balance in an arbitrary gain graph. [See also Harary, Lind-
strom, and Zetterstrom (1982a).] (GG: B, sw)

B.D. Acharya, M.K. Gill, and G.A. Patwardhan
1984a Quasicospectral graphs and digraphs. In: Proceedings of the National Symposium

on Mathematical Modelling (Allahabad, 1982), pp. 133–144. M.R.I. Lecture Notes
Appl. Math., 1. Mehta Research Institute of Math. and Math. Physics, Allahabad,
1984. MR 86c:05087. Zbl. 556.05048.

A signed graph, or digraph, is “cycle-balanced” if every polygon, or ev-
ery cycle, is positive. Graphs, or digraphs, are “quasicospectral” if they
have cospectral signings, “strictly quasicospectral” if they are quasicospec-
tral but not cospectral, “strongly cospectral” if they are cospectral and have
cospectral cycle-unbalanced signings. There exist arbitrarily large sets of
strictly quasicospectral digraphs, which moreover can be assumed strongly
connected, weakly but not strongly connected, etc. There exist 2 unbalanced
strictly quasicospectral signed graphs; existence of larger sets is not unsolved.
There exist arbitrarily large sets of nonisomorphic, strongly cospectral con-
nected graphs; also, weakly connected digraphs, which moreover can be taken
to be strongly connected, unilaterally connected, etc. Proofs, based on ideas
of A.J. Schwenk, are sketched. (SD, SG: A)

Mukti Acharya [Mukhtiar Kaur Gill]
See also B.D. Acharya and M.K. Gill.

1988a Switching invariant three-path signed graphs. In: M.N. Gopalan and G.A. Pat-
wardhan, eds., Optimization, Design of Experiments and Graph Theory (Bombay,
1986), pp. 342–345. Indian Institute of Technology, Bombay, 1988. MR 90b:05102.
Zbl. 744.05054. (SG, Sw)

L. Adler and S. Cosares
1991a A strongly polynomial algorithm for a special class of linear programs. Oper. Res.

39 (1991), 955–960. MR 92k:90042. Zbl. 749.90048.
The class is that of the transshipment problem with gains. Along the way, a
time bound on the uncapacitated, demands-only flows-with-gains problem.
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(GN: I(D), Alg)
S.N. Afriat

1963a The system of inequalities ars > Xr − Xs . Proc. Cambridge Philos. Soc. 59
(1963), 125–133. MR 25 #5071. Zbl. 118, 149 (e: 118.14901).

See also Roy (1959a). (GG: OG, Sw, b)
1974a On sum-symmetric matrices. Linear Algebra Appl. 8 (1974), 129–140. MR 48

#11163. Zbl. 281.15017. (GG: Sw, b)
A.A. Ageev, A.V. Kostochka, and Z. Szigeti

1995a A characterization of Seymour graphs. In: Egon Balas and Jens Clausen, eds.,
Integer Programming and Combinatorial Optimization (4th Internat. IPCO Conf.,
Copenhagen, 1995, Proc.), pp. 364–372. Lecture Notes in Computer Sci., Vol. 920.
Springer, Berlin, 1995. MR 96h:05157.

A Seymour graph satisfies with equality a general inequality between T -join
size and T -cut packing. Thm.: A graph is not a Seymour graph iff it has
a conservative ±1-weighting such that there are two polygons with total
weight 0 whose union is an antibalanced subdivision of −Kn or −Pr3 (the
triangular prism). (SGw: Str, B, P)

1997a A characterization of Seymour graphs. J. Graph Theory 24 (1997), 357–364. MR
97m:05217. Zbl. 970.24507.

Virtually identical to (1995a). (SGw: Str, B, P)
J.K. Aggarwal

See M. Malek-Zavarei.
Ron Aharoni, Rachel Manber, and Bronislaw Wajnryb

1990a Special parity of perfect matchings in bipartite graphs. Discrete Math. 79 (1990),
221–228. MR 91b:05140. Zbl. 744.05036.

When do all perfect matchings in a signed bipartite graph have the same
sign product? Solved. (sg: b, Alg)(qm: Sol)

R. Aharoni, R. Meshulam, and B. Wajnryb
1995a Group weighted matchings in bipartite graphs. J. Algebraic Combin. 4 (1995),

165–171. MR 96a:05111. Zbl. 950.25380.
Given an edge weighting w : E → K where K is a finite abelian group.
Main topic: perfect matchings M such that

∑
e∈M w(e) = 0 [I’ll call them

0-weight matchings]. (Also, in §2, = c where c is a constant.) Generalizes
and extends Aharoni, Manber, and Wajnryb (1990a). Continued by Kahn
and Meshulam (1998a). (WG)
Prop. 4.1 concerns vertex-disjoint polygons whose total sign product is + in
certain signed digraphs. (SD)

Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin
1993a Network Flows: Theory, Algorithms, and Applications. Prentice Hall, Englewood

Cliffs, N.J., 1993. MR 94e:90035.
§12.6: “Nonbipartite cardinality matching problem”. Nicely expounds the-
ory of blossoms and flowers (Edmonds (1965a), etc.). Historical notes and
references at end of chapter. (p: o, Alg: Exp, Ref)
§5.5: “Detecting negative cycles”; §12.7, subsection “Shortest paths in di-
rected networks”. Weighted arcs with negative weights allowed. Techniques
for detecting negative cycles and, if none exist, finding a shortest path.
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(WD: OG, Alg: Exp)
Ch. 16: “Generalized flows”. Sect. 15.5: “Good augmented forests and
linear programming bases”, Thm. 15.8, makes clear the connection between
flows with gains and the bias matroid of the underlying gain graph. Some
terminology: “breakeven cycle” = balanced polygon; “good augmented for-
est” = basis of the bias matroid, assuming the gain graph is connected and
unbalanced. (GN: M(Bases), Alg: Exp, Ref)

Martin Aigner
1979a Combinatorial Theory. Grundl. math. Wiss., Vol. 234. Springer-Verlag, Berlin,

1979. Reprinted: Classics in Mathematics. Springer-Verlag, Berlin, 1997. MR
80h:05002. Zbl. 415.05001, 858.05001 (reprint).

In §VII.1, pp. 333–334 and Exerc. 13–15 treat the Dowling lattices of GF(q)×
and higher-weight analogs. (GG, GG(Gen): M: N, Str)

M. Aı̆gner [Martin Aigner]
1982a Kombinatornaya teoriya. “Mir”, Moscow, 1982. MR 84b:05002.

Russian translation of (1979a). Transl. V.V. Ermakov and V.N. Lyamin. Ed.
and preface by G.P. Gavrilov. (GG, GG(Gen): M: N, Str)

J. Akiyama, D. Avis, V. Chvátal, and H. Era
††1981a Balancing signed graphs. Discrete Appl. Math. 3 (1981), 227–233. MR 83k:05059.

Zbl. 468.05066.
Bounds for D(Γ), the largest frustration index l(Γ, σ) over all signings of a
fixed graph Γ (not necessarily simple) of order n and size m = |E| . Main
Thm.: 1

2m −
√
mn ≤ D(Γ) ≤ 1

2m . Thm. 4: D(Kt,t) ≤ 1
2 t

2 − c0t3/2 , where
c0 can be taken = π/480. Probabilistic methods are used. Thus, Thm. 2:
Given Γ, Prob(l(Γ, σ) > 1

2m −
√
mn) ≥ 1 − ( 2

e )n . Moreover, let nb(Σ) be
the largest order of a balanced subgraph of Σ. Thm. 5: Prob(nb(Kn, σ) ≥
k) ≤

(
n
k

)
/2(k

2) . (The problem of evaluating n − nb was raised by Harary;
see (1959b).) Finally, Thm. 1: If Σ has vertex-disjoint balanced induced
subgraphs with m′ edges, then l(Σ) ≤ 1

2 (m −m′). [See Poljak and Turźık
(1982a), Solé and Zaslavsky (1994a) for more on D(Γ); Brown and Spencer
(1971a), Gordon and Witsenhausen (1972a) for D(Kt,t); Harary, Lindström,
and Zetterström (1982a) for a result similar to Thm. 1.] (SG: Fr, Rand)

S. Alexander and P. Pincus
1980a Phase transitions of some fully frustrated models. J. Phys. A: Math. Gen. 13, No.

1 (1980), 263–273. (P: Phys)

Kazutoshi Ando and Satoru Fujishige
1996a On structures of bisubmodular polyhedra. Math. Programming 74 (1996), 293–

317. MR 97g:90102. Zbl. 855.68107. (sg: O)

Kazutoshi Ando, Satoru Fujishige, and Takeshi Naitoh
1997a Balanced bisubmodular systems and bidirected flows. J. Oper. Res. Soc. Japan

40 (1997), 437–447. MR 98k:05073. Zbl. 970.61830.
A balanced bisubmodular system corresponds to a bidirected graph that
is balanced. The “flows” are arbitrary capacity-constrained functions, not
satisfying conservation at a vertex. (sg: O, B)
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Kazutoshi Ando, Satoru Fujishige, and Toshio Nemoto
1996a Decomposition of a bidirected graph into strongly connected components and its

signed poset structure. Discrete Appl. Math. 68 (1996), 237–248. MR 97c:05096.
Zbl. 960.53208. (sg: O)

1996b The minimum-weight ideal problem for signed posets. J. Oper. Res. Soc. Japan
39 (1996), 558-565. MR 98j:90084. Zbl. 874.90188. (sg: O)

Thomas Andreae
1978a Matroidal families of finite connected nonhomeomorphic graphs exist. J. Graph

Theory 2 (1978), 149–153. MR 80a:05160. Zbl. 401.05070.
Partially anticipates the “count” matroids of graphs (see Whiteley (1996a)).

(Bic, EC: Gen)
St. Antohe and E. Olaru

1981a Singned graphs homomorphism [sic]. [Signed graph homomorphisms.] Bul. Univ.
Galati Fasc. II Mat. Fiz. Mec. Teoret. 4 (1981), 35–43. MR 83m:05057.

A “congruence” is an equivalence relation R on V (Σ) such that no neg-
ative edge is within an equivalence class. The quotient Σ/R has the ob-
vious simple underlying graph and signs σ̄(x̄ȳ) = σ(xy) [which is ambigu-
ous]. A signed-graph homomorphism is a function f : V1 → V2 that is
a sign-preserving homomorphism of underlying graphs. [This is inconsis-
tent, since the sign of edge f(x)f(y) can be ill defined. The defect might
perhaps be remedied by allowing multiple edges with different signs or by
passing entirely to multigraphs.] The canonical map Σ → Σ/R is such
a homomorphism. Composition of homomorphisms is well defined and as-
sociative; hence one has a category Graphsign . The categorial product is∏
i∈I Σi := Cartesian product of the |Σi| with the component-wise signature

σ((. . . , ui, . . . )(. . . , vi, . . . )) := σi(uivi). Some further elementary properties
of signed-graph homomorphisms and congruences are proved. [The paper is
hard to interpret due to mathematical ambiguity and grammatical and ty-
pographical errors.] (SG)

Katsuaki Aoki
See M. Iri.

Julián Aráoz, William H. Cunningham, Jack Edmonds, and Jan Green-Krótki

1983a Reductions to 1-matching polyhedra. Proc. Sympos. on the Matching Problem:
Theory, Algorithms, and Applications (Gaithersburg, Md., 1981). Networks 13
(1983), 455–473. MR 85d:90059. Zbl. 525.90068.

The “minimum-cost capacitated b-matching problem in a bidirected graph
B ” is to minimize

∑
e cexe subject to 0 ≤ x ≤ u ∈ {0, 1, . . . ,∞}E and

I(B)x = b ∈ ZV . The paper proves, by reduction to the ordinary perfect
matching problem, Edmonds and Johnson’s (1970a) description of the convex
hull of feasible solutions. (sg: O: I, Alg, G)

Dan Archdeacon
1995a Problems in topological graph theory. Manuscript, 1995. WorldWideWeb URL

(2/98) http://www.emba.uvm.edu/˜archdeac/papers/papers.html
A compilation from various sources and contributors, updated every so of-
ten. “The genus sequence of a signed graph”, p. 10: A conjecture due to
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Širáň (?) on the demigenus range (here called “spectrum” [though unrelated
to matrices]) for orientation embedding of Σ, namely, that the answer to
Question 1 under Širáň (1991b) is affirmative. (SG: T)

1996a Topological graph theory: a survey. Surveys in Graph Theory (Proc., San Fran-
cisco, 1995). Congressus Numer. 115 (1996), 5–54. Updated version: World-
WideWeb URL (2/98) http://www.emba.uvm.edu/˜archdeac/papers/papers.html
MR 98g:05044. Zbl. 897.05026.

§2.5 describes orientation embedding (called “signed embedding” [although
there are other kinds of signed embedding]) and switching (called “sequence
of local switches of sense”) of signed graphs with rotation systems. §5.5,
“Signed embeddings”, briefly mentions Širáň (1991b), Širáň and Škoviera
(1991a), and Zaslavsky (1993a, 1996a). (SG: T: Exp)

Dan Archdeacon and Jozef Širáň
1998a Characterizing planarity using theta graphs. J. Graph Theory 27 (1998), 17–20.

MR 98j:05055. Zbl. 887.05016.
A “claw” consists of a vertex and three incident half edges. Let C be the set
of claws in Γ and T the set of theta subgraphs. Fix a rotation of each claw.
Call t ∈ T an “edge” with endpoints c, c′ if t contains c and c′ ; sign it + or
− according as t can or cannot be embedded in the plane so the rotations
of its trivalent vertices equal the ones chosen for c and c′ . This defines,
independently (up to switching) of the choice of rotations, the “signed triple
graph” T±(Γ). Theorem: Γ is planar iff T±(Γ) is balanced. (SG, Sw)

Srinivasa R. Arikati and Uri N. Peled
1993a A linear algorithm for the group path problem on chordal graphs. Discrete Appl.

Math. 44 (1993), 185–190. MR 94h:68084. Zbl. 779.68067.
Given a graph with edges weighted from a group. The weight of a path is the
product of its edge weights in order (not inverted, as with gains). Problem:
to determined whether between two given vertices there is a chordless path
of given weight. This is NP-complete in general but for chordal graphs there
is a fast algorithm (linear in (|E|+ |V |) · (group order)). [Question. What if
the edges have gains rather than weights?] (WG: p(Gen): Alg)

1996a A polynomial algorithm for the parity path problem on perfectly orientable graphs.
Discrete Appl. Math. 65 (1996), 5–20. MR 96m:05120. Zbl. 854.68069.

Problem: Does a given graph contain an induced path of specified parity
between two prescribed vertices? A polynomial-time algorithm for certain
graphs. (Cf. Bienstock (1991a).) [Problem. Generalize to paths of specified
sign in a signed graph.] (p: Alg)(Ref)

Esther M. Arkin and Christos H. Papadimitriou
1985a On negative cycles in mixed graphs. Oper. Res. Letters 4 (1985), 113–116. MR

87h:68061. Zbl. 585.05017. (WG: OG)
E.M. Arkin, C.H. Papadimitriou, and M. Yannakakis

1991a Modularity of cycles and paths in graphs. J. Assoc. Comput. Mach. 38 (1991),
255–274. MR 92h:68068. Zbl. 799.68146.

Modular poise gains in digraphs (gain +1 on each oriented edge). (gg: B)
Christos A. Athanasiadis

1996a Characteristic polynomials of subspace arrangements and finite fields. Adv. Math.
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122 (1996), 193–233.
See Headley (1997a) for definitions of the Shi arrangements. Here the char-
acteristic polynomials of these and other arrangements are evaluated com-
binatorially. §3: “The Shi arrangements”. §4: “The Linial arrangement”:
this represents Latb (Kn, ϕ1) (see Stanley (1996a) for notation). §5: “Other
interesting hyperplane arrangements”, treats: the arrangement represent-
ing Latb L · Kn where L = {−k, . . . , k − 1, k} , which is the semilattice
of k -composed partitions (see Zaslavsky (20xxh), also Edelman and Reiner
(1996a)) and several generalizations, including to arbitrary sign-symmetric
gain sets L and to Weyl analogs; also, an antibalanced analog of the An Shi
arrangment (Thm. 5.4); and more. (sg, gg: G, M, N)

1997a A class of labeled posets and the Shi arrangement of hyperplanes. J. Combin.
Theory Ser. A 80 (1997), 158–162. MR 98d:05008. Zbl. 970.66662.

The Shi arrangement of hyperplanes [of type An−1 ] represents Latb Φ where
Φ = (Kn, ϕ0)∪(Kn, ϕ1) (see Stanley (1996a) for notation). (gg: G, M, N)

1998a On free deformations of the braid arrangement. European J. Combin. 19 (1998),
7–18.

The arrangements considered are the subarrangements of the projectivized
Shi arrangements of type An−1 that contain An−1 . Thms. 4.1 and 4.2
characterize those that are free or supersolvable. Arrangements representing
the extended lift matroid L0(Φ) where Φ =

⋃a
i=1−a(Kn, ϕi) and a ≥ 1

(a = 1 giving the Shi arrangement), and a mild generalization, are of use in
the proof (see Stanley (1996a) for notation). (gg: G, M, N)

20xxa Deformations of Coxeter hyperplane arrangements and their characteristic poly-
nomials. Submitted.

David Avis
See J. Akiyama.

Constantin P. Bachas
1984a Computer-intractibility of the frustration model of a spin glass. J. Physics A 17

(1984), L709–L712. MR 85j:82043.
The frustration index decision problem on signed (3-dimensional) cubic lat-
tice graphs is NP-complete. [Proof is incomplete; completed and improved
by Green (1987a).] [Cf. Barahona (1982a).] (SG: Fr: Alg)

G. David Bailey
20xxa Inductively factored signed-graphic arrangements of hyperplanes. Submitted.

Continues Edelman and Reiner (1994a). (SG: G, M)
V. Balachandran

1976a An integer generalized transportation model for optimal job assignment in com-
puter networks. Oper. Res. 24 (1976), 742–759. MR 55 #12068. Zbl. 356.90028.

(GN: M(bases))
V. Balachandran and G.L. Thompson

1975a An operator theory of parametric programming for the generalized transportation
problem: I. Basic theory. II. Rim, cost and bound operators. III. Weight operators.
IV. Global operators. Naval Res. Logistics Quart. 22 (1975), 79–100, 101–125,
297–315, 317–339. MR 52 ##2595, 2596, 2597, 2598. Zbl. 331.90048, 90049,
90050, 90051. (GN: M)
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Egon Balas
1966a The dual method for the generalized transportation problem. Management Sci. 12

(1966), No. 7 (March, 1966), 555–568. MR 32 #7232. Zbl. 142, 166 (e: 142.16601).
(GN: M(bases))

1981a Integer and fractional matchings. In: P. Hansen, ed., Studies on Graphs and
Discrete Programming, pp. 1–13. North-Holland Math. Stud., 59. Ann. Discrete
Math., 11. North-Holland, Amsterdam, 1981. MR 84h:90084.

Linear (thus “fractional”, meaning half-integral) vs. integral programming
solutions to maximum matching. The difference of their maxima = 1

2 (max
number of matching-separable vertex-disjoint odd polygons). Also noted (p.
12): (max) fractional matchings in Γ correspond to (max) matchings in the
double covering graph of −Γ. [Question. Does this lead to a definition of
maximum matchings in signed graphs?] (p, o: I, G, Alg, cov)

E. Balas and P.L. Ivanescu [P.L. Hammer]
1965a On the generalized transportation problem. Management Sci. 11 (1965), No. 1

(Sept., 1964), 188–202. MR 30 #4599. Zbl. 133, 425 (e: 133.42505). (GN: M, B)
K. Balasubramanian

1988a Computer generation of characteristic polynomials of edge-weighted graphs, het-
erographs, and directed graphs. J. Computational Chem. 9 (1988), 204–211.

Here a “signed graph” means, in effect, an acyclically oriented graph D
along with the antisymmetric adjacency matrix A±(D) = A(+D∪−D∗), D∗
being the converse digraph. [That is, A±(D) = A(D)−A(D)t . The “signed
graphs” are just acyclic digraphs with an antisymmetric adjacency matrix
and, correspondingly, what we may call the ‘antisymmetric characteristic
polynomial’.] Proposes an algorithm for the polynomial. Observes in some
examples a relationship between the characteristic polynomial of Γ and the
antisymmetric characteristic polynomial of an acyclic orientation.

(SD, wg: A: N: Alg, Chem)
1991a Comments on the characteristic polynomial of a graph. J. Computational Chem.

12 (1991), 248–253. MR 92b:92057.
Argues (heuristically) that a certain algorithm is superior to another, in
particular for the antisymmetric polynomial defined in (1988a).

(SD: A: N: Alg)

1992a Characteristic polynomials of fullerene cages. Chemical Physics Letters 198 (1992),
577–586.

Computed for graphs of six different cages of three different orders, in both
ordinary and “signed” (see (1988a)) versions. Observes a property of the
“signed graph” polynomials [which is due to antisymmetry, as explained by
P.W. Fowler (Comment on “Characteristic polynomials of fullerene cages”.
Chemical Physics Letters 203 (1993), 611–612)]. (SD: A: N: Chem)

1994a Are there signed cospectral graphs? J. Chemical Information and Computer Sci-
ences 34 (1994), 1103–1104.

The “signed graphs” are as in (1988a). Simplified contents: It is shown
by example that the antisymmetric characteristic polynomials of two non-
isomorphic acyclic orientations of a graph (see (1988a)) may be equal or
unequal. [Much smaller examples are provided by P.W. Fowler (Comment
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on “Characteristic polynomials of fullerene cages”. Chemical Physics Let-
ters 203 (1993), 611–612).] [Question. Are there examples for which the
underlying (di)graphs are nonisomorphic?] [For cospectrality of other kinds
of signed graphs, see Acharya, Gill, and Patwardhan (1984a) (signed Kn ’s).]

(SD: A: N)
R. Balian, J.M. Drouffe, and C. Itzykson

1975a Gauge fields on a lattice. II. Gauge-invariant Ising model. Phys. Rev. D 11 (1975),
2098–2103. (SG: Phys, Sw, B)

Jørgen Bang-Jensen and Gregory Gutin
1997a Alternating cycles and paths in edge-coloured multigraphs: A survey. Discrete

Math. 165/166 (1997), 39–60. MR 98d:05080. Zbl. 876.05057.
A rich source for problems on bidirected graphs. An edge 2-coloration of a
graph becomes an all-negative bidirection by taking one color class to con-
sist of introverted edges and the other to consist of extroverted edges. An
alternating path becomes a coherent path; an alternating polygon becomes
a coherent polygon. [General Problem. Generalize to bidirected graphs the
results on edge 2-colored graphs mentioned in this paper. (See esp. §5.) Ques-
tion. To what digraph properties do they specialize by taking the underlying
signed graph to be all positive?] [See e.g. Bánkfalvi and Bánkfalvi (1968a)
(q.v.), Bang-Jensen and Gutin (1998a), Das and Rao (1983a), Grossman and
Häggqvist (1983a), Mahadev and Peled (1995a), Saad (1996a).]

(p: o: Paths, Polygons)
1998a Alternating cycles and trails in 2-edge-colored complete multigraphs. Discrete

Math. 188 (1998), 61–72. MR 99g:05072.
The longest coherent trail, having degrees bounded by a specified degree
vector, in a bidirected all-negative complete multigraph that satisfies an extra
hypothesis. Generalization of Das and Rao (1983a) and Saad (1996a), thus
ultimately of Thm. 1 of Bánkfalvi and Bánkfalvi (1968a) (q.v.). Also, a
polynomial-time algorithm. (p: o: Paths, Alg)

M. Bánkfalvi and Zs. Bánkfalvi
1968a Alternating Hamiltonian circuit in two-coloured complete graphs. In: P. Erdős

and G. Katona, eds., Theory of Graphs (Proc. Colloq., Tihany, 1966), pp. 11–18.
Academic Press, New York, 1968. MR 38 #2052. Zbl. 159, 542 (e: 159.54202).

Let Σ be a bidirected −K2n which has a coherent 2-factor. (“Coherent”
means that, at each vertex in the 2-factor, one edge is directed inward and
the other outward.) Thm. 1: B has a coherent Hamiltonian polygon iff, for
every k ∈ {2, 3, . . . , n− 2} , sk > k2 , where sk := the sum of the k smallest
indegrees and the k smallest outdegrees. Thm. 2: The number of k ’s for
which sk = k2 equals the smallest number p of polygons in any coherent
2-factor of B . Moreover, the p values of k for which equality holds imply a
partition of V into p vertex sets, each inducing Bi consisting of a bipartite
[i.e., balanced] subgraph with a coherent Hamiltonian polygon and in one
color class only introverted edges, while in the other only extroverted edges.
[Problem. Generalize these remarkable results to an arbitrary bidirected com-
plete graph. The all-negative case will be these theorems; the all-positive case
will give the smallest number of cycles in a covering by vertex-disjoint cycles
of a tournament that has any such covering.] [See Bang-Jensen and Gutin
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(1997a) for further developments on alternating walks.] (p: o: Polygons)

Zs. Bánkfalvi
See M. Bánkfalvi.

C. Bankwitz
1930a Über die Torsionszahlen der alternierenden Knotes. Math. Ann. 103 (1930), 145–

161.
Introduces the sign-colored graph of a link diagram. [Further work by nu-
merous writers, e.g., S. Kinoshita et al. and esp. Kauffman (1989a) and
successors.] (Knot: SGc)

Francisco Barahona
1981a Balancing signed toroidal graphs in polynomial-time. Unpublished manuscript,

1981.
Given a 2-connected Σ whose underlying graph is toroidal, polynomial-
time algorithms are given for calculating the frustration index l(Σ) and the
generating function of switchings Σµ by |E−(Σµ)| . The technique is to
solve a Chinese postman (T -join) problem in the toroidal dual graph, T
corresponding to the frustrated face boundaries. Generalizes (1982a). [See
(1990a), p. 4, for a partial description.] (SG: Fr, Alg)

1982a On the computational complexity of Ising spin glass models. J. Phys. A: Math.
Gen. 15 (1982), 3241–3253. MR 84c:82022.

The frustration-index problem, that is, minimization of |E−(Ση)| over all
switching functions η : V → {±1} , for signed planar and toroidal graphs
and subgraphs of 3-dimensional grids. Analyzed structurally, in terms of
perfect matchings in a modified dual graph, and algorithmically. The last is
NP-hard, even when the grid has only 2 levels; the former are polynomial-
time solvable even with weighted edges. Also, the problem of minimizing
|E−(Ση)|+

∑
v η(v) for planar grids (“2-dimensional problem with external

magnetic field”), which is NP-hard. (This corresponds to adding an extra
vertex, positively adjacent to every vertex.)

(SG: Phys, Fr, Fr(Gen): D, Alg)

1982b Two theorems in planar graphs. Unpublished manuscript, 1982. (SG: Fr)

1990a On some applications of the Chinese Postman Problem. In: B. Korte, L. Lovász,
H.J. Prömel, and A. Schrijver, eds., Paths, Flows and VLSI-Layout, pp. 1–16. Al-
gorithms and Combinatorics, Vol. 9. Springer-Verlag, Berlin, 1990. MR 92b:90139.
Zbl. 732.90086.

Section 2: “Spin glasses.” (SG: Phys, Fr: Exp)
Section 5: “Max cut in graphs not contractible to K5 ,” pp. 12–13.

(sg: fr: Exp)

1990b Planar multicommodity flows, max cut, and the Chinese Postman problem. In:
William Cook and Paul D. Seymour, eds., Polyhedral Combinatorics (Proc. Work-
shop, 1989), pp. 189–202. DIMACS Ser. Discrete Math. Theoret. Computer Sci.,
Vol. 1. Amer. Math. Soc. and Assoc. Comput. Mach., Providence, R.I., 1990. MR
92g:05165. Zbl. 747.05067.

Negative cutsets, where signs come from a network with real-valued capaci-
ties. Dual in the plane to negative polygons. See §2. (SG: D: B, Alg)
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Francisco Barahona and Adolfo Casari
1988a On the magnetisation of the ground states in two-dimensional Ising spin glasses.

Comput. Phys. Comm. 49 (1988), 417–421. MR 89d:82004. Zbl. 814.90132.
(SG: Fr: Alg)

Francisco Barahona, Martin Grötschel, and Ali Ridha Mahjoub
1985a Facets of the bipartite subgraph polytope. Math. Oper. Res. 10 (1985), 340–358.

MR 87a:05123a. Zbl. 578.05056.
The polytope PB(Γ) is the convex hull in RE of incidence vectors of bipartite
edge sets. Various types of and techniques for generating facet-defining in-
equalities, thus partially extending the description of PB(Γ) from the weakly
bipartite case (Grötschel and Pulleyblank (1981a)) in which all facets are due
to edge and odd-polygon constraints. [Some can be described best via signed
graphs; see Poljak and Turźık (1987a).] [A brief expository treatment of the
polytope appears in Poljak and Tuza (1995a).] (sg: p: fr: G)

Francisco Barahona and Enzo Maccioni
1982a On the exact ground states of three-dimensional Ising spin glasses. J. Phys. A:

Math. Gen. 15 (1982), L611–L615. MR 83k:82044.
Discusses a 3-dimensional analog of Barahona, Maynard, Rammal, and Uhry
(1982a). (Here there may not always be a combinatorial LP optimum; hence
LP may not completely solve the problem.) (SG: Phys, Fr, Alg)

Francisco Barahona and Ali Ridha Mahjoub
1986a On the cut polytope. Math. Programming 36 (1986), 157–173. MR 88d:05049.

Zbl. 616.90058.
Call PBS(Σ) the convex hull in RE of incidence vectors of negation sets
(or “balancing [edge] sets”) in Σ. Finding a minimum-weight negation set
in Σ corresponds to a maximum cut problem, whence PBS(Σ) is a linear
transform of the cut polytope PC(|Σ|), the convex hull of cuts. Conclusions
follow about facet-defining inequalities of PBS(Σ). See §5: “Signed graphs”.

(SG: Fr: G)

1989a Facets of the balanced (acyclic) induced subgraph polytope. Math. Programming
Ser. B 45 (1989), 21–33. MR 91c:05178. Zbl. 675.90071.

The “balanced induced subgraph polytope” PBIS(Σ) is the convex hull in
RV of incidence vectors of vertex sets that induce balanced subgraphs. Con-
ditions are studied under which certain inequalities of form

∑
i∈Y xi ≤ f(Y )

define facets of this polytope: in particular, f(Y ) = max. size of balance-
inducing subets of Y , f(Y ) = 1 or 2, f(Y ) = |Y | − 1 when Y = V (C) for
a negative polygon C , etc. (SG: Fr: G, Alg)

1994a Compositions of graphs and polyhedra. I: Balanced induced subgraphs and acyclic
subgraphs. SIAM J. Discrete Math. 7 (1994), 344–358. MR 95i:90056. Zbl.
802.05067.

More on PBIS(Σ) (see (1989a)). A balance-inducing vertex set in ±Γ = a
stable set in Γ. [See Zaslavsky (1982b) for a different correspondence.] Thm.
2.1 is an interesting preparatory result: If Σ = Σ1∪Σ2 where Σ1∩Σ2

∼= ±Kk ,
then PBIS(Σ) = PBIS(Σ1) ∩ PBIS(Σ2). The main result is Thm. 2.2: If Σ
has a 2-separation into Σ1 and Σ2 , the polytope is the projection of the
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intersection of polytopes associated with modifications of Σ1 and Σ2 . §5:
“Compositions of facets”, derives the facets of PBIS(Σ).

(SG: G, WG, Alg)

F. Barahona, R. Maynard, R. Rammal, and J.P. Uhry
1982a Morphology of ground states of two-dimensional frustration model. J. Phys. A:

Math. Gen. 15 (1982), 673–699. MR 83c:82045.
§2: “The frustration model as the Chinese postman’s problem”, describes
how to find the frustration index l(−Σ) = minη |E−(Ση)| (over all switch-
ing functions η ) of a signed planar graph by solving a Chinese postman
(T -join) problem in the planar dual graph, T corresponding to the frus-
trated face boundaries. [This was solved independently by Katai and Iwai
(1978a).] The postman problem is solved by linear programming, in which
there always is a combinatorial optimum: see §3: “Solution of the frustration
problem by duality: rigidity”. Of particular interest are vertex pairs, esp.
edges, for which η(v)η(w) is the same for every “ground state” (i.e., mini-
mizing η ); these are called “rigid”. §5: “Results” (of numerical experiments)
has interesting discussion. [Barahona (1981a) generalizes to signed toroidal
graphs.]
In the preceding one minimizes f0(η) =

∑
E σ(vw)η(v)η(w). More general

problems discussed are (1) allowing positive edge weights (due to variable
bond strengths); (2) minimizing f0(η) + c

∑
V η(v), with c 6= 0 because

of an external magnetic field. Then one cannot expect the LP to have a
combinatorial optimum. (SG: Phys, Fr, Fr(Gen), Alg)

F. Barahona and J.P. Uhry
1981a An application of combinatorial optimization to physics. Methods Oper. Res. 40

(1981), 221–224. Zbl. 461.90080. (SG: Phys, Fr: Exp)

J. Wesley Barnes
See P.A. Jensen.

Lowell Bassett, John Maybee, and James Quirk
1968a Qualitative economics and the scope of the correspondence principle. Economet-

rica 36 (1968), 544–563. MR 38 #5456. Zbl. (e: 217.26802).
Lemma 3: A square matrix with every diagonal entry negative is sign-
nonsingular iff every cycle is negative in the associated signed digraph. Thm.
4: A square matrix with negative diagonal is sign-invertible iff all cycles are
negative and the sign of any (open) path is determined by its endpoints. And
more. (QM: Sol, Sta: sd)

Vladimir Batagelj
1990a [Closure of the graph value matrix.] (In Slovenian. English summary.) Obzornik

Mat. Fiz. 37 (1990), 97–104. MR 91f:05058. Zbl. 704.05035. (SG: A, B, Cl)

1994a Semirings for social networks analysis. J. Math. Sociology 19 (1994), 53–68. Zbl.
827.92029. (SG: A, B, Cl)

M. Behzad and G. Chartrand
1969a Line-coloring of signed graphs. Elem. Math. 24 (1969), 49–52. MR 39 #5415. Zbl.

175, 503 (e: 175.50302). (SG: LG: Cl)



the electronic journal of combinatorics #DS8 14

[L.] W. Beineke and F. Harary
1966a Binary matrices with equal determinant and permanent. Studia Sci. Math. Hun-

gar. 1 (1966), 179–183. MR 34 #7397. Zbl. (e: 145.01505). (SD)

Lowell W. Beineke and Frank Harary
1978a Consistency in marked digraphs. J. Math. Psychology 18 (1978), 260–269. MR

80d:05026. Zbl. 398.05040.
A digraph with signed vertices is “consistent” (that is, every cycle has posi-
tive sign product) iff its vertices have a bipartition so that every arc with a
positive tail lies within a set but no arc with a negative tail does so. (The
reason is that a strongly connected digraph with vertex signs can be regarded
as edge-signed and the bipartition criterion for balance can be applied.) A
corollary: the digraphs that have consistent vertex signs are characterized.

(VS)

1978b Consistent graphs with signed points. Riv. Mat. Sci. Econom. Social. 1 (1978),
81–88. MR 81h:05108. Zbl. 493.05053.

A graph with signed vertices is “consistent” if every polygon has positive
sign product. Elementary results, but a characterization of consistent vertex-
signed graphs is presented as an open problem. For a good solution see Hoede
(1992a); Rao (1984a) had found a more complicated solution. (VS)

Jacques Bélair, Sue Ann Campbell, and P. van den Driessche
1996a Frustration, stability, and delay-induced oscillations in a neural network model.

SIAM J. Appl. Math. 56 (1996), 245–255. MR 96j:92003. Zbl. 840.92003.
The signed digraph of a square matrix is “frustrated” if it has a negative
cycle. Somewhat simplified: frustration is necessary for there to be oscillation
caused by intraneuronal processing delay. (SD: QM, Ref)

A. Bellacicco and V. Tulli
1996a Cluster identification in a signed graph by eigenvalue analysis. In: Matrices and

Graphs: Theory and Applications to Economics (full title Proceedings of the Con-
ferences on Matrices and Graphs: Theory and Applications to Economics) (Bres-
cia, 1993, 1995), pp. 233–242. World Scientific, Singapore, 1996. MR 99h:00029
(book). Zbl. 914.65146.

Signed digraphs (“spin graphs”) are defined. The main concepts—“dissim-
ilarity”, “balance”, and “cluster”—do not involve signs. Eigenvalues are
mentioned. [This may be an announcement. There are no proofs. It is hard
to be sure what is being said.] (SD: A)

Joachim von Below
1994a The index of a periodic graph. Results Math. 25 (1994), 198–223. MR 95e:05081.

Zbl. 802.05054.
Here a periodic graph [of dimension m ] is defined as a connected graph Γ = Ψ̃
where Ψ is a finite Zm -gain graph with gains contained in {0,bi,bi − bj} .
(b1, . . . ,bm are the unit basis vectors of Zm .) Let us call such a Ψ a
small-gain base graph for Γ. Any Φ̃, where Φ is a finite Zm -gain graph,
has a small-gain base graph Ψ; thus this definition is equivalent to that of
Collatz (1978a). The “index” I(Γ), analogous to the largest eigenvalue of
a finite graph, is the spectral radius of A(||Ψ||) (here written A(Γ, N)) for
any small-gain base graph of Γ. The paper contains basic theory and the
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lower bound Lm = inf{I(Γ) : Γ is m-dimensional} , where 1 = L1,
√

9/2 =
L2 ≤ L3 ≤ . . . . (GG(Cov): A)

Edward A. Bender and E. Rodney Canfield
1983a Enumeration of connected invariant graphs. J. Combin. Theory Ser. B 34 (1983),

268–278. MR 85b:05099. Zbl. 532.05036.
§3: “Self-dual signed graphs,” gives the number of n -vertex graphs that are
signed, vertex-signed, or both; connected or not; self-isomorphic by reversing
edge and/or vertex signs or not, for all n ≤ 12. Some of this appeared in
Harary, Palmer, Robinson, and Schwenk (1977a). (SG, VS: E)

Riccardo Benedetti
1998a A combinatorial approach to combings and framings of 3-manifolds. In: A. Balog,

G.O.H. Katona, A. Recski, and D. Sa’sz, eds., European Congress of Mathematics
(Budapest, 1996), Vol. I, pp. 52–63. Progress in Math., Vol. 168. Birkhäuser,
Basel, 1998. MR * Zbl. 905.57018.

§8, “Spin manifolds”, hints at a use for decorated signed graphs in the struc-
ture theory of spin 3-manifolds. (sg: Appl: Exp)

Curtis Bennett and Bruce E. Sagan
1995a A generalization of semimodular supersolvable lattices. J. Combin. Theory Ser.

A 72 (1995), 209–231. MR 96i:05180. Zbl. 831.06003.
To illustrate the generalization, most of the article calculates the chromatic
polynomial of ±K(k)

n (called DBn,k ; this has half edges at k vertices), builds
an “atom decision tree” for k = 0, and describes and counts the bases of
G(±K(k)

n ) (called Dn ) that contain no broken circuits. (SG: M, N, col)
M.K. Bennett, Kenneth P. Bogart, and Joseph E. Bonin

1994a The geometry of Dowling lattices. Adv. Math. 103 (1994), 131–161. MR 95b:05050.
Zbl. 814.51003. (gg: M, G)

Moussa Benoumhani
1996a On Whitney numbers of Dowling lattices. Discrete Math. 159 (1996), 13–33. MR

98a:06005. Zbl. 861.05004. (gg: M: N)
1997a On some numbers related to Whitney numbers of Dowling lattices. Adv. Appl.

Math. 19 (1997), 106–116. MR 98f:05004. Zbl. 876.05001.
Generating polynomials and infinite generating series for multiples of Whit-
ney numbers of the second kind, analogous to usual treatments of Stirling
numbers. (gg: M: N)

1999a Log-concavity of Whitney numbers of Dowling lattices. Adv. Appl. Math. 22
(1999), 186–189.

Logarithmic concavity of Whitney numbers of the second kind is deduced
by proving that their generating polynomial has only real zeros. [Cf. Dur
(1986a).] (gg: M: N)

C. Benzaken
See also P.L. Hammer.

C. Benzaken, S.C. Boyd, P.L. Hammer, and B. Simeone
1983a Adjoints of pure bidirected graphs. Proc. Fourteenth Southeastern Conf. on Com-

binatorics, Graph Theory and Computing (Boca Raton, Fla., 1983). Congressus
Numer. 39 (1983), 123–144. MR 85e:05077. Zbl. 537.05024. (sg: O: LG)
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Cl. Benzaken, P.L. Hammer, and B. Simeone
1980a Some remarks on conflict graphs of quadratic pseudo-boolean functions. In: L.

Collatz, G. Meinardus, and W. Wetterling, eds., Konstruktive Methoden der finiten
nichtlinearen Optimierung (Tagung, Oberwolfach, 1980), pp. 9–30. Internat. Ser.
of Numerical Math., 55. Birkhäuser, Basel, 1980. MR 83e:90096. Zbl. 455.90063.

(p: fr)(sg: O: LG)
C. Benzaken, P.L. Hammer, and D. de Werra

1985a Threshold characterization of graphs with Dilworth number two. J. Graph Theory
9 (1985), 245–267. MR 87d:05135. Zbl. 583.05048. (SG: B)

Claude Berge and A. Ghouila-Houri
1962a Programmes, jeu et reseaux de transport. Dunod, Paris, 1962. MR 33 #1137. Zbl.

(e: 111.17302).
2e partie, Ch. IV, S2: “Les reseaux de transport avec multiplicateurs.” Pp.
223–229. (GN: i)

1965a Programming, Games and Transportation Networks. Methuen, London; Wiley,
New York, 1965. MR 33 #7114.

English edition of (1962a).
Part II, 10.2: “The transportation network with multipliers.” Pp. 221–227.

(GN: i)
1967a Programme, Spiele, Transportnetze. B.G. Teubner Verlagsgesellschaft, Leipzig,

1967, 1969. MR 36 #1195. Zbl. (e: 183.23905, 194.19803).
German edition(s) of (1962a). (GN: i)

Joseph Berger, Bernard P. Cohen, J. Laurie Snell, and Morris Zelditch, Jr.
1962a Types of Formalization in Small Group Research. Houghton Mifflin, Boston, 1962.

See Ch. 2: “Explicational models.” (PsS)(SG: B)(Ref)
Abraham Berman and B. David Saunders

1981a Matrices with zero line sums and maximal rank. Linear Algebra Appl. 40 (1981),
229–235. MR 82i:15029. Zbl. 478.15013. (QM, sd: o)

Gora Bhaumik
See P.A. Jensen.

V.N. Bhave
See E. Sampathkumar.

I. Bieche, R. Maynard, R. Rammal, and J.P. Uhry
1980a On the ground states of the frustration model of a spin glass by a matching method

of graph theory. J. Phys. A: Math. Gen. 13 (1980), 2553–2576. MR 81g:82037.
(SG: Phys, Fr, Alg)

Dan Bienstock
1991a On the complexity of testing for odd holes and induced odd paths. Discrete Math.

90 (1991), 85–92. MR 92m:68040a. Zbl. 753.05046. Corrigendum. ibid. 102
(1992), 109. MR 92m.68040b. Zbl. 760.05080.

Given a graph. Problem 1: Is there an odd hole on a particular vertex?
Problem 2: Is there an odd induced path joining two specified vertices?
Problem 3: Is every pair of vertices joined by an odd-length induced path?
All three problems are NP-complete. [Obviously, one can replace the graph
by a signed graph and “odd length” by “negative” and the problems remain
NP-complete.] (P: Polygons, Paths: Alg)
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Norman Biggs
1974a Algebraic Graph Theory. Cambridge Math. Tracts, No. 67. Cambridge Univ.

Press, London, 1974. MR 50 #151. Zbl. 284.05101.
Ch. 19: “The covering graph construction.” Especially see Exercise 19A:
“Double coverings.” These define what we might call the canonical covering
graphs of gain graphs. (SG, GG: Cov, Aut, b)

1993a Algebraic Graph Theory. Second edn. Cambridge Math. Library, Cambridge Univ.
Press, Cambridge, Eng., 1993. MR 95h:05105. Zbl. 797.05032.

As in (1974a), but Exercise 19A has become Additional Result 19a.
(SG, GG: Cov, Aut, b)

1997a International finance. In: Lowell W. Beineke and Robin J. Wilson, eds., Graph
Connections: Relationships between Graph Theory and other Areas of Mathemat-
ics, Ch. 17, pp. 261–279. The Clarendon Press, Oxford, 1997.

A model of currency exchange rates in which no cyclic arbitrage is possible,
hence the rates are given by a potential function. [That is, the exchange-
rate gain graph is balanced, with the natural consequences.] Assuming cash
exchange without accumulation in any currency, exchange rates are deter-
mined. [See also Ellerman (1984a). (GG, gn: B: Exp)

Robert E. Bixby
1981a Hidden structure in linear programs. In: Harvey J. Greenberg and John S. May-

bee, eds., Computer-Assisted Analysis and Model Simplification (Proc. Sympos.,
Boulder, Col., 1980), pp. 327–360; discussion, pp. 397–404. Academic Press, New
York, 1981. MR 82g:00016 (book). Zbl. 495.93001 (book). (GN)

Anders Björner and Bruce E. Sagan
1996a Subspace arrangements of type Bn and Dn . J. Algebraic Combin. 5 (1996), 291–

314. MR 97g:52028. Zbl. 864.57031.
They study lattices Πn,k,h (for 0 < h ≤ k ≤ n) consisting of all span-
ning subgraphs of ±K◦n that have at most one nontrivial component K ,
for which K is complete and |V (K)| ≥ k if K is balanced, K is induced
and |V (K)| ≥ h if K is unbalanced (also a generalization). Characteristic
polynomial, homotopy and homology of the order complex, cohomology of
the real complement. (SG: G, M(Gen): N, col)

Anders Björner, Michel Las Vergnas, Bernd Sturmfels, Neil White, and Günter
M. Ziegler

1993a Oriented Matroids. Encyclop. Math. App., Vol. 46. Cambridge University Press,
Cambridge, Eng., 1993. MR 95e:52023. Zbl. 773.52001.

The adjacency graph of bases of an oriented matroid is signed, using circuit
signatures, to make the “signed basis graph”. See §3.5, “Basis orientations
and chirotopes”, pp. 132–3. (M: SG)

Andreas Blass
1995a Quasi-varieties, congruences, and generalized Dowling lattices. J. Algebraic Com-

bin. 4 (1995), 277–294. MR 96i:06012. Zbl. 857.08002. Errata. Ibid. 5 (1996),
167.

Treats the generalized Dowling lattices of Hanlon (1991a) as congruence lat-
tices of certain quasi-varieties, in order to calculate characteristic polynomials
and generalizations. (M(gg): Gen: N)
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Andreas Blass and Frank Harary
1982a Deletion versus alteration in finite structures. J. Combin. Inform. System Sci. 7

(1982), 139–142. MR 84d:05087. Zbl. 506.05038.
The theorem that deletion index = negation index of a signed graph (Harary
(1959b)) is shown to be a special case of a very general phenomenon involv-
ing hereditary classes of “partial choice functions”. Another special case:
deletion index = alteration index of a gain graph [an immediate corollary of
Harary, Lindstöm, and Zetterström (1982a), Thm. 2]. (SG, GG: B, Fr)

Andreas Blass and Bruce Sagan
1997a Möbius functions of lattices. Adv. Math. 127 (1997), 94–123. MR 98c:06001. Zbl.

970.32977.
§3: “Non-crossing Bn and Dn”. Lattices of noncrossing signed partial
partitions. Atoms of the lattices are defined as edge fibers of the signed
covering graph of ±K◦n , thus corresponding to edges of ±K◦n . [The “half
edges” are perhaps best regarded as negative loops.] The lattices studied,
called NCBn, NCDn, NCBDn(S), consist of the noncrossing members of
the Dowling and near-Dowling lattices of the sign group, i.e., LatG(±K(T )

n )
for T = [n], ∅, [n]\S , respectively. (SG: G, N, cov)

1998a Characteristic and Ehrhart polynomials. J. Algebraic Combin. 7 (1998), 115–126.
MR 99c:05204. Zbl. 899.05003.

Signed-graph chromatic polynomials are recast geometrically by observing
that the number of k -colorings equals the number of points of {−k,−k +
1, . . . , k−1, k}n that lie in none of the edge hyperplanes of the signed graph.
The interesting part is that this generalizes to subspace arrangements of
signed graphs and, somewhat ad hoc, to the hyperplane arrangements of the
exceptional root systems. [See also Zaslavsky (20xxi). For applications see
articles of Sagan and Zhang.] (SG, Gen: M(Gen), G: col, N)

T.B. Boffey
1982a Graph theory in Oper. Research. Macmillan, London, 1982. Zbl. 509.90053.

Ch. 10: “Network flow: extensions.” 10.1(g): “Flows with gains,” pp. 224–
226. 10.3: “The simplex method applied to network problems,” subsection
“Generalised networks,” pp. 246–250. (GN: m(bases): Exp)

Kenneth P. Bogart
See M.K. Bennett, J.E. Bonin, and J.R. Weeks.

Ethan D. Bolker
1977a Bracing grids of cubes. Environment and Planning B 4 (1977), 157–172. (EC)
1979a Bracing rectangular frameworks. II. SIAM J. Appl. Math. 36 (1979), 491–503.

MR 81j:73066b. Zbl. 416.70010. (EC, SG)
Bela Bollobás

1978a Extremal Graph Theory. L.M.S. Monographs, Vol. 11. Academic Press, London,
1978. MR 80a:05120. Zbl. 419.05031.

A rich source of problems: find interesting generalizations to signed graphs of
questions involving even or odd polygons, or bipartite graphs or subgraphs.
(p: X)
§3.2, Thm. 2.2, is Lovász’s (1965a) characterization of the graphs having no
two vertex-disjoint polygons. (GG: Polygons)
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§6.6, Problem 47, is the theorem on all-negative vertex elimination number
from Bollobás, Erdős, Simonovits, and Szemerédi (1978a). (p: Fr)

B. Bollobás, P. Erdös, M. Simonovits, and E. Szemerédi
1978a Extremal graphs without large forbidden subgraphs. In: B. Bollobás, ed., Ad-

vances in Graph Theory (Proc. Cambridge Combin. Conf., 1977), pp. 29–41. Ann.
Discrete Math., Vol. 3. North-Holland, Amsterdam, 1978. MR 80a:05119. Zbl.
375.05034.

Thm. 9 asymptotically estimates upper bounds on frustration index and
vertex elimination number for all-negative signed graphs with fixed negative
girth. [Sharpened by Komlós (1997a).] (p: Fr)

J.A. Bondy and L. Lovász
1981a Cycles through specified vertices of a graph. Combinatorica 1 (1981), 117–140.

MR 82k:05073. Zbl. 492.05049.
If Γ is k -connected [and not bipartite], then any k [k− 1] vertices lie on an
even [odd] polygon. [Problem. Generalize to signed graphs, this being the
all-negative case.] (sg: b)

J.A. Bondy and M. Simonovits
1974a Cycles of even length in graphs. J. Combin. Theory Ser. B 16 (1974), 97–105. MR

49 #4851. Zbl. 283.05108.
If a graph has enough edges, it has even polygons of all moderately small
lengths. [Problem 1. Generalize to positive polygons in signed graphs, this
being the antibalanced (all-negative) case. For instance, Problem 2. If an
unbalanced signed simple graph has positive girth ≥ l (i.e., no balanced
polygon of length < l ), what is its maximum size? Are the extremal examples
antibalanced? Balanced?] (p: b( Polygons), X)

Joseph E. Bonin
See also M.K. Bennett.

1993a Automorphism groups of higher-weight Dowling geometries. J. Combin. Theory
Ser. B 58 (1993), 161–173. MR 94k:51005. Zbl. 733.05027, (789.05017).

A weight-k higher Dowling geometry of rank n , Qn,k(GF(q)×), is the union
of all coordinate k -flats of PG(n−1, q): i.e., all flats spanned by k elements
of a fixed basis. If k > 2, the automorphism groups are those of PG(n−1, q)
for q > 2 and are symmetric groups if q = 2. (gg: Gen: M)

1993b Modular elements of higher-weight Dowling lattices. Discrete Math. 119 (1993),
3–11. MR 94h:05018. Zbl. 808.06012.

See definition in (1993a). For k > 2 the only nontrivial modular flats are the
projective coordinate k -flats and their subflats. This gives some information
about the characteristic polynomials [which, however, are still only partially
known]. [Kung (1996a), §6, has further results.] (gg: Gen: M, N)

1995a Automorphisms of Dowling lattices and related geometries. Combin. Probab. Com-
put. 4 (1995), 1–9. MR 96e:05039. Zbl. 950.37335.

The automorphisms of a Dowling geometry of a nontrivial group are the
compositions of a coordinate permutation, switching, and a group automor-
phism. A similar result holds, with two exceptions, if some or all coordinate
points are deleted. (gg: M: Autom)
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1996a Open problem 6. A problem on Dowling lattices. In: Joseph E. Bonin, James
G. Oxley, and Brigitte Servatius, eds., Matroid Theory (Proc., Seattle, 1995), pp.
417–418. Contemp. Math., Vol. 197. Amer. Math. Soc., Providence, R.I., 1996.

Problem 6.1. If a finite matroid embeds in the Dowling geometry of a group,
does it embed in the Dowling geometry of some finite group? [The answer
may be “no” (Squier and Zaslavsky, unwritten and possibly unrecoverable).]

(gg: M)

Joseph E. Bonin and Kenneth P. Bogart
1991a A geometric characterization of Dowling lattices. J. Combin. Theory Ser. A 56

(1991), 195–202. MR 92b:05019. Zbl. 723.05033. (gg: M)

Joseph E. Bonin and Joseph P.S. Kung
1994a Every group is the automorphism group of a rank-3 matroid. Geom. Dedicata 50

(1994), 243–246. MR 95m:20005. Zbl. 808.05029. (gg: M: Aut)

Joseph E. Bonin and William P. Miller
20xxa Characterizing geometries by numerical invariants. Submitted

Dowling geometries are characterized amongst all simple matroids by numer-
ical properties of large flats of ranks ≤ 7 (Thm. 3.4); amongst all matroids
by their Tutte polynomials. (gg: M)

Joseph E. Bonin and Hongxun Qin
20xxa Size functions of subgeometry-closed classes of representable combinatorial geome-

tries. Submitted
Extremal matroid theory. The Dowling geometry Q3(GF(3)×) appears as an
exceptional extremal matroid in Thm. 2.10. The extremal subset of PG(n−
1, q) not containing the higher-weight Dowling geometry Qm,m−1(GF(q)×)
(see Bonin 1993a) is found in Thm. 2.14. (GG, Gen: M: X, N)

C. Paul Bonnington and Charles H.C. Little
1995a The Foundations of Topological Graph Theory. Springer, New York, 1995. MR

97e:05090. Zbl. 950.48477.
Signed-graph imbedding: see §2.3, §2.6 (esp. Thm. 2.4), pp. 44–48 (for the
colorful 3-gem approach to crosscaps), §3.3, and Ch. 4 (esp. Thms. 4.5, 4.6).

(sg: T, b)

E. Boros, Y. Crama, and P.L. Hammer
1992a Chvàtal cuts and odd cycle inequalities in quadratic 0—1 optimization. SIAM J.

Discrete Math. 5 (1992), 163–177. MR 93a:90043. Zbl. 761.90069.
§4: “Odd cycles [i.e., negative polygons] in signed graphs.” Main prob-
lem: Find a minimum-weight deletion set in a signed graph with positively
weighted edges. Related problems: A polygon-covering formulation whose
constraints correspond to negative polygons. A dual polygon-packing prob-
lem. (SG: Fr, G, Alg)

Endre Boros and Peter L. Hammer
1991a The max-cut problem and quadratic 0—1 optimization; polyhedral aspects, re-

laxations and bounds. Ann. Oper. Res. 33 (1991), 151–180. MR 92j:90049. Zbl.
741.90077.

Includes finding a minimum-weight deletion set (as in Boros, Crama, and
Hammer (1991a)). (SG, WG: Fr: G, Alg)
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André Bouchet
1982a Constructions of covering triangulations with folds. J. Graph Theory 6 (1982),

57–74. MR 83b:05057. Zbl. 488.05032. (sg: O, Appl)
1983a Nowhere-zero integral flows on a bidirected graph. J. Combin. Theory Ser. B 34

(1983), 279–292. MR 85d:05109. Zbl. 518.05058.
Introduces nowhere-zero flows on signed graphs. A connected, coloop-free
signed graph has a nowhere-zero integral flow with maximum weight ≤ 216.
The value 216 cannot be replaced by 5, but Bouchet conjectures that it
can be replaced by 6. [See Khelladi (1987a) for some progress on this.] A
topological application is outlined. [The bidirection is inessential; it is a
device to keep track of the flow.] (SG: M, O, Flows, Appl)

Jean-Marie Bourjolly
1988a An extension of the König-Egerváry property to node-weighted bidirected graphs.

Math. Programming 41 (1988), 375–384. MR 90c:05161. Zbl. 653.90083.
[See Sewell (1996a).] (sg: O, GG: Alg)

J.-M. Bourjolly, P.L. Hammer, and B. Simeone
1984a Node-weighted graphs having the König-Egerváry property. Mathematical Pro-

gramming at Oberwolfach II (Oberwolfach, 1983). Math. Programming Stud. 22
(1984), 44–63. MR 86d:05099. Zbl. 558.05054. (p: o)

Jean-Marie Bourjolly and William R. Pulleyblank
1989a König-Egerváry graphs, 2-bicritical graphs and fractional matchings. Discrete

Appl. Math. 24 (1989), 63–82. MR 90m:05069. Zbl. 684.05036.
[It is hard to escape the feeling that we are dealing with all-negative signed
graphs and that something here will generalize to other signed graphs. Espe-
cially see Theorem 5.1. Consult the references for related work.] (P; Ref)

John Paul Boyd
1969a The algebra of group kinship. J. Math. Psychology 6 (1967), 139–167. Reprinted

in: Samuel Leinhardt, ed., Social Networks: A Developing Paradigm, pp. 319–
346. Academic Press, New York, 1977. Zbl. (e: 172.45501). Erratum. J. Math.
Psychology 9 (1972), 339. Zbl. 242.92010. (SG: B)

S.C. Boyd
See C. Benzaken.

A.J. Bray, M.A. Moore, and P. Reed
1978a Vanishing of the Edwards-Anderson order parameter in two- and three-dimensional

Ising spin glasses. J. Phys. C: Solid State Phys. 11 (1978), 1187–1202.
(Phys: SG: Fr)

Floor Brouwer and Peter Nijkamp
1983a Qualitative structure analysis of complex systems. In: P. Nijkamp, H. Leitner, and

N. Wrigley, eds., Measuring the Unmeasurable, pp. 509–530. Martinus Nijhoff, The
Hague, 1983. (QM, SD: Sol, Sta: Exp)

Edward M. Brown and Robert Messer
1979a The classification of two-dimensional manifolds. Trans. Amer. Math. Soc. 255

(1979), 377–402. MR 80j:57007. Zbl. 391.57010, (414.57003).
Their “signed graph” we might call a type of Eulerian partially bidirected
graph. That is, some edge ends are oriented (hence “partially bidirected”),
and every vertex has even degree and at each vertex equally many edge ends
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point in and out (“Eulerian”). More specially, at each vertex all or none of
the edge ends are oriented. (sg: o: gen: Appl)

Gerald G. Brown and Richard D. McBride
1984a Solving generalized networks. Management Sci. 30 (1984), 1497–1523. Zbl. 554.-

90032. (GN: M(bases))
Kenneth S. Brown and Persi Diaconis

1998a Random walks and hyperplane arrangements. Ann. Probab. 26 (1998), 1813–1854.
The real hyperplane arrangement representing −Kn is studied in §3D. It
leads to a random walk on threshold graphs. (p: G)

Thomas A. Brown
See also F.S. Roberts.

T.A. Brown, F.S. Roberts, and J. Spencer
1972a Pulse processes on signed digraphs: a tool for analyzing energy demand. Rep.

R-926-NSF, Rand Corp., Santa Monica, Cal., March, 1972. (SDw)
Thomas A. Brown and Joel H. Spencer

1971a Minimization of ±1 matrices under line shifts. Colloq. Math. 23 (1971), 165–171.
MR 46 #7059. Zbl. 222.05016.

Asymptotic estimates of l(Kr,s), the maximum frustration index of signa-
tures of Kr,s . Improved by Gordon and Witsenhausen (1972a). Also, exact
values stated for r ≤ 4 [extended by Solé and Zaslavsky (1994a)]. (sg: Fr)

William G. Brown, ed.
1980a Reviews in Graph Theory. 4 vols. American Math. Soc., Providence, R.I., 1980.

Zbl. 538.05001.
See esp.: §208: “Signed graphs (+ or − on each edge), balance” (undirected
and directed), Vol. 1, pp. 569–571. (SG, SD)

Richard A. Brualdi and Herbert J. Ryser
1991a Combinatorial Matrix Theory. Encycl. Math. Appl., Vol. 39. Cambridge Univer-

sity Press, Cambridge, Eng., 1991. MR 93a:05087. Zbl. 746.05002.
See §7.5. (QM: Sol, SD, b)(Exp, Ref)

Richard A. Brualdi and Bryan L. Shader
1995a Matrices of Sign-Solvable Linear Systems. Cambridge Tracts in Math., Vol. 116.

Cambridge University Press, Cambridge, Eng., 1995. MR 97k:15001. Zbl. 833.-
15002.

Innumerable results and references on signed digraphs are contained herein.
(QM, SD: Sol, Sta)(Exp, Ref, Alg)

Michael Brundage
1996a From the even-cycle mystery to the L-matrix problem and beyond. M.S. thesis,

Dept. of Mathematics, Univ. of Washington, Seattle, 1996. WorldWideWeb URL
(10/97) http://www.math.washington.edu/˜brundage/evcy/

A concise expository survey. Ch. 1: “Even cycles in directed graphs”. Ch. 2:
“L-matrices and sign-solvability”, esp. sect. “Signed digraphs”. Ch. 3: “Be-
yond”, esp. sect. “Balanced labellings” (vertices labelled from {0,+1,−1}
so that from each vertex labelled ε 6= 0 there is an arc to a vertex labelled
−ε) and sect. “Pfaffian orientations”.

(SD, P: Polygons, Sol, Alg, VS: Exp, Ref)
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Fred Buckley, Lynne L. Doty, and Frank Harary
1988a On graphs with signed inverses. Networks 18 (1988), 151–157. MR 89i:05222. Zbl.

646.05061.
“Signed invertible graph” [i.e., sign-invertible graph] = graph Γ such that
A(Γ)−1 = A(Σ) for some signed graph Σ. Finds two classes of such graphs.
Characterizes sign-invertible trees. [Cf. Godsil (1985a) and, for a different
notion, Greenberg, Lundgren, and Maybee (1984b).] (SG: A)

James R. Burns and Wayland H. Winstead
1982a Input and output redundancy. IEEE Trans. Systems Man Cybernetics SMC-12,

No. 6 (1982), 785–793.
§IV: “The computation of contradictory redundancy.” Summarized in mod-
ified notation: In a signed graph, define wεij(r) = number of walks of
length r and sign ε from vi to vj . Define an adjacency matrix A by
aij = w+

ij(1)+w−ij(1)θ , where θ is an indeterminate whose square is 1. Then
w+
ij(r) +w−ij(r)θ = (Ar)ij for all r ≥ 1. [We should regard this computation

as taking place in the group ring of the sign group. The generalization to
arbitrary gain graphs and digraphs is obvious.] Other sections also discuss
signed digraphs [but have little mathematical content]. (SD, gd: A, Paths)

F.C. Bussemaker, P.J. Cameron, J.J. Seidel, and S.V. Tsaranov
1991a Tables of signed graphs. EUT Report 91-WSK-01. Dept. of Math. and Computing

Sci., Eindhoven Univ. of Technology, Eindhoven, 1991. MR 92g:05001.
(SG: Sw)

F.C. Bussemaker, D.M. Cvetković, and J.J. Seidel
1976a Graphs related to exceptional root systems. T.H.-Report 76-WSK-05, 91 pp.

Dept. of Math., Technological Univ. Eindhoven, Eindhoven, The Netherlands,
1976. Zbl. 338.05116.

The 187 simple graphs with eigenvalues ≥ −2 that are not (negatives of)
reduced line graphs of signed graphs are found, with computer aid. By
Cameron, Goethals, Seidel, and Shult (1976a), all are represented by root
systems Ed , d = 6, 7, 8. Most interesting is Thm. 2: each such graph is
Seidel-switching equivalent to a line graph of a graph. [Problem. Explain
this within signed graph theory.] (LG: p: A)

1978a Graphs related to exceptional root systems. In: A. Hajnal and Vera T. Sós, eds.,
Combinatorics (Proc. Fifth Hungar. Colloq., Keszthely, 1976), Vol. 1, pp. 185–
191. Colloq. Math. Soc. János Bolyai, 18. North-Holland, Amsterdam, 1978. MR
80g:05049. Zbl. 392.05055.

Announces the results of (1976a). (LG: p: A)
F.C. Bussemaker, R.A. Mathon, and J.J. Seidel

1979a Tables of two-graphs. TH-Report 79-WSK-05. Dept. of Math., Technological
Univ. Eindhoven, Eindhoven, The Netherlands, 1979. Zbl. 439.05032. (TG)

1981a Tables of two-graphs. In: S.B. Rao, ed., Combinatorics and Graph Theory (Proc.
Sympos., Calcutta, 1980), pp. 70–112. Lecture Notes in Math., 885. Springer-
Verlag, Berlin, 1981. MR 84b:05055. Zbl. 482.05024.

“The most important tables from” (1979a). (TG)
Leishen Cai and Baruch Schieber

1997a A linear-time algorithm for computing the intersection of all odd cycles in a graph,
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Discrete Appl. Math. 73 (1997), 27–34. MR 97g:05149. Zbl. 867.05066.
By the negative-subdivision trick (subdividing each positive edge into two
negative ones), the algorithm will find the intersection of all negative poly-
gons of a signed graph. (P, sg: Fr: Alg)

Peter J. Cameron
See also F.C. Bussemaker.

1977a Automorphisms and cohomology of switching classes. J. Combin. Theory Ser. B
22 (1977), 297–298. MR 58 #16382. Zbl. 331.05113, (344.05128).

The first step towards (1977b), Thm. 3.1. (TG: Aut)

†1977b Cohomological aspects of two-graphs. Math. Z. 157 (1977), 101–119. MR 58
#21779. Zbl. 353.20004, (359.20004).

Introducing the cohomological theory of two-graphs. A two-graph τ is a 2-
coboundary in the complex of GF(2)-cochains on E(Kn). [The 1-cochains
are the signed complete graphs, equivalently the graphs that are their neg-
ative subgraphs. Cf. D.E. Taylor (1977a).] Write Zi , Zi , Bi for the i-
cycle, i-cocycle, and i -coboundary spaces. Switching a signed complete
graph means adding a 1-cocycle to it; a switching class of signed complete
graphs is viewed as a coset of Z1 and is equivalent to a two-graph.
Take a group G of automorphisms of τ . Special cohomology elements γ ∈
H1(G, B1) and β ∈ H2(G, B̃0) (where B̃0 = {0, V (Kn)} , the reduced 0-
coboundary group) are defined. Thm. 3.1: γ = 0 iff G fixes a graph in
τ . Thm. 5.1: β = 0 iff G can be realized as an automorphism group of
the canonical double covering graph of τ (viewing τ as a switching class
of signed complete graphs). Conditions are explored for the vanishing of γ
(related to Harries and Liebeck (1978a)) and β .
Z1 is the annihilator of Z1 = the space of even-degree simple graphs; the
theorems of Mallows and Sloane (1975a) follow immediately. More gener-
ally: Lemma 8.2: Zi is the annihilator of Zi . Thm. 8.3. The numbers of
isomorphism types of i-cycles and i -cocycles are equal, for i = 1, . . . , n− 2.
§8 concludes with discussion of possible generalizations, e.g., to oriented
two-graphs (replacing GF(2) by GF(3)∗ ) and double coverings of complete
digraphs (Thms. 8.6, 8.7). [A full ternary analog is developed in Cheng and
Wells (1986a).] (TG: Sw, Aut, E. G)

1979a Cohomological aspects of 2-graphs. II. In: C.T.C. Wall, ed., Homological Group
Theory (Proc. Sympos., Durham, 1977), Ch. 11, pp. 241–244. London Math. Soc.
Lecture Note Ser. 36. Cambridge Univ. Press, Cambridge, 1979. MR 81a:05061.
Zbl. 461.20001.

Exposition of parts of (1977b) with a simplified proof of the connection be-
tween β and γ . (TG: Aut, E, G, Exp)

1980a A note on generalized line graphs. J. Graph Theory 4 (1980), 243–245. MR
81j:05089. Zbl. 403.05048, (427.05039).

[For generalized line graphs see Zaslavsky (1984c).] If two generalized line
graphs are isomorphic, their underlying graphs and cocktail-party attach-
ments are isomorphic, with small exceptions related to exceptional isomor-
phisms and automorphisms of root systems. The proof, along the lines of
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Cameron, Goethals, Seidel, and Shult (1976a), employs the canonical vector
representation of the underlying signed graph. (sg: LG: Aut, G)

1994a Two-graphs and trees. Graph Theory and Applications (Proc., Hakone, 1990).
Discrete Math. 127 (1994), 63–74. MR 95f:05027. Zbl. 802.05042.

Let T be a tree. Construction 1 (simplifying Seidel and Tsaranov (1990a)):
Take all triples of edges such that none separates the other two. This defines
a two-graph on E(T ) [whose underlying signed complete graph is described
by Tsaranov (1992a)]. Construction 2: Choose X ⊆ V (T ). Take all triples
of end vertices of T whose minimal connecting subtree has its trivalent ver-
tex in X . The two-graphs (V, T ) that arise from these constructions are
characterized by forbidden substructures, namely, the two-graphs of (1) C5

and C6 ; (2) C5 . Also, trees that yield identical two-graphs are characterized.
(TG)

1995a Counting two-graphs related to trees. Electronic J. Combin. 2 (1995), Research
Paper 4. MR 95j:05112. Zbl. 810.05031.

Counting two-graphs of the types constructed in (1994a). (TG: E)
P.J. Cameron, J.M. Goethals, J.J. Seidel, and E.E. Shult
††1976a Line graphs, root systems, and elliptic geometry. J. Algebra 43 (1976), 305–327.

MR 56 #182. Zbl. 337.05142. Reprinted in Seidel (1991a), pp. 208–230.
The essential idea is that graphs with least eigenvalue ≥ −2 are represented
by the angles of root systems. It follows that line graphs are so represented.
[Similarly, signed graphs with largest eigenvalue ≤ 2 are represented by the
inner products of root systems, as in Vijayakumar et al. These include the
line graphs of signed graphs as in Zaslavsky (1984c), since simply signed
graphs are represented by Bn or Cn with a few exceptions . The repre-
sentation of ordinary graphs by all-negative signed graphs is motivated in
Zaslavsky (1984c).] (LG: sg: A, G, Sw)

P.J. Cameron, J.J. Seidel, and S.V. Tsaranov
1994a Signed graphs, root lattices, and Coxeter groups. J. Algebra 164 (1994), 173–209.

MR 95f:20063. Zbl. 802.05043.
A generalized Coxeter group Cox(Σ) and a Tsaranov group Ts(Σ) are de-
fined via Coxeter relations and an extra relation for each negative polygon in
Σ. They generalize Coxeter groups of tree Coxeter graphs and the Tsaranov
groups of a two-graph ( |Σ| = Kn ; see Seidel and Tsaranov (1990a)). A new
operation of “local switching” is introduced, which changes the edge set of
Σ but preserves the associated groups.
§2, “Signed graphs”, proves some well-known properties of switching and
reviews interesting data from Bussemaker, Cameron, Seidel, and Tsaranov
(1991a). §3, “Root lattices and Weyl groups”: The “intersection matrix”
2I +A(Σ) is a hyperbolic Gram matrix of a basis of Rn whose vectors form
only angles π/2, π/3, 2π/3. To these vectors are associated the lattice L(Σ)
of their integral linear combinations and the Weyl group W (Σ) generated
by reflecting along the vectors. W is finite iff 2I +A(Σ) is positive definite
(Thm. 3.1). Problem 3.6. Determine which Σ have this property. §4 in-
troduces local switching to partially solve Problem 4.1: Which signed graphs
generate the same lattice? Results and some experimental data are reported.
All-negative signed graphs play a special role. §6, “Coxeter groups”: The
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relationship between the Coxeter and Weyl groups of Σ. Cox(Σ) is Cox( |Σ|)
with additional relations for antinegative (i.e., negative in −Σ) induced poly-
gons. §7: “Signed complete graphs”. §8: “Tsaranov groups” of signed Kn ’s
§9: “Two-graphs arising from trees” (as in Seidel and Tsaranov (1990a)).
Dictionary: “(Γ, f)” = Σ = (Γ, σ). “Fundamental signing” = all-negative
signing, giving the antibalanced switching class. “The balance” of a cycle
(i.e., polygon) = its sign σ(C); “the parity” = σ(−C) where −C = C with
all signs negated. “Even” = positive and “odd” = negative (referring to
“parity”). “The balance” of Σ = the partition of all polygons into positive
and negative classes C+ and C− ; this is the bias on |Σ| due to the signing
and should not be confused with the customary meaning of “balance”, i.e.,
all polygons are positive.
[A more natural definition of the intersection matrix would be 2I−A . Then
signs would be negative to those in the paper. The need for “parity” would
be obviated, ordinary graphs would correspond to all-positive signings (and
those would be “fundamental”), and the extra Coxeter relations would per-
tain to negative induced polygons.] (SG: A, G, Sw(Gen), lg)

P.J. Cameron and Albert L. Wells, Jr.
1986a Signatures and signed switching classes. J. Combin. Theory Ser. B 40 (1986),

344–361. MR 87m:05115. Zbl. 591.05061. (SG: TG: Gen)
Sue Ann Campbell

See J. Bélair.
E. Rodney Canfield

See E.A. Bender.
D.-S. Cao

See R. Simion.
Dorwin Cartwright

See also T.C. Gleason; Harary, Norman, and Cartwright (1965a, etc.)
Dorwin Cartwright and Terry C. Gleason

1966a The number of paths and cycles in a digraph. Psychometrika 31 (1966), 179–199.
MR 33 #5377. Zbl. (e: 143.43702). (SD: A, Paths)

Dorwin Cartwright and Frank Harary
1956a Structural balance: a generalization of Heider’s theory. Psychological Rev. 63

(1956), 277–293. Reprinted in: Dorwin Cartwright and Alvin Zander, eds., Group
Dynamics: Research and Theory, Second Edition, pp. 705–726. Harper and Row,
New York, 1960. Also reprinted in: Samuel Leinhardt, ed., Social Networks: A
Developing Paradigm, pp. 9–25. Academic Press, New York, 1977.

Expounds Harary (1953a, 1955a) with sociological discussion. Proposes to
measure imbalance by the proportion of balanced polygons (the “degree of
balance”) or polygons of length ≤ k ((“degree of k -balance”).

(PsS, SG: B, Fr)
1968a On the coloring of signed graphs. Elem. Math. 23 (1968), 85–89. MR 38 #2053.

Zbl. 155, 317 (e: 155.31703). (SG: Cl)
1970a Ambivalence and indifference in generalizations of structural balance. Behavioral

Sci. 15 (1970), 497–513. (SD, B)
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1977a A graph theoretic approach to the investigation of system-environment relation-
ships. J. Math. Sociology 5 (1977), 87–111. MR 56 #2477. Zbl. 336.92026.

(SD: Cl)

1979a Balance and clusterability: an overview. In: Paul W. Holland and Samuel Lein-
hardt, eds., Perspectives on Social Network Research (Proc. Sympos., Dartmouth
Coll., Hanover, N.H., 1975), Ch. 3, pp. 25–50. Academic Press, New York, 1979.

(SG, SD, VS: B, Fr, Cl, A: Exp)

Adolfo Casari
See F. Barahona.

Paul A. Catlin
1979a Hajós’ graph-coloring conjecture: variations and counterexamples. J. Combin.

Theory Ser. B 26 (1979), 268–274. MR 81g:05057. Zbl. 385.05033, 395.05033.
Thm. 2: If Γ is 4-chromatic, [−Γ] contains a subdivision of [−K4] (an
“odd-K4 ”). [Question. Can this possibly be a signed-graph theorem? For
instance, should it be interpreted as concerning the 0-free (signed) chromatic
number of −Γ?] (p: col)

Seth Chaiken
1982a A combinatorial proof of the all minors matrix tree theorem. SIAM J. Algebraic

Discrete Methods 3 (1982), 319–329. MR 83h:05062. (SD, SG, GG: A, I)

1996a Oriented matroid pairs, theory and an electrical application. In: Joseph E. Bonin,
James G. Oxley, and Brigitte Servatius, eds., Matroid Theory (Proc., Seattle,
1995), pp. 313–331. Contemp. Math., Vol. 197. Amer. Math. Soc., Providence,
R.I., 1996. MR 97e:05058.

Connects a problem on common covectors of two subspaces of Rm , and more
generally of a pair of oriented matroids, to the problem of sign-solvability of
a matrix and the even-cycle problem for signed digraphs. (Sol, sd: P, Alg)

1996b Open problem 5. A problem about common covectors and bases in oriented ma-
troid pairs. In: Joseph E. Bonin, James G. Oxley, and Brigitte Servatius, eds.,
Matroid Theory (Proc., Seattle, 1995), pp. 415–417. Contemp. Math., Vol. 197.
Amer. Math. Soc., Providence, R.I., 1996.

Possible generalizations to oriented matroids of sign-nonsingularity of a ma-
trix. (Sol, SD: P)

Vijaya Chandru, Collette R. Coullard, and Donald K. Wagner
1985a On the complexity of recognizing a class of generalized networks. Oper. Res.

Letters 4 (1985), 75–78. MR 87a:90144. Zbl. 565.90078.
Determining whether a gain graph with real multiplicative gains has a bal-
anced polygon, i.e., is not contrabalanced, is NP-hard. So is determining
whether a real matrix is projectively equivalent to the incidence matrix of a
contrabalanced real gain graph. (GN, Bic: I, Alg)

Chung-Chien Chang and Cheng-Ching Yu
1990a On-line fault diagnosis using the signed directed graph. Industrial and Engineering

Chem. Res. 29 (1990), 1290–1299.
Modifies the method of Iri, Aoki, O’Shima, and Matsuyama (1979a) of con-
structing the diagnostic signed digraph, e.g. by considering transient and
steady-state situations. (SD: Appl, Ref)
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Gerard J. Chang
See J.-H. Yan.

A. Charnes, M. Kirby, and W. Raike
1966a Chance-constrained generalized networks. Oper. Res. 14 (1966), 1113–1120. Zbl.

(e: 152.18302). (GN)
A. Charnes and W.M. Raike

1966a One-pass algorithms for some generalized network problems. Oper. Res. 14 (1966),
914–924. Zbl. (e: 149.38106). (GN: I)

Gary Chartrand
See also M. Behzad.

1977a Graphs as Mathematical Models. Prindle, Weber and Schmidt, Boston, 1977. MR
58 #9947. Zbl. 384.05029. (SG: B, Cl)

Gary Chartrand, Heather Gavlas, Frank Harary, and Michelle Schultz
1994a On signed degrees in signed graphs. Czechoslovak Math. J. 44 (1994), 677–690.

MR 95g:05084. Zbl. 837.05110.
Net degree sequences (i.e., d+ − d− ; called “signed degree sequences”) of
signed simple graphs. A Havel–Hakimi-type reduction formula, but with
an indeterminate length parameter [improved in Yan, Lih, Kuo, and Chang
(1997a)]; a determinate specialization to complete graphs. A necessary con-
dition for a sequence to be a net degree sequence. Examples: paths, stars,
double stars. [Continued in Yan, Lih, Kuo, and Chang (1997a).]
[This is a special case of weighted degree sequences of Kn with integer edge
weights chosen from a fixed interval of integers. In this case the interval is
[−1,+1]. There is a theory of such sequences; however, it seems not to yield
the exact results obtained here.] (SGw: N)
[One can interpret net degrees as the net indegrees (din − dout ) of certain
bidirected graphs. Change the positive (negative) edges to extroverted (resp.,
introverted). Then we have the net indegree sequence of an oriented −Γ.
Problem 1. Generalize this paper and Yan, Lih, Kuo, and Chang (1997a)
to all bidirected (simple, or simply signed) graphs, especially Kn ’s. Prob-
lem 2. Find an Erdős–Gallai-type characterization of net degree sequences
of signed simple graphs. Problem 3. Characterize the separated signed de-
gree sequences of signed simple graphs, where the separated signed degree
is (d+(v), d−(v)). Problem 4. Generalize Problem 3 to edge k -colorings of
Kn .] (SG: O: N)

Gary Chartrand, Frank Harary, Hector Hevia, and Kathleen A. McKeon
1992a On signed graphs with prescribed positive and negative graphs. Vishwa Internat.

J. Graph Theory 1 (1992), 9–18. MR 93m:05095.
What is the smallest order of an edge-disjoint union of two (isomorphism
types of) simple graphs, Γ and Γ′ ? Bounds, constructions, and special
cases. (The union is called a signed graph with Γ and Γ′ as its positive
and negative subgraphs.) Thm. 13: If Γ′ is bipartite (i.e., the union is bal-
anced) with color classes V ′1 and V ′2 , the minimum order = min(|V ′1 |, |V ′2 |)+
max(|V |, |V ′1 |, |V ′2 |). (wg)(SG: B)

Guy Chaty
1988a On signed digraphs with all cycles negative. Discrete Appl. Math. 20 (1988), 83–85.
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MR 89d:05148. Zbl. 647.05028.
Clarifies the structure of “free cyclic” digraphs and shows they include strong
“upper” digraphs (see Harary, Lundgren, and Maybee (1985a)). (SD: Str)

P.D. Chawathe and G.R. Vijayakumar
1990a A characterization of signed graphs represented by root system D∞ . European J.

Combin. 11 (1990), 523–533. MR 91k:05071. Zbl. 764.05090. (SG: G)
Jianer Chen, Jonathan L. Gross, and Robert G. Rieper

1994a Overlap matrices and total imbedding distributions. Discrete Math. 128 (1994),
73–94. MR 95f:05031. Zbl. 798.05017. (SG: T, Sw)

Ying Cheng
1986a Switching classes of directed graphs and H -equivalent matrices. Discrete Math.

61 (1986), 27–40. MR 88a:05075. Zbl. 609.05039.
This article studies what are described as Z4 -gain graphs Φ with underly-
ing simple graph Γ. [However, see below.] They are regarded as digraphs
D , the gains being determined by D as follows: ϕ(u, v) = 1 or 2 if (u, v)
is an arc, 2 or 3 if (v, u) is an arc. [N.B. Γ is not uniquely determined
by D .] Cheng’s “switching” is gain-graph switching but only by switching
functions η : V → {0, 2} ; I will call this “semiswitching”. His “isomor-
phisms” are vertex permutations that are automorphisms of Γ; I will call
them “Γ-isomorphisms”. The objects of study are equivalence classes under
semiswitching (semiswitching classes) or semiswitching and Γ-isomorphism
(semiswitching Γ-isomorphism classes). Prop. 3.1 concerns adjacency of ver-
tex orbits of a Γ-isomorphism that preserves a semiswitching class (call it a
Γ-automorphism of the class). Thm. 4.3 gives the number of semiswitching
Γ-isomorphism classes. Thm. 5.2 characterizes those Γ-automorphisms of a
semiswitching class that fix an element of the class; Thm. 5.3 characterizes
the Γ-isomorphisms g that fix an element of every g -invariant semiswitching
class.
[Likely the right viewpoint, as is hinted in §6, is that the edge labels are
not Z4 -gains but weights from the set {±1,±2, . . . ,±k} with k = 2. Then
semiswitching is ordinary signed switching, and so forth. However, I forbear
to reinterpret everything here.]
In §6, Z4 is replaced by Z2k [but this should be {±1,±2, . . . ,±k} ]; semi-
switching functions take values 0, k only. Generalizations of Sects. 3, 4 are
sketched and are applied to find the number of H -equivalent matrices of
given size with entries ±1,±1, . . . ,±k . (H - [or Hadamard] equivalence
means permuting rows and columns and scaling by −1.)

( sg, wg, GG: Sw, Aut, E)
Ying Cheng and Albert L. Wells, Jr.

1984a Automorphisms of two-digraphs. (Summary). Proc. Fifteenth Southeastern Conf.
on Combin., Graph Theory and Computing (Baton Rouge, 1984). Congressus
Numer. 45 (1984), 335–336. MR 86c:05004c (volume).

A two-digraph is a switching class of Z3 -gain graphs based on Kn .
(gg, SD: Sw, Aut)

†1986a Switching classes of directed graphs. J. Combin. Theory Ser. B 40 (1986), 169–186.
MR 87g:05104. Zbl. 565.05034, (579.05027).
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This exceptionally interesting paper treats a digraph as a ternary gain graph
Φ (i.e., with gains in GF(3)+ ) based on Kn . A theory of switching classes
and triple covering graphs, analogous to that of signed complete graphs (and
of two-graphs) is developed. The approach, analogous to that in Cameron
(1977b), employs cohomology. The basic results are those of general gain-
graph theory specialized to the ternary gain group and graph Kn .
The main results concern a switching class [Φ] of digraphs and an automor-
phism group A of [Φ]. §3, “The first invariant”: Thm. 3.2 characterizes, by
a cohomological obstruction γ , the pairs ([Φ],A) such that some digraph in
[Φ] is fixed. Thm. 3.5 is an [interestingly] more detailed result for cyclic A .
§4: “Triple covers and the second invariant”. Digraph triple covers of the
complete digraph are considered. Those that correspond to gain covering
graphs of ternary gain graphs Φ are characterized (“cyclic triple covers”,
pp. 178–180). Automorphisms of Φ and its triple covering Φ̃ are compared.
Given ([Φ],A), Thm. 4.4 finds the cohomological obstruction β to lifting A

to Φ̃. Thm. 4.7 establishes an equivalence between γ and β in the case of
cyclic A .
§5: “Enumeration”. Thm. 5.1 gives the number of isomorphism types of
switching classes on n vertices, based on the method of Wells (1984a) for
signed graphs. §6: “The fixed signing property”. Thm. 6.1 characterizes the
permutations of V (Kn) that fix a gain graph in every invariant switching
class, based on the method of Wells (1984a).
Dictionary: “Alternating function” on X ×X = GF(3)+ -valued gain func-
tion on KX . (gg, SD: Sw, Aut, E, Cov)

Hyeong-ah Choi, Kazuo Nakajima, and Chong S. Rim
1989a Graph bipartization and via minimization. SIAM J. Discrete Math. 2 (1989),

38–47. MR 89m:90132. Zbl. 677.68036.
Vertex biparticity (the fewest vertices to delete to get a bipartite graph) is
compared to edge biparticity (for cubic graphs) and studied algorithmically.

(p: Fr)

Debashish Chowdhury
1986a Spin Glasses and Other Frustrated Systems. Princeton Univ. Press, Princeton,

and World Scientific, Singapore, 1986.
Includes brief survey of how physicists look upon frustration. See esp. §1.3,
“An elementary introduction to frustration”, where the signed square lattice
graph illustrates balance vs. imbalance; Ch. 20, “Frustration, gauge invari-
ance, defects and SG [spin glasses]”, discussing planar duality (see e.g. Bara-
hona (1982a), “gauge theories”, where gains are in the orthogonal or unitary
group (and switching is called “gauge transformation” by physicists), and
functions of interest to physicists; Addendum to Ch. 10, pp. 378–379, men-
tioning results on when the proportion of negative bonds is fixed and on
gauge theories. (Phys: SG, GG, VS, Fr: Exp, Ref)

San Yan Chu
See S.-L. Lee.

V. Chvátal
See J. Akiyama.
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F.W. Clarke, A.D. Thomas, and D.A. Waller
1980a Embeddings of covering projections of graphs. J. Combin. Theory Ser. B 28

(1980), 10–17. MR 81f:05066. Zbl. 351.05126, (416.05069). (gg: T)
Bernard P. Cohen

See J. Berger.
Edith Cohen and Nimrod Megiddo

1989a Strongly polynomial-time and NC algorithms for detecting cycles in dynamic
graphs. In: Proceedings of the Twenty First Annual ACM Symposium on The-
ory of Computing (Seattle, 1989), pp. 523–534.

Partial version of (1993a). (GD: B: Alg)
1991a Recognizing properties of periodic graphs. In: Peter Gritzmann and Bernd Sturm-

fels, eds., Applied geometry and Discrete Mathematics: The Victor Klee Fest-
schrift, pp. 135–146. DIMACS Ser. Discrete Math. Theoret. Computer Sci., Vol.
4. Amer. Math. Soc., Providence, R.I., and Assoc. Computing Mach., 1991. MR
92g:05166. Zbl. 753.05047.

Given: a gain graph Φ with gains in Zd (a “static graph”). Found: algo-
rithms for (1) connected components and (2) bipartiteness of the covering
graph Φ̃ (the “periodic graph”) and, (3) given costs on the edges of Φ, for a
minimum-average-cost spanning tree in the covering graph. Many references
to related work. (GG( Cov): Alg, Ref)

1992a New algorithms for generalized network flows. In: D. Dolev, Z. Galil, and M.
Rodeh, eds., Theory of Computing and Systems (Proc., Haifa, 1992), pp. 103–
114. Lect. Notes in Computer Sci., Vol. 601. Springer-Verlag, Berlin, 1992. MR
94b:68023 (book).

Preliminary version of (1994a), differing only slightly.
(GN: Alg)(sg: O: Alg)

1993a Strongly polynomial-time and NC algorithms for detecting cycles in periodic
graphs. J. Assoc. Comput. Mach. 40 (1993), 791–830. MR 96h:05182. Zbl.
782.68053.

Looking for a closed walk (“cycle”) with gain 0 in a gain digraph with
(additive) gains in Qd . [Cf. Kodialam and Orlin (1991a).] (GD: B: Alg)

1994a New algorithms for generalized network flows. Math. Programming 64 (1994),
325–336. MR 95k:90111. Zbl. 816.90057.

Maximize the fraction of demand satisfied by a flow on a network with gains.
Positive real gains in §3. Bidirected networks with positive gains in §4; these
are more general than networks with arbitrary non-zero real gains.

(GN: Alg)(sg: O: Alg)
1994b Improved algorithms for linear inequalities with two variables per inequality. SIAM

J. Comput. 23 (1994), 1313–1347. MR 95i:90040. Zbl. 833.90094.
(GN(I): D: Alg)

Charles J. Colbourn and Derek G. Corneil
1980a On deciding switching equivalence of graphs. Discrete Appl. Math. 2 (1980), 181–

184. MR 81k:05090. Zbl. 438.05054.
Deciding switching equivalence of graphs is polynomial-time equivalent to
graph isomorphism. (TG: Alg)
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L. Collatz
1978a Spektren periodischer Graphen. Resultate Math. 1 (1978), 42–53. MR 80b:05042.

Zbl. 402.05054.
Introducing periodic graphs: these are connected canonical covering graphs
Γ = Φ̃ of finite Zd -gain graphs Φ. The “spectrum” of Γ is the set of all
eigenvalues of A(||Φ||) for all possible Φ. The spectrum, while infinite, is
contained in the interval [−r, r] where r is the largest eigenvalue of each
A(||Φ||) [the “index” of von Below (1994a)]. The inspiration is tilings.

(GG(Cov): A)
Barry E. Collins and Bertram H. Raven

1968a Group structure: attraction, coalitions, communication, and power. In: Gardner
Lindzey and Elliot Aronson, eds., The Handbook of Social Psychology, Second
Edition, Vol. 4, Ch. 30, pp. 102–204. Addison-Wesley, Reading, Mass., 1968.

“Graph theory and structural balance,” pp. 106–109. (PsS: SG: Exp, Ref)
Ph. Combe and H. Nencka

1995a Non-frustrated signed graphs. In: J. Bertrand et al., eds., Modern Group Theoret-
ical Methods in Physics (Proc. Conf. in Honour of Guy Rideau, Paris, 1995), pp.
105–113. Math. Phys. Stud., Vol. 18. Kluwer, Dordrecht, 1995. MR 96j:05105.

Σ is balanced iff a fundamental system of polygons is balanced [as is well
known; see i.a. Popescu (1979a), Zaslavsky (1981b)]. An algorithm [incred-
ibly complicated, compared to the obvious method of tracing a spanning
tree] to determine all vertex signings of Σ that switch it to all positive. Has
several physics references. (SG: B, Fr, Alg, Ref)

F.G. Commoner
1973a A sufficient condition for a matrix to be totally unimodular. Networks 3 (1973),

351–365. MR 49 #331. Zbl. 352.05012. (SD: B)
Michele Conforti, Gérard Cornuéjols, Ajai Kapoor, and Kristina Vuškoviić

1994a Recognizing balanced 0,±1 matrices. In: Proceedings of the 5th Annual ACM-
SIAM Symposium on Discrete Algorithms (Arlington, Va., 1994), pp. 103–111.
Assoc. for Computing Machinery, New York, 1994. MR 95e:05022. Zbl. 867.05014.

(SG: B)
1995a A mickey-mouse decomposition theorem. In: Egon Balas and Jens Clausen, eds.,

Integer Programming and Combinatorial Optimization (4th Internat. IPCO COnf.,
Copenhagen, 1995, Proc.), pp. 321–328. Lecture Notes in Computer Sci., Vol. 920.
Springer, Berlin, 1995. MR 96i:05139. Zbl. 875.90002 (book).

The structure of graphs that are signable to be “without odd holes”: that is,
so that each triangle is negative and each chordless polygon of length greater
than 3 is positive. Proof based on Truemper (1982a). (SG: B, Str)

1997a Universally signable graphs. Combinatorica 17 (1997), 67–77. MR 98g:05134. Zbl.
980.00112.

Γ is “universally signable” if it can be signed so as to make every triangle
negative and the holes independently positive or negative at will. Such graphs
are characterized by a decomposition theorem which leads to a polynomial-
time recognition algorithm. (SG: B, Str)

1999a Even and odd holes in cap-free graphs. J. Graph Theory 30 (1999), 289–308.
(SG: B)
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20xxa Triangle-free graphs that are signable without even holes. Submitted (SG: B)

20xxb Even-hole-free graphs. Part I. Decomposition Theorem. Submitted (SG: B)

20xxc Even-hole-free graphs. Part II. Recognition algorithm. Submitted (SG: B)
Michele Conforti, Gérard Cornuéjols, and Kristina Vuškoviić

1999a Balanced cycles and holes in bipartite graphs. Discrete Math. 199 (1999), 27–33.
MR 99j:05119. (SG: B)

Michele Conforti and Ajai Kapoor
1998a A theorem of Truemper. In: Robert E. Bixby, E. Andrew Boyd, and Roger Z.

Ŕıos-Mercado, eds., Integer Programming and Combinatorial Optimization (6th
Internat. IPCO Conf., Houston, 1998, Proc.), pp. 53–68. Lecture Notes in Com-
puter Sci., Vol. 1412. Springer, Berlin, 1998. Zbl. 907.90269

A new proof of Truemper’s theorem on prescribed hole signs; discussion of
applications. (SG: B)

Derek G. Corneil
See C.J. Colbourn and Seidel (1991a).

Gérard Cornuéjols
See also M. Conforti.

20xxa Combinatorial Optimization: Packing and Covering. In preparation.
The topic is linear optimization over a clutter, esp. a “binary clutter”, which
is the class of negative circuits of a signed binary matroid. The class C−(Σ) is
an important example (see Seymour 1977a), as is its blocker bC−(Σ) [which is
the class of minimal balancing edge sets; hence the frustration index l(Σ) =
minimum size of a member of the blocker.
Ch. 5: “Graphs without odd-K5 minors”, i.e., signed graphs without −K5 as
a minor. Some esp. interesting results: Thm. 5.0.7 (special case of Seymour
(1977a), Main Thm.): The clutter of negative polygons of Σ has the “Max-
Flow Min-Cut Property” (Seymour’s “Mengerian” property) iff Σ has no
−K4 minor. Conjecture 5.1.11 is Seymour’s (1981a) beautiful conjecture
(his “weak MFMC” is here called “ideal”). §5.2 reports the partial result of
Guenin (1998b). (See also §8.4.)
Def. 6.2.6 defines a signed graph “G(A)” of a 0,±1-matrix A , whose trans-
posed incidence matrix is a submatrix of A . §6.3.3: “Perfect 0,±1-matrices,
bidirected graphs and conjectures of Johnson and Padberg” (1982a), asso-
ciates a bidirected graph with a system of 2-variable pseudoboolean inequal-
ities; reports on Sewell (1997a) (q.v.).
§8.4: “On ideal binary clutters”, reports on Cornuéjols and Guenin (20xxa),
Guenin (1998a), and Novick and Sebö (1995a) (qq.v.).

(S(M), SG: M, G, I(Gen), O: Exp, Ref, Exr)
Gérard Cornuéjols and Bertrand Guenin
20xxa On ideal binary clutters and a conjecture of Seymour. In preparation

A partial proof of Seymour’s (1981a) conjecture. Main Thm.: A binary
clutter is ideal if it has as a minor none of the circuit clutter of F7 , C−(−K5)
or its blocker, or C−(−K4) or its blocker. Important are the lift and extended
lift matroids, L(M,σ) and L0(M,σ), defined as in signed graph theory. [See
Cornuéjols (20xxa), §8.4.] (S(M), SG: M, G)
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S. Cosares
See L. Adler.

Collette R. Coullard
See also V. Chandru.

Collette R. Coullard, John G. del Greco, and Donald K. Wagner
††1991a Representations of bicircular matroids. Discrete Appl. Math. 32 (1991), 223–240.

MR 92i:05072. Zbl. 755.05025.
§4: §4.1 describes 4 fairly simple types of “legitimate” graph operation that
preserve the bicircular matroid. Thm. 4.11 is a converse: if Γ1 and Γ2
have the same connected bicircular matroid, then either they are related
by a sequence of legitimate operations, or they belong to a small class of
exceptions, all having order ≤ 4, whose bicircular matroid isomorphisms are
also described. This completes the isomorphism theorem of Wagner (1985a).
§5: If finitely many graphs are related by a sequence of legitimate operations
(so their bicircular matroids are isomorphic), then they have contrabalanced
real gains whose incidence matrices are row equivalent. These results are
also found by a different approach in Shull et al. (1989a, 20xxa).

(Bic: Str, I)

1993a Recognizing a class of bicircular matroids. Discrete Appl. Math. 43 (1993), 197–
215. MR 94i:05021. Zbl. 777.05036. (Bic: Alg)

1993b Uncovering generalized-network structure in matrices. Discrete Appl. Math. 46
(1993), 191–220. MR 95c:68179. Zbl. 784.05044. (GN: Bic: I, Alg)

Yves Crama
See also E. Boros.

1989a Recognition problems for special classes of polynomials in 0–1 variables. Math.
Programming A44 (1989), 139–155. MR 90f:90091. Zbl. 674.90069.

Balance and switching are used to study pseudo-Boolean functions. (Sects.
2.2 and 4.) (SG: B, Sw)

Yves Crama and Peter L. Hammer
1989a Recognition of quadratic graphs and adjoints of bidirected graphs. Combinatorial

Math.: Proc. Third Internat. Conf. Ann. New York Acad. Sci. 555 (1989), 140–149.
MR 91d:05044. Zbl. 744.05060.

“Adjoint” = unoriented positive part of the line graph of a bidirected graph.
“Quadratic graph” = graph that is an adjoint. Recognition of adjoints of
bidirected simple graphs is NP-complete. (sg: O: LG: Alg)

Yves Crama, Peter L. Hammer, and Toshihide Ibaraki
1986a Strong unimodularity for matrices and hypergraphs. Discrete Appl. Math. 15

(1986), 221–239. MR 88a:05105. Zbl. 647.05042.
§7: Signed hypergraphs, with a surprising generalization of balance.

(S(Hyp): B)
Y. Crama, M. Loebl, and S. Poljak

1992a A decomposition of strongly unimodular matrices into incidence matrices of di-
graphs. Discrete Math. 102 (1992), 143–147. MR 93g:05097. Zbl. 776.05071.

(SG)
William H. Cunningham

See J. Aráoz.
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Dragoš M. Cvetković
See also F.C. Bussemaker and M. Doob.

1978a The main part of the spectrum, divisors and switching of graphs. Publ. Inst. Math
(Beograd) (N.S.) 23 (37) (1978), 31–38. MR 80h:05045. Zbl. 423.05028.

1995a Star partitions and the graph isomorphism problem. Linear Algebra Appl. 39
(1995), 109–132. MR 97b:05105. Zbl. 831.05043.

Pp. 128–130 discuss switching-equivalent graphs. Some of the theory is in-
variant, hence applicable to two-graphs. [Question. How can this be gener-
alized to signed graphs and their switching classes?] (TG: A)

Dragos M. Cvetković, Michael Doob, Ivan Gutman, and Aleksandar Torgašev
1988a Recent Results in the Theory of Graph Spectra. Ann. Discrete Math., 36. North-

Holland, Amsterdam, 1988. MR 89d:05130. Zbl. 634.05034.
Signed graphs on pp. 44-45. All-negative signatures are implicated in the
infinite-graph eigenvalue theorem of Torgašev (1982a), Thm. 6.29 of this
book. (SG, p: A: Exp, Ref)

Dragoš M. Cvetković, Michael Doob, and Horst Sachs
1980a Spectra of Graphs: Theory and Application. VEB Deutscher Verlag der Wis-

senschaften, Berlin, 1980. Copublished as: Pure and Appl. Math., Vol. 87. Aca-
demic Press, New York-London, 1980. MR 81i:05054. Zbl. 458.05042.

§4.6: Signed digraphs with multiple edges are employed to analyze the char-
acteristic polynomial of a digraph. (Signed) switching, too. Pp. 187–188:
Exercises involving Seidel switching and the Seidel adjacency matrix. Thm.
6.11 (Doob (1973a)): The even-cycle matroid determines the eigenvaluicity
of −2. §7.3: “Equiangular lines and two-graphs.”

(SD, p, TG: Sw, A, G: Exp, Exr, Ref)
1995a Spectra of Graphs: Theory and Applications. Third edn. Johann Ambrosius Barth,

Heidelberg, 1995. MR 96b:05108. Zbl. 824.05046.
Appendices update the second, slightly corrected edn. of (1980a), beyond the
updating in Cvetković, Doob, Gutman, and Torgašev (1988a). App. B.3, p.
381: mentions work of Vijayakumar (q.v.). P. 422: Pseudo-inverse graphs
(A(Γ)−1 = A(Σ) for some balanced Σ; |Σ| is the “pseudo-inverse” of Γ).

(SD, p, TG: A, Sw, G, B: Exp, Exr, Ref)
Dragoš Cvetković, Michael Doob, and Slobodan Simić

1980a Some results on generalized line graphs. C. R. Math. Rep. Acad. Sci. Canada 2
(1980), 147–150. MR 81f:05136. Zbl. 434.05057.

Abstract of (1981a). (sg: LG, A(LG), Aut(LG))

1981a Generalized line graphs. J. Graph Theory 5 (1981), 385–399. MR 82k:05091. Zbl.
475.05061. (sg: LG, A(LG), Aut(LG))

Dragoš M. Cvetković and Slobodan K. Simić
1978a Graphs which are switching equivalent to their line graphs. Publ. Inst. Math.

(Beograd) (N.S.) 23 (37) (1978), 39–51. MR 80c:05108. Zbl. 423.05035. (sw: LG)
E. Damiani, O. D’Antona, and F. Regonati

1994a Whitney numbers of some geometric lattices. J. Combin. Theory Ser. A 65 (1994),
11–25. MR 95e:06019. Zbl. 793.05037.

Dowling lattices are an example. (gg: M: N)



the electronic journal of combinatorics #DS8 36

O. D’Antona
See E. Damiani.

George B. Dantzig
1963a Linear Programming and Extensions. Princeton Univ. Press, Princeton, N.J.,

1963. MR 34 #1073. Zbl. (e: 108.33103).
Chapter 21: “The weighted distribution problem.” 21-2: “Linear graph
structure of the basis.” (GN: M(Bases))

Prabir Das and S.B. Rao
1983a Alternating eulerian trails with prescribed degrees in two edge-colored complete

graphs. Discrete Math. 43 (1983), 9–20. MR 84k:05069. Zbl. 494.05020.
Given an all-negative bidirected Kn and a positive integer fi = 2gi for each
vertex vi . There is a connected subgraph having in-degree and out-degree
= gi at vi iff there is a g -factor of introverted and one of extroverted edges
and the degrees satisfy a complicated degree condition. Generalizes Thm. 1
of Bánkfalvi and Bánkfalvi (1968a). [See Bang-Jensen and Gutin (1997a) for
how to convert an edge 2-coloring to an orientation of an all-negative graph
and for further developments on alternating walks.] (p: o)

James A. Davis
1963a Structural balance, mechanical solidarity, and interpersonal relations. Amer. J.

Sociology 68 (1963), 444–463. Reprinted with minor changes in: Joseph Berger,
Morris Zelditch, Jr., and Bo Anderson, eds., Sociological Theories in Progress,
Vol. One, Ch. 4, pp. 74–101. Houghton Mifflin, Boston, 1966. Also reprinted in:
Samuel Leinhardt, ed., Social Networks: A Developing Paradigm, pp. 199–217.
Academic Press, New York, 1977. (PsS: SG, WG: Exp)

1967a Clustering and structural balance in graphs. Human Relations 20 (1967), 181–187.
Reprinted in: Samuel Leinhardt, ed., Social Networks: A Developing Paradigm,
pp. 27–33. Academic Press, New York, 1977.

James A. Davis and Samuel Leinhardt
1972a The structure of positive interpersonal relations in small groups. In: Joseph

Berger, Morris Zelditch, Jr., and Bo Anderson, eds., Sociological Theories in
Progress, Vol. Two, Ch. 10, pp. 218–251. Houghton Mifflin, Boston, 1972.

Analysis of a sociological theory incorporating structural balance in relation
to both randomly generated and observational data. (PsS: SG)

A.C. Day, R.B. Mallion, and M.J. Rigby
1983a On the use of Riemannian surfaces in the graph-theoretical representation of

Möbius systems. In: R.B. King, ed., Chemical Applications of Topology and Graph
Theory (Proc. Sympos., Athens, Ga., 1983), pp. 272–284. Stud. Physical Theoret.
Chem., 28. Elsevier, Amsterdam, 1983. MR 85h:05039.

A clumsy but intriguing way of representing some signed (or more generally,
Zn -weighted) graphs: via 2-page (or, n -page) looseleaf book embedding (all
vertices are on the spine and each edge is in a single page), with an edge in
page k weighted by the “sheet parity index” αk = (−1)k (or, e2πik/n ). (De-
scribed in the [unnecessary] terminology of an n -sheeted Riemann surface.)
[A Zn -weighted) graph has such a representation iff the subgraph of edges
with each weight is outerplanar.]
A variation to get switching classes of signed polygons: replace αk by the
“connectivity parity index” ασk

k where σk = number of edges in page k .
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[The variation is valid only for polygons.] [Questions vaguely suggested by
these procedures: Which signed graphs can be switched so that the edges
of each sign form an outerplanar graph? Also, the same for gain graphs.
And there are many similar questions: for instance, the same ones with
“outerplanar” replaced by “planar.”]

(SG: sw, A, T, Chem: Exp, Ref)(WG: A, T: Exp, Ref)

Anne Delandtsheer
1995a Dimensional linear spaces. In: F. Buekenhout, ed., Handbook of Incidence Ge-

ometry: Buildings and Foundations, Ch. 6, pp. 193–294. North-Holland, Amster-
dam,1995. MR 96k:51012. Zbl. 950.23458.

“Dimensional linear space” (DLS) = simple matroid. §2.7: “Dowling lat-
tices,” from Dowling (1973b). §6.7: “Subgeometry-closed and hereditary
classes of DLS’s,” from Kahn and Kung (1982a). In §2.6, the “Enough mod-
ular hyperplanes theorem” from Kahn and Kung (1986a). (GG: M: Exp)

John G. del Greco
See also C.R. Coullard.

1992a Characterizing bias matroids. Discrete Math. 103 (1992), 153–159. MR 93m:05050.
Zbl. 753.05021.

How to decide, given a matroid M and a biased graph Ω, whether M =
G(Ω). (GG: M)

B. Derrida, Y. Pomeau, G. Toulouse, and J. Vannimenus
1979a Fully frustrated simple cubic lattices and the overblocking effect. J. Physique 40

(1979), 617–626. (SG: Phys, Fr)

1980a Fully frustrated simple cubic lattices and phase transitions. J. Physique 41 (1980),
213–221. MR 80m:82020. (Phys: SG)

Michel Marie Deza and Monique Laurent
1997a Geometry of Cuts and Metrics. Algorithms and Combinatorics, Vol. 15. Springer,

Berlin, 1997. MR 98g:52001. Zbl. 885.52001.
A main object of interest is the cut polytope, which is the bipartite subgraph
polytope (see Barahona, Grötschel, and Mahjoub (1985a)) of Kn , i.e. the
balanced subgraph polytope (Poljak and Turźık (1987a)) of −Kn . §4.5, “An
application to statistical physics”, briefly discusses the spin glass application.
§26.3, “The switching operation”, discusses graph switching and its general-
ization to sets. §30.3, “Circulant inequalities”, mentions Poljak and Turźık
(1987a, 1992a). No explicit mention of signed graphs. (p: fr: G: Exp)

Persi Diaconis
See K.S. Brown.

V. Di Giorgio
1974a 2-modules dans un graphe: equilibre et coequilibre d’un bigraphe—application

taxonomique. Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.) 18 (66) (1974),
81–102 (1975). MR 57 #16124. Zbl. 324.05127. (SG: B)

Yvo M.I. Dirickx and M.R. Rao
1974a Networks with gains in discrete dynamic programming. Management Sci. 20

(1974), No. 11 (July, 1974), 1428–1431. MR 50 #12279. Zbl. 303.90052.
(GN: M(bases))
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Michael Doob
See also D.M. Cvetković.

1970a A geometric interpretation of the least eigenvalue of a line graph. In: Proc. Sec-
ond Chapel Hill Conference on Combinatorial Mathematics and Its Applications
(1970), pp. 126–135. Univ. of North Carolina at Chapel Hill, Chapel Hill, N.C.,
1970. MR 42 #2959. Zbl. 209, 554 (e: 209.55403).

A readable, tutorial introduction to (1973a) (without matroids).
(ec: LG, I, A(LG))

1973a An interrelation between line graphs, eigenvalues, and matroids. J. Combin. The-
ory Ser. B 15 (1973), 40–50. MR 55 #12573. Zbl. 245.05125, (257.05132).

Along with Simões-Pereira (1973a), introduces to the literature the even-
cycle matroid G(−Γ) [previously invented by Tutte, unpublished]. The mul-
tiplicity of −2 as an eigenvalue (in characteristic 0) equals the number of
independent even polygons = n − rkG(−Γ). In characteristic p there is a
similar theorem, but the pertinent matroid is G(Γ) if p = 2 and, when p|n ,
the matroid has rank 1 greater than otherwise [a fact that mystifies me].

(EC: LG, I, A(LG))

1974a Generalizations of magic graphs. J. Combin. Theory Ser. B 17 (1974), 205–217.
MR 51 #274. Zbl. 271.05128, (287.05124). (ec: I)

1974b On the construction of magic graphs. In: F. Hoffman et al., eds., Proceedings of the
Fifth Southeastern Conference on Combinatorics, Graph Theory and Computing
(Boca Raton, 1974), pp. 361–374. Utilitas Math. Publ. Inc., Winnipeg, Man.,
1974. MR 53 #13039. Zbl. 325.05123. (ec: I)

1978a Characterizations of regular magic graphs. J. Combin. Theory Ser. B 25 (1978),
94–104. MR 58 #21840. Zbl. 384.05054. (ec: I)

Michael Doob and Dragoš Cvetković
1979a On spectral characterizations and embeddings of graphs. Linear Algebra Appl. 27

(1979), 17–26. MR 81d:05050. Zbl. 417.05025. (sg: LG, A(LG))

Patrick Doreian, Roman Kapuscinski, David Krackhardt, and Janusz Szczy-
pula

1996a A brief history of balance through time. J. Math. Sociology 21 (1996), 113–131.
Reprinted in Patrick Doreian and Frans N. Stokman, eds., Evolution of Social
Networks, pp. 129–147. Gordon and Breach, Australia, Amsterdam, etc., 1997.

§2.3: “A method for group balance”. Describes the negation-minimal index
of clusterability (generalized imbalance) from Doreian and Mrvar (1996a).

(SG: B, Cl: Fr(Gen): Exp)
§3.3: “Results for group balance”. Describes results from analysis of data
on a small (social) group, in terms of frustration index l and a clusterability
index mink>2 2Pk,.5 (slightly different from the index in Doreian and Mrvar
(1996a)), finding both measures (but more so the latter) decreasing with
time. (PsS: B, Cl: Fr(Gen))

Patrick Doreian and Andrej Mrvar
1996a A partitioning approach to structural balance. Social Networks 18 (1996), 149–

168.
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They propose indices for clusterability that generalize the frustration index.
Fix k ≥ 2 and α ∈ [0, 1]. For a partition π of V into k parts, they
define P (π) := αn− + (1 − α)n+ , where n+ := |E+〈π〉| = number of pos-
itive edges between parts and n− := |E− :π| = number of negative edges
within parts. The first proposed measure is minP (π), minimized over k -
partitions. [Call this Pk,α .] A second suggestion is the “negation-minimal
index of generalized imbalance [i.e., of clusterability]”, the smallest number
of edges whose negation (equivalently, deletion) makes Σ clusterable; it =
mink 2Pk,.5 . [Note that P (π) effectively generalizes the Potts Hamiltonian
as given by Welsh (1993a). Question. Does P (π) fit into an interesting
generalized Potts model?] [P (π) also resembles the Potts Hamiltonian in
Fischer and Hertz (1991a) (q.v. for a related research question).]
They employ a local optimization algorithm to evaluate Pk,α and find an
optimal partition: random descent from partition to neighboring partition,
where π and π′ are neighbors if they differ by transfer of one vertex or
exchange of two vertices between two parts. This was found to work well
if repeated many times. [A minimizing partition into at most k parts is
equivalent to a ground state of the k -spin Potts model in the form given by
Welsh (1993a), but not quite of that in Fischer and Hertz (1991a).]
Terminology: P (π) is called the “criterion function” [more explicitly, one
might call it the ‘clusterability (adjusted by α)’ of π ]; clusterability is “k -
balance” or “generalized balance”. The partition’s parts are “plus-sets”.
Signed digraphs are employed in the notation but direction is ignored.

(SD: sg: B, Cl: Fr(Gen), Alg, PsS)
1996b Structural balance and partitioning signed graphs. In: A. Ferligoj and A. Kram-

berger, eds., Developments in Data Analysis, pp. 195–208. Metodološki zvezki,
Vol. 12. FDV, Ljubljana, Slovenia, 1996.

Similar to (1996a). Some lesser theoretical detail; some new examples. The
k -clusterability index Pk,α (see (1996a)) is compared for different values of k ,
seeking the minimum. [But for which value(s) of α is not stated.] Interesting
observation: optimal values of k were small. It is said that positive edges
between parts are far more acceptable socially than negative edges within
parts [thus, in the criterion function α should be rather near 1].

(SD: sg: B, Cl: Fr(Gen), Alg, PsS)
W. Dörfler

1977a Double covers of graphs and hypergraphs. In: Beitrage zur Graphentheorie und
deren Anwendungen (Proc. Internat. Colloq., Oberhof, D.D.R., 1977), pp. 67–79.
Technische Hochschule, Ilmenau, 1977. MR 82c:05074. Zbl. 405.05055.

(SG: Cov, LG)(SD, S(Hyp): Cov)

1978a Double covers of hypergraphs and their properties. Ars Combinatoria 6 (1978),
293–313. MR 82d:05085. Zbl. 423.050532. (S(Hyp): Cov, LG)

Lynne L. Doty
See F. Buckley.

Peter Doubilet
1971a Dowling lattices and their multiplicative functions. In: Möbius Algebras (Proc.

Conf., Waterloo, Ont., 1971), pp. 187–192. Univ. of Waterloo, Ont., 1971, re-
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printed 1975. MR 50 #9605. Zbl. 385.05008. (GG: M)
Peter Doubilet, Gian-Carlo Rota, and Richard Stanley

1972a On the foundations of combinatorial theory (VI): The idea of generating func-
tion. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statis-
tics and Probability (Berkeley, Calif., 1970/71), Vol. II: Probability Theory, pp.
267–318. Univ. of California Press, Berkeley, Calif., 1972. MR 53 #7796. Zbl.
267.05002. Reprinted in: Gian-Carlo Rota, Finite Operator Calculus, pp. 83–134.
Academic Press, New York, 1975. MR 52 #119. Zbl. 328.05007. Reprinted again
in: Joseph P.S. Kung, ed., Gian-Carlo Rota on Combinatorics: Introductory Pa-
pers and Commentaries, pp. 148–199. Birkhäuser, Boston, 1995. MR 99b:01027.
Zbl. 841.01031.

Section 5.3: Brief gain-graphic treatment of Dowling lattices. (GG: M)
T.A. Dowling

1971a Codes, packings, and the critical problem. In: Atti del Convegno di Geometria
Combinatoria e sue Applicazioni (Perugia, 1970), pp. 209–224. Ist. Mat., Univ.
di Perugia, Perugia, Italy, 1971. MR 49 #2438. Zbl. 231.05029.

Pp. 221–223: The first intimations of Dowling lattices/geometries/matroids,
as in (1973a, 1973b), and their higher-weight relatives (see Bonin 1993a).

(gg, Gen: M)
1973a A q -analog of the partition lattice. Ch. 11 in: J. N. Srivastava et al., eds., A Survey

of Combinatorial Theory (Proc. Internat. Sympos., Ft. Collins, Colo., 1971), pp.
101–115. North-Holland, Amsterdam, 1973. MR 51 #2954. Zbl. 259.05023.

Linear-algebraic progenitor of (1973b). Treats the Dowling lattice of group
GF(q)× as naturally embedded in PGn−1(q). Interesting is p. 105, Remark:
One might generalize some results to any ambient (simple) matroid.

(gg: M, N, GG)
††1973b A class of geometric lattices based on finite groups. J. Combin. Theory Ser. B 14

(1973), 61–86. MR 46 #7066. Zbl. 247.05019. Erratum. Ibid. 15 (1973), 211. MR
47 #8369. Zbl. 264.05022.

Introduces the Dowling lattices of a group, treated as lattices of group-
labelled partial partitions. Equivalent to the bias matroid of complete G -gain
graph GK•n . [The gain-graphic approach was known to Dowling (1973a, p.
109) but first published in Doubilet, Rota, and Stanley (1972a).] Isomor-
phism, vector representation, Whitney numbers and characteristic polyno-
mial. [The first and still fundamental paper.] (gg: M, N)

Pauline van den Driessche
See van den Driessche (under ‘V’).

J.M. Drouffe
See R. Balian.

Richard A. Duke, Paul Erdös, and Vojtěch Rödl
1992a Cycle-connected graphs. Discrete Math. 108 (1992), 261–278. MR 94a:05106. Zbl.

776.05057.
All graphs are simple. This is one of four related papers that prove extremal
results concerning subgraphs of −Γ within which every two edges belong to
a balanced polygon of length at most 2k , for all or particular k . Typical
theorem: Let Fl(n,m) = the largest number m′ = m′(n,m) such that every
−Γ with |V | = n and |E| ≥ m has a subgraph Σ′ with |E′| = m′ in which
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every two edges belong to a balanced polygon of length at most l . For m =
m(n) ≥ n3/2 , there is a constant c3 > 0 such that Fl(n,m) ≤ c3m

2n−2 for
all l . (§2, (2).) [Problem. Extend these extremal results in an interesting way
to arbitrary signed simple graphs, or to simply signed graphs (no repeated
edges with the same sign). (Merely allowing positive edges in addition to
negative ones just makes the problem easier. Something more is required.)]

(p: b(Polygons): X)
Arne Dür

1986a Möbius Functions, Incidence Algebras and Power Series Representations. Lecture
Notes in Math., Vol. 1202. Springer-Verlag, Berlin, 1986. MR 88m:05005. Zbl.
592.05006.

Dowling lattices are an example of a categorial approach to incidence-algebra
techniques in Ch. IV, §7. Computed are the characteristic polynomial and
second kind of Whitney numbers. Binomial concavity, hence unimodality of
the latter [cf. Stonesifer (1975a)] is proved by showing that a suitable gener-
ating polynomial has only distinct, negative roots [cf. Benoumhani (1999a)].

(gg: M: N)
Paul H. Edelman and Victor Reiner

1994a Free hyperplane arrangements between An−1 and Bn . Math. Z. 215 (1994), 347–
365. MR 95b:52021. Zbl. 793.05122.

Characterizes all Σ ⊇ +Kn whose bias matroid G(Σ) is supersolvable, free,
or inductively free. Essentially, iff the negative links form a threshold graph.
[Continued in Bailey (20xxa). Generalized in part to arbitrary gain groups
in Zaslavsky (20xxh).] (sg: M, G, col)

1996a Free arrangments and rhombic tilings. Discrete Computat. Geom. 15 (1996), 307–
340. MR 97f:52019. Zbl. 853.52013. Erratum. Discrete Computat. Geom. 17
(1997), 359. MR 97k:52013. Zbl. 853.52013.

Paul H. Edelman and Michael Saks
1979a Group labelings of graphs. J. Graph Theory 3 (1979), 135–140. MR 80j:05071.

Zbl. 411.05059.
Given Γ and abelian group A . Vertex and edge labellings λ : V → A and η :
E → A are “compatible” if λ(v) =

∑
e η(e) for every vertex v , the sum taken

over all edges incident with v . λ is “admissible” if it is compatible with some
η . Admissible vertex labellings are characterized (differently for bipartite
and nonbipartite graphs) and the number of edge labelings compatible with
a given vertex labelling is computed. [Dual in a sense to Gimbel (1988a).]

(WG, VS: B(D), E)
Jack Edmonds

See also J. Aráoz and E.L. Lawler (1976a).
1965a Paths, trees, and flowers. Canad. J. Math. 17 (1965), 449–467. MR 31 #2165.

Zbl. 132, 209 (e: 132.20903).
Followed up by much work, e.g., Witzgall and Zahn (1965a); see Ahuja,
Magnanti, and Orlin (1993a) for some references. (p: o: i, Alg)

1965b Maximum matching and a polyhedron with 0, 1-vertices. J. Res. Nat. Bur. Stan-
dards (U.S.A.) Sect. B 69B (1965), 125–130. MR 32 #1012. Zbl. (e: 141.21802).

Alludes to the polyhedron of Edmonds and Johnson (1970a). (p: o: I, G)
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Jack Edmonds and Ellis L. Johnson
††1970a Matching: a well-solved class of integral linear programs. In: Richard Guy et al.,

eds., Combinatorial Structures and Their Applications (Proc. Calgary Internat.
Conf., Calgary, 1969), pp. 89–92. Gordon and Breach, New York, 1970. MR 42
#2799. Zbl. 258.90032.

Introduces “bidirected graphs”. A “matching problem” is an integer linear
program with nonnegative and possibly bounded variables and otherwise
only equality constraints, whose coefficient matrix is the incidence matrix
of a bidirected graph. No proofs. [See Aráoz, Cunningham, Edmonds, and
Green-Krótki (1983a) for further work.] (sg: O: I, Alg, G)

Richard Ehrenborg and Margaret A. Readdy
1998a On valuations, the characteristic polynomial, and complex subspace arrangements.

Advances Math. 134 (1998), 32–42. MR 98m:52018. Zbl. 906.52004.
An abstract additive approach to the characteristic polynomial, applied in
particular to “divisor Dowling arrangements” of hyperplanes and certain
interpolating arrangements. Let Φ = G1K1 ∪ · · · ∪ GnKn , where V (Ki) =
{v1, . . . , vi} and G1 ≥ · · · ≥ Gn is a chain of subgroups of a gain group
G = G1 . When G is finite cyclic, the complex hyperplane representation of
Φ• is a “divisor Dowling arrangement”. [Its polynomial equals the chromatic
polynomial of Φ• , which is easily computed via gain-graph coloring without
the restriction to cyclic gain group. The same appears to be true for the
other arrangements treated herein.] (gg: M: G, N)

1999a On flag vectors, the Dowling lattice, and braid arrangements. Discrete Computat.
Geom. 21 (1999), 389–403.

The Dowling lattice is that of a finite cyclic group Zk . Thm. 4.9 is a recursive
formula for its flag h-vector (in the form of the ab -index). Thm. 5.2 is
a similar formula for the c, 2d-index of the face lattices of the real root
system arrangements An and Bn , whose intersection lattices are the Dowling
lattices of Z1 and Z2 . §6 presents a combinatorial description of the face
lattice of Bn [which it is interesting to compare with that in Zaslavsky
(1991b)]. (gg: M: G, N)

A. Ehrenfeucht, T. Harju, and G. Rozenberg
1996a Group based graph transformations and hierarchical representations of graphs.

In: J. Cuny, H. Ehrig, G. Engels and G. Rozenberg, eds., Graph Grammars and
Their Application to Computer Science (5th Internat. Workshop, Williamsburg,
Va., 1994), pp. 502–520. Lecture Notes in Computer Science, Vol. 1073. Springer-
Verlag, Berlin, 1996. MR 97h:68097.

The “heierarchical structure” of a switching class of skew gain graphs based
on Kn . (gg: K: Sw)

1997a 2-Structures—A framework for decomposition and transformation of graphs. In:
Grzegorz Rozenberg, ed., Handbook of Graph Grammars and Computing by Graph
Transformation. Vol. 1: Foundations, Ch. 6, pp. 401–478. World Scientific, Sing-
apore, 1997. MR 99b:68006 (book). Zbl. 908.68095 (book).

A tutorial (with some new proofs). §6.7: “Dynamic labeled 2-structures”.
§6.8: “Dynamic `2-structures with variable domains”. §6.9: “Quotients and
plane trees”. §6.10: “Invariants”. (gg: sw: Exp, Ref)

1997b Invariants of inversive 2-structures on groups of labels. Math. Structures Com-
puter Sci. 7 (1997), 303–327. MR 98g:20089. Zbl. 882.05119.
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Given a gain graph (Kn, ϕ,G), a word w in the oriented edges of Kn has a
gain ϕ(w); call this ψw(ϕ). A “free invariant” is a ψw that is an invariant
of switching classes. Thm.: There is a number d = d(Kn,G) such that the
group of free invariants is generated by ψw with w = zd1 · · · zdku1 · · ·ul where
wi are triangular cycles (directed!) and ui are commutators. [The whole pa-
per applies mutatis mutandis to arbitrary graphs, the triangular cycles being
replaced by any set of cycles containing a fundamental system.] Dictionary:
“Inversive 2-structure” = gain graph based on Kn . (gg: K: Sw, N)

Andrzej Ehrenfeucht and Grzegorz Rozenberg
1993a An introduction to dynamic labeled 2-structures. In: Andrzej M. Borzyszkowski

and Stefan Soko lowski, eds., Mathematical Foundations of Computer Science 1993
(Proc., 18th Internat. Sympos., MFCS ’93, Gdańsk, 1993), pp. 156–173. Lecture
Notes in Computer Sci., Vol. 711. Springer-Verlag, Berlin, 1993. MR 95j:68126.

Extended summary of (1994a). (GG(Gen): K: Sw, Str)

1994a Dynamic labeled 2-structures. Math. Structures Comput. Sci. 4 (1994), 433–455.
MR 96j:68144. Zbl. 829.68099.

They prove that a complicated definition of “reversible dynamic labeled 2-
structure” G amounts to a complete graph with a set, closed under switching,
of twisted gains in a gain group ∆. The twist is a gain-group automorphism
α such that λ(e;x, y) = [αλ(e; y, x)]−1 , λ being the gain function. Dictio-
nary: their “domain” D = vertex set, “labeling function” λ (or equivalently,
g ) = gain function, “alphabet” = gain group, “involution” δ = α◦ inver-
sion, “δ -selector” Ŝ = switching function, “transformation induced by Ŝ ” =
switching by Ŝ ; a “single axiom” d.l. 2-structure consists of a single switching
class.
Further, they investigate “clans” of G . Given g (i.e., λ), deleting identity-
gain edges leaves isolated vertices (“horizons”) and forms connected compo-
nents, any union of which is a “clan” of g . A clan of G is any clan of any
g ∈ G . (GG(Gen): K: Sw, Str)

1994b Dynamic labeled 2-structures with variable domains. In: J. Karhumäki, H. Mau-
rer, and G. Rozenberg, eds., it Results and Trends in Theoretical Computer Science
(Proc., Colloq. in Honor of Arto Alomaa, Graz, 1994), pp. 97–123. Lecture Notes
in Computer Science, Vol. 812. Springer-Verlag, Berlin, 1994. MR 95m:68128.

Combinations and decompositions of complete graphs with twisted gains.
(GG(Gen): K: Str, Sw)

Kurt Eisemann
1964a The generalized stepping stone method for the machine loading model. Manage-

ment Sci. 11 (1964/65), No. 1 (Sept., 1964), 154–176. Zbl. 136, 139 (e: 136.13901).
(GN: I, M(bases))

Joyce Elam, Fred Glover, and Darwin Klingman
1979a A strongly convergent primal simplex algorithm for generalized networks. Math.

Oper. Res. 4 (1979), 39–59. MR 81g:90049. Zbl. 422.90081. (GN: M(bases), I)

David P. Ellerman
1984a Arbitrage theory: A mathematical introduction. SIAM Rev. 26 (1984), 241–261.

MR 85g:90024. Zbl. 534.90014. (GG: B, I, Flows: Appl, Ref)
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M.N. Ellingham
1991a Vertex-switching, isomorphism, and pseudosimilarity. J. Graph Theory 15 (1991),

563–572. MR 92g:05136. Zbl. 802.05057.
Main theorem (§2) characterizes, given two signings of Kn (where n may be
infinite) and a vertex set S , when switching S makes the signings isomorphic.
[Problem 1. Generalize to other underlying graphs. Problem 2. Prove an
analog for bidirected Kn ’s.] A corollary (§3) characterizes when vertices
u, v of Σ = (Kn, σ) satisfy Σ{u} ∼= Σ{v} and discusses when in addition no
automorphism of Σ moves u to v . All is done in terms of Seidel (graph)
switching (here called “vertex-switching”) of unsigned simple graphs.

(k: sw, TG)
1996a Vertex-switching reconstruction and folded cubes. J. Combin. Theory Ser. B 66

(1966), 361–364. MR 96i:05120. Zbl. 856.05071.
Deepens the folded-cube theory of Ellingham and Royle (1992a). Nicely gen-
eralizing Stanley (1985a), the number of subgraphs of a signed Kn that are
isomorphic to a fixed signed Km is reconstructible from the s-vertex switch-
ing deck if the Krawtchouk polynomial Kn

s (x) has no even zeros between
0 and m . (Closely related to Krasikov and Roditty (1992a), Theorems 5
and 6.) Remark 4: balance equations (Krasikov and Roditty (1987a)) and
Krawtchouk polynomials both reflect properties of folded cubes. All is done
in terms of Seidel switching of unsigned simple graphs. [It seems clear that
the folded cube appears because it corresponds to the effect of switchings
on signatures of Kn (or any connected graph), since switching by X and
Xc have the same effect. For the bidirected case (Problem 2 under Stan-
ley (1985a)), the unfolded cube should play a similar role. Question. When
treating a general underlying graph Γ, will a polynomial influenced by Aut Γ
replace the Krawtchouk polynomial?] (k: sw, TG)

M.N. Ellingham and Gordon F. Royle
1992a Vertex-switching reconstruction of subgraph numbers and triangle-free graphs.

J. Combin. Theory Ser. B 54 (1992), 167–177. MR 93d:05112. Zbl. 695.05053
(748.05071).

Reconstruction of induced subgraph numbers of a signed Kn from the s -
vertex switching deck, dependent on linear transformation and thence Kraw-
tchouk polynomials as in Stanley (1985a). The role of those polynomials
is further developed. Done in terms of Seidel switching of unsigned simple
graphs, with the advantage of reconstructing arbitrary subgraph numbers as
well. A gap is noted in Krasikov and Roditty (1987a), proof of Lemma 2.5.
[Methods and results are closely related to Krasikov (1988a) and Krasikov
and Roditty (1987a, 1992a).] (k: sw, TG)

Gernot M. Engel and Hans Schneider
1973a Cyclic and diagonal products on a matrix. Linear Algebra Appl. 7 (1973), 301–335.

MR 48 #2160. Zbl. 289.15006. (gg: Sw)
1975a Diagonal similarity and equivalence for matrices over groups with 0. Czechoslovak

Math. J. 25 (100) (1975), 389–403. MR 53 #477. Zbl. 329.15007. (gg: Sw)

1980a Matrices diagonally similar to a symmetric matrix. Linear Algebra Appl. 29 (1980),
131–138. MR 81k:15017. Zbl. 432.15014. (gg: Sw)
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R.C. Entringer
1985a A short proof of Rubin’s block theorem. In: B.R. Alspach and C.D. Godsil, eds.,

Cycles in Graphs, pp. 367–368. Ann. Discrete Math., Vol. 27. North-Holland
Math. Stud., Vol. 115. North-Holland, Amsterdam, 1985. MR 87f:05144. Zbl.
576.05037.

See Erdős, Rubin, and Taylor (1980a). (p: b)
H. Era

See J. Akiyama.
Pál Erdős [sometimes, Paul Erdös]

See also B. Bollobás and R.A. Duke.
1996a On some of my favourite theorems. In: D. Miklós, V.T. Sós and T. Szőnyi,

eds., Combinatorics, Paul Erdős is Eighty (Papers from the Internat. Conf. on
Combinatorics, Keszthely, 1993), Vol. 2, pp. 97–132. Bolyai Soc. Math. Studies,
2. János Bolyai Mathematical Society, Budapest, 1996. MR 97g:00002. Zbl.
837.00020 (book).

P. 119 mentions the theorem of Duke, Erdős, and Rödl (1991a) on even
polygons.
Pp. 120–121 mention (amongst similar problems) a theorem of Erdős and
Hajnal (source not stated): Every all-negative signed graph with chromatic
number ℵ1 contains every finite bipartite graph [i.e., every finite, balanced,
all-negative signed graph]. [Problem. Find generalizations to signed graphs.
For instance: Conjecture. Every signed graph with chromatic number ℵ1 ,
that does not become antibalanced upon deletion of any finite vertex set,
contains every finite, balanced signed graph up to switching equivalence.]
[The MR review: “this is one of the best collections of problems that Erdos
has published.”] (p: b: Exp, Ref)

P. Erdös, R.J. Faudree, A. Gyárfás, and R.H. Schelp
1991a Odd cycles in graphs of given minimum degree. In: Y. Alavi, G. Chartrand, O.R.

Oellermann, and A.J. Schenk, eds., Graph Theory, Combinatorics, and Applica-
tions (Proc. Sixth Quadren. Internat. Conf. Theory Appl. Graphs, Kalamazoo,
Mich., 1988), Vol. 1, pp. 407–418. Wiley, New York, 1991. MR 93d:05085. Zbl.
840.05050.

A large, nonbipartite, 2-connected graph with large minimum degree con-
tains a polygon of given odd length or is one of a single type of exceptional
graph. [Question. Can this be generalized to negative polygons in unbal-
anced signed graphs?] (p, sg: Polygons, X)

P. Erdős, E. Győri, and M. Simonovits
1992a How many edges should be deleted to make a triangle-free graph bipartite? In:

G. Halász, L. Lovász, D. Miklós, and T. Szönyi, eds., Sets, Graphs and Numbers
(Proc., Budapest, 1991), pp. 239–263. Colloq. Math. Soc. János Bolyai, Vol. 60.
János Bolyai Math. Soc., Budapest, and North-Holland, Amsterdam, 1992. MR
94b:05104. Zbl. 785.05052.

Assume |Σ| simple of order n and + a fixed graph ∆. Results on frustration
index l of antibalanced Σ if ∆ is 3-chromatic, esp. C3 . Thm.: If |E| >
n2/5− o(n2), then l(Σ) < n2/25− o(n2). Conjecture (Erdős): For ∆ = C3

the hypothesis on |E| is unnecessary. [Question 1(a). Is the answer different
when Σ need not be antibalanced? Question 2(a). Exclude a fixed signed
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graph whose signed chromatic number = 1. Question 3(a). In particular,
exclude −K3 . Question 4(a). Exclude −Kl . Question 5(a). Exclude an
unbalanced Cl . Questions 1–5(b). Even if l(Σ) cannot be estimated, is
there always an extremal graph that is antibalanced—as when no graph is
excluded, by Petersdorf (1966a)?] (p: X)

Paul Erdös, Arthur L. Rubin, and Herbert Taylor
1980a Choosability in graphs. In: Proceedings of the West Coast Conference on Combi-

natorics, Graph Theory and Computing (Arcata, Calif., 1979), pp. 125–157. Con-
gressus Numer., XXVI. Utilitas Math. Publ. Inc., Winnipeg, Man., 1980. MR
82f:05038. Zbl. 469.05032.

Rubin’s block theorem (Thm. R, p. 136): a block graph, not complete or an
odd polygon, contains an induced even polygon with at most one chord. [See
also Entringer (1985a).] [Question. Does this generalize to signed graphs,
Rubin’s block theorem being the antibalanced case? Rubin’s 2-choosability
theorem, p. 132, is also tantalizingly reminiscent of antibalanced graphs, but
in reverse.] (p: Str, b)

Cloyd L. Ezell
1979a Observations on the construction of covers using permutation voltage assignments.

Discrete Math. 28 (1979), 7–20. MR 81a:05040. Zbl. 413.05005.
(GG: T, Cov, sw)

Arthur M. Farley and Andrzey Proskurowski
1981a Computing the line index of balance of signed outerplanar graphs. Proc. Twelfth

Southeastern Conf. on Combinatorics, Graph Theory and Computing (Baton
Rouge, 1981), Vol. I. Congressus Numer. 32 (1981), 323–332. MR 83m:68119.
Zbl. 489.68065.

Calculating frustration index is NP-complete, since it is more general than
max-cut. However, for signed outerplanar graphs with bounded size of
bounded faces, it is solvable in linear time. [It is quickly solvable for signed
planar graphs. See Katai and Iwai (1978a), Barahona (1981a, 1982a), and
more.] (SG: Fr)

M. Farzan
1978a Automorphisms of double covers of a graph. In: Problemes Combinatoires et

Theorie des Graphes (Colloq. Internat., Orsay, 1976), pp. 137–138. Colloques
Internat. du CNRS, 260. Editions du C.N.R.S., Paris, 1978. MR 81a:05063. Zbl.
413.05064.

A “double cover of a graph” means the double cover of a signing of a simple
graph. (sg: Cov, Aut)

R.J. Faudree
See P. Erdős.

Katherine Faust
See S. Wasserman.

N.T. Feather
1971a Organization and discrepancy in cognitive structures. Psychological Rev. 78

(1971), 355–379.
A suggestion for defining balance in weighted digraphs: pp. 367–369.

(PsS: B: Exp)(WD: B)
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Lori Fern, Gary Gordon, Jason Leasure, and Sharon Pronchik
20xxa Matroid automorphisms and symmetry groups. Submitted.

Consider a subgroup W of the hyperoctahedral group On that is generated
by reflections. Let M(W ) be the vector matroid of the vectors corresponding
to reflections in W . The possible direct factors of any automorphism group
of M(W ) are Sk , Ok , and O+

k . The proof is stricly combinatorial, via
signed graphs. (SG: Aut, G)

Miroslav Fiedler
1957a Uber qualitative Winkeleigenschaften der Simplexe. Czechoslovak Math. J. 7 (82)

(1957), 463–478. MR 20 #1252. Zbl. 93, 336 (e: 093.33602). (SG: G)
1957b Einige Satze aus der metrischen Geometrie der Simplexe in euklidischen Rau-

men. Schr. Forschungsinst. Math. 1 (1957), 157. MR 19, 303. Zbl. 89, 167 (e:
089.16706). (SG: G)

1961a Uber die qualitative Lage des Mittelpunktes der ungeschriebenen Hyperkugel im
n -Simplex. Comment. Math. Univ. Carolin. 2, No. 1 (1961), 1–51. Zbl. 101, 132
(e: 101.13205). (SG: G)

1964a Some applications of the theory of graphs in matrix theory and geometry. In:
Theory of Graphs and Its Applications (Proc. Sympos., Smolenice, 1963), pp. 37–
41. Publ. House Czechoslovak Acad. Sci., Prague, 1964. MR 30 #5294. Zbl. (e:
163.45605). (SG: G)

1967a Graphs and linear algebra. In: Theory of Graphs: International Symposium
(Rome, 1966), pp. 131–134. Gordon and Breach, New York; Dunod, Paris, 1967.
MR 36 #6313. Zbl. 263.05124. (SG: G)

1969a Signed distance graphs. J. Combin. Theory 7 (1969), 136–149. MR 39 #4034.
Zbl. 181, 260 (e: 181.26001). (SG: G)

1970a Poznámka o distancnich grafech [A remark on distance graphs] (in Czech). In:
Matematika (geometrie a teorie grafu) [Mathematics (Geometry and Graph The-
ory)], pp. 85–88. Univ. Karlova, Prague, 1970. MR 43 #3143. Zbl. 215.50203.

(SG: G)

1975a Eigenvectors of acyclic matrices. Czechoslovak Math. J. 25 (100) (1975), 607–618.
MR 52 #8151. Zbl. 325.15014. (sg: Trees: A)

1985a Signed bigraphs of monotone matrices. In: Horst Sachs, ed., Graphs, Hypergraphs
and Applications (Proc. Internat. Conf., Eyba, 1984), pp. 36–40. Teubner-Texte
zur Math., B. 73. B.G. Teubner, Leipzig, 1985. MR 87m:05121. Zbl. 626.05023.

(SG: A: Exp)
Miroslav Fiedler and Vlastimil Ptak

1967a Diagonally dominant matrices. Czechoslovak Math. J. 17 (92) (1967), 420–433.
MR 35 #6704. Zbl. (e: 178.03402). (GG: Sw, b)

1969a Cyclic products and an inequality for determinants. Czechoslovak Math. J. 19 (94)
(1969), 428–451. MR 40 #1409. Zbl. 281.15014. (gg: Sw)

Joseph Fiksel
1980a Dynamic evolution in societal networks. J. Math. Sociology 7 (1980), 27–46. MR

81g:92023(q.v.). Zbl. 434.92022. (SG: Cl, VS)



the electronic journal of combinatorics #DS8 48

Steven D. Fischer
1993a Signed Poset Homology and q -Analog Möbius Functions. Ph.D. thesis, Univ. of

Michigan, 1993.
§1.2: “Signed posets”. Definition of signed poset: a positively closed subset of
the root system Bn whose intersection with its negative is empty. (Following
Reiner (1990).) Equivalent to a partial ordering of ±[n] in which negation is
a self-duality and each dual pair of elements is comparable. [This is really a
special type of signed poset. The latter restriction does not hold in general.]
Relevant contents: Ch. 2: “Cohen-Macaulay signed posets”, §2.2: “EL-
labelings of posets and signed posets”, and shellability. Ch. 3: “Euler char-
acteristics”, and a fixed-point theorem. §5.1: “The homology of the signed
posets SΠ ” (a particular example). App. A: “Open problems”, several con-
cerning signed posets.
[Partially summarized by Hanlon (1996a).] (S: sg, o, G, N)

K.H. Fischer and J.A. Hertz
1991a Spin Glasses. Cambridge Studies in Magnetism: 1. Cambridge Univ. Press, Cam-

bridge, Eng., 1991. MR 93m:82019.
§2.5, “Frustration”, discusses the spin glass Ising model (essentially, signed
graphs) in square and cubical lattices, including the “Mattis model” (a
switching of all positive signs), as well as a vector analog, the “XY” model
(planar spins) and (p. 46) even a general gain-graph model with switching-
invariant Hamiltonian. From the point of view of physics (mainly theoretical
physics). (Phys: SG: Fr, Sw: Exp, Ref)
§3.7: “The Potts glass”. The Hamiltonian (without edge weights) is H =
− 1

2

∑
σ(eij)(kδ(si, sj) − 1). [It is not clear that the authors intend to per-

mit negative edges. If they are allowed, H is rather like Doreian and Mr-
var’s (1996a) P (π). Question. Is there a worthwhile generalized signed and
weighted Potts model with Hamiltonian that specializes both to this form of
H and to P ?] [Also cf. Welsh (1993a) on the Ashkin–Teller–Potts model.]

(Phys: sg, cl: Exp)
P.C. Fishburn and N.J.A. Sloane

1989a The solution to Berlekamp’s switching game. Discrete Math. 74 (1989), 263–290.
MR 90e:90151. Zbl. 664.94024.

The maximum frustration index of a signed Kt,t , which equals the cover-
ing radius of the Gale–Berlekamp code, is evaluated for t ≤ 10, thereby
extending results of Brown and Spencer (1971a). See Table 1. (sg: Fr)

Claude Flament
1958a L’etude mathematique des structures psycho-sociales. L’Annee Psychologique 58

(1958), 119–131.
Signed graphs are treated on pp. 126–129. (SG: B, PsS: Exp)

1963a Applications of Graph Theory to Group Structure. Prentice-Hall, Englewood Cliffs,
N.J., 1963. MR 28 #1014. Zbl. 141, 363 (e: 141.36301).

English edition of (1965a). Ch. 3: “Balancing processes.” (SG: K: B, Alg)
1965a Theorie des graphes et structures sociales. Math. et sci. de l’homme, Vol. 2. Mou-

ton and Gauthier-Villars, Paris, 1965. MR 36 #5018. Zbl. 169, 266 (e: 169.26603).
Ch. III: “Processus d’equilibration.” (SG: K: B, Alg)
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1970a Equilibre d’un graphe, quelques resultats algebriques. Math. Sci. Humaines, No.
30 (1970), 5–10. MR 43 #4704. Zbl. 222.05124.

1979a Independent generalizations of balance. In: Paul W. Holland and Samuel Lein-
hardt, eds., Perspectives on Social Network Research (Proc. Sympos., Dartmouth
Coll., Hanover, N.H., 1975), Chapter 10, pp. 187–200. Academic Press, New York,
1979. (SG: B, PsS)

C.M. Fortuin and P.W. Kasteleyn
1972a On the random cluster model. I. Introduction and relation to other models. Phys-

ica 57 (1972), 536–564. MR 50 #12107.
Most of the paper recasts classical physical and other models (percolation,
ferromagnetic Ising, Potts, graph coloring, linear resistance) in a common
form that is generalized in §7, “Random cluster model”. The “cluster (gen-
erating) polynomial” Z(Γ; p, κ), where p ∈ RE and κ ∈ R , is a 1-variable
specialization of the general parametrized dichromatic polynomial. In the
notation of Zaslavsky (1992b) it equals QΓ(q, p;κ, 1), where qe = 1 − pe .
Thus it partially anticipates the general polynomials of Przytycka and Przy-
tycki (1988a), Traldi (1989a), and Zaslavsky (1992b) that were based on
Kauffman’s (1989a) sign-colored Tutte polynomial. A spanning-tree expan-
sion is given only for the resistance model. A feature [that seems not to have
been taken up by subsequent workers] is the differentiation relation (7.7) con-
necting ∂ lnZ/∂qe with [I think!] the expectation that the endpoints of e
are disconnected in a subgraph. [Grimmett (1994a) summarizes subsequent
work in the probabilistic direction.] (sgc: Gen: N, Phys)

J.-C. Fournier
1979a Introduction à la notion de matröıde (géométrie combinatoire). Publ. Math.

d’Orsay, [No.] 79-03. Univ. Paris-Sud, Dép. Math., Orsay, 1979. MR 81a:05027.
Zbl. 424.05018.

[Ch.] 3, [Sect.] 12: “Matröıdes de Dowling” (p. 52). States definition by
partial G-partitions and the linear representability theorem. (gg: M: Exp)

Aviezri S. Fraenkel and Peter L. Hammer
1984a Pseudo-Boolean functions and their graphs. In: Convexity and graph theory

(Jerusalem, 1981), pp. 137–146. North-Holland Math. Stud., 87. North-Holland,
Amsterdam, 1984. MR 87b:90147. Zbl. 557.94019. (sh: lg)

András Frank
1996a A survey on T -joins, T -cuts, and conservative weightings. In: D. Miklós, V.T.

Sós, and T. Szőnyi, eds., Combinatorics, Paul Erdős is Eighty, Vol. 2, pp. 213–
252. Bolyai Soc. Math. Stud., 2. János Bolyai Math. Soc., Budapest, 1996. MR
97c:05115. Zbl. 846.05062.

A “conservative ±1-weighting” of G is an edge labelling by +1’s and −1’s
so that in every polygon the sum of edge weights is nonnegative. It is a tool
in several theorems. [Related: Ageev, Kostochka, and Szigeti (1995a), Sebö
(1990a).] (SGw: Str, Alg: Exp, Ref)

Howard Frank and Ivan T. Frisch
1971a Communication, Transmission, and Transportation Networks. Addison-Wesley,

Reading, Mass., 1971. MR 49 #12063. Zbl. 281.94012.
§6.12: “Graphs with gains,” pp. 277–288. (GN: Exp)
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Ove Frank and Frank Harary
1979a Balance in stochastic signed graphs. Social Networks 2 (1979/80), 155–163. MR

81e:05116.
The model: an edge is present with probability α and positive with prob-
ability p . The expected value is computed for two kinds of measures of
imbalance: the number of balanced triangles (whose variance is also given),
and the number of induced subgraphs of order 3 having specified numbers
of positive and negative edges. (SG: Rand, Fr)

Ivan T. Frisch
See H. Frank.

Toshio Fujisawa
1963a Maximal flow in a lossy network. In: J.B. Cruz, Jr., and John C. Hofer, eds., Pro-

ceedings, First Annual Allerton Conference on Circuit and System Theory (Monti-
cello, Ill., 1963), pp. 385–393. Dept. of Electrical Eng. and Coordinated Sci. Lab.,
Univ. of Illinois, Urbana, Ill., [1963]. (GN: M(bases))

Satoru Fujishige
See K. Ando.

David Gale
See also A. J. Hoffman.

David Gale and A.J. Hoffman
1982a Two remarks on the Mendelsohn-Dulmage theorem. In: Eric Mendelsohn, ed.,

Algebraic and Geometric Combinatorics, pp. 171–177. North-Holland Math. Stud.,
65. Ann. Discrete Math., 15. North-Holland, Amsterdam, 1982. MR 85m:05054.
Zbl. 501.05049. (sg: I, B)

Marianne L. Gardner [Marianne Lepp]
See R. Shull.

Michael Gargano and Louis V. Quintas
1985a A digraph generalization of balanced signed graphs. Congressus Numerantium 48

(1985), 133–143. MR 87m:05095. Zbl. 622.05027.
Characterizes balance in abelian gain graphs. [See Harary, Lindström, and
Zetterström (1982a).] Very simple results on existence, for a given graph,
of balanced nowhere-zero gains from a given abelian group. [Elementary, if
one notes that such gains exist iff the graph is |G| -colorable, G being the
gain group]. Comparison with the approach of Sampathkumar and Bhave
(1973a). Dictionary: “Symmetric G -weighted digraph” = gain graph with
gains in the (abelian) group G . “Weight” = gain. “Non-trivial” (of the gain
function) = nowhere zero. (GG: B)

Michael L. Gargano, John W. Kennedy, and Louis V. Quintas
1998a Group weighted balanced digraphs and their duals. Proc. Twenty-ninth South-

eastern Internat. Conf. on Combinatorics, Graph Theory and Computing (Boca
Raton, Fla., 1998). Congressus Numer. 131 (1998), 161–167. MR 99j:05080.

An abelian gain graph Φ is cobalanced (here called “cut-balanced”) if the
sum of gains on the edges of each coherently oriented cutset is 0. [This
generalizes Kabell (1985a).] Given Φ with ‖Φ‖ embedded in a surface,
the surface dual graph is given gains by a right-rotation rule, thus forming a
surface dual Φ∗ of Φ. [This appears to require that the surface be orientable.
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Note that cobalance generalizes to nonabelian gains on orientably embedded
graphs, since the order of multiplication for the gain product on a cutset
is given by the embedding.] Thm. 3.2: For a plane embedding of Φ, Φ is
cobalanced iff Φ∗ is balanced. Thm. 3.4 restates as criteria for cobalance of Φ
the standard criteria for balance of Φ∗ , as in Gargano and Quintas (1985a).
More interesting are “well-balanced” graphs, which are both balanced and
cobalanced. Problem. Characterize them. Dictionary (also see Gargano and
Quintas 1985a): Balance is called “cycle balance”. (GG: B( D))

Gilles Gastou and Ellis L. Johnson
1986a Binary group and Chinese postman polyhedra. Math. Programming 34 (1986),

1–33. MR 88e:90060. Zbl. 589.52004.
§10 introduces the co-postman and “odd circuit” problems, treated more
thoroughly in Johnson and Mosterts (1987a) (q.v). “Odd” edges and circuits
are precisely negative edges and polygons in an edge signing. The “odd
circuit matrix” represents L(Σ) (p. 30). The “odd circuit problem” is to
find a shortest negative polygon; a simple algorithm uses the signed covering
graph (pp. 30–31). The “Fulkerson property” may be related to planarity
and K5 minors [which suggests comparison with Barahona (1990a), §5].

(SG: Fr(Gen), I, M(Bases), cov, Alg)
Heather Gavlas

See G. Chartrand.
Joseph Genin and John S. Maybee

1974a Mechanical vibration trees. J. Math. Anal. Appl. 45 (1974), 746–763. MR 49
#4351. Zbl. 272.70015. (QM: A, SG)

A.M.H. Gerards
1988a Homomorphisms of graphs into odd cycles. J. Graph Theory 12 (1988), 73–83.

MR 89h:05045. Zbl. 691.05013.
If an antibalanced, unbalanced signed graph has no homomorphism into its
shortest negative polygon, then it contains a subdivision of −K4 or of a loose
±C3 (here called an “odd K4 ” and an “odd K2

3 ”). (A loose ±Cn consists
of n negative digons in circular order, each adjacent pair joined either at a
common vertex or by a link.) [Question. Do the theorem and proof carry
over to any unbalanced signed graph?] Other results about antibalanced
signed graphs are corollaries. Several interesting results about signed graphs
are lemmas. (P, SG: Str)

1989a A min-max relation for stable sets in graphs with no odd-K4 . J. Combin. Theory
Ser. B 47 (1989), 330–348. MR 91c:05143. Zbl. 691.05021.

Let Σ be antibalanced and without isolated vertices and contain no subdivi-
sion of −K4 . Then max. stable set size = min. cost of a cover by edges and
negative polygons. Also, min. vertex-cover size = max. profit of a packing
of edges and negative polygons. Also, weighted analogs. [Question. Do the
theorem and proof extend to any Σ?] (p, sg: Str)

1989b A short proof of Tutte’s characterization of totally unimodular matrices. Linear
Algebra Appl. 114 (115) (1989), 207–212. MR 90b:05033. Zbl. 676.05028.

The proof of Lemma 3 uses a signed graph. (SG: B)
††1990a Graphs and polyhedra: Binary spaces and cutting planes. CWI Tract, 73. Centrum

voor Wiskunde en Informatica, Amsterdam, 1990. MR 92f:52027. Zbl. 727.90044.
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(Very incomplete annotation.) Thm.: Given Σ, the set {x ∈ Rn : d1 ≤
x ≤ d2, b1 ≤ I(Σ)Tx ≤ b2} has Chvatal rank ≤ 1 for all integral vectors
d1, d2, b1, b2 , iff Σ contains no subdivided −K4 . (SG: I, G, B, Str)

1992a On shortest T -joins and packing T -cuts. J. Combin. Theory Ser. B 55 (1992),
73–82. MR 93d:05093. Zbl. 810.05056. (SG: Str)

1994a An orientation theorem for graphs. J. Combin. Theory Ser. B 62 (1994), 199–212.
MR 96d:05051. Zbl. 807.05020. (p, sg: M, O)

1995a On Tutte’s characterization of graphic matroids—a graphic proof. J. Graph The-
ory 20 (1995), 351–359. MR 96h:05038. Zbl. 836.05017.

Signed graphs used to prove Tutte’s theorem. The signed-graph matroid
employed is the extended lift matroid (“extended even cycle matroid”). The
main theorem (Thm. 2): Let Σ be a signed graph with no −K4 , ±K3 ,
−Pr3 , or Σ4 link minor; then Σ can be converted by Whitney 2-isomorphism
operations (“breaking” = splitting a component in two at a cut vertex, “glue-
ing” = reverse, “switching” = twisting across a vertex 2-separation) to a
signed graph that has a balancing vertex (“blocknode”). Here Σ4 consists of
+K4 with a 2-edge matching doubled by negative edges and one other edge
made negative.
More translation: His “Σ” is our E− . “Even, odd” = positive, negative (for
edges and polygons). “Bipartite” = balanced; “almost bipartite” = has a
balancing vertex. (SG: M, Str, I)

A.M.H. Gerards and M. Laurent
1995A A characterization of box 1

d -integral binary clutters. J. Combin. Theory Ser. B
65 (1995), 186–207. MR 96k:90052. Zbl. 835.05017.

Thm. 5.1: The collection of negative polygons of Σ is box 1
d -integral for

some/any integer d ≥ 2 iff it does not contain −K4 as a link minor.
(SG: Polygons, G)

A.M.H. Gerards, L. Lovász, A. Schrijver, P.D. Seymour, and K. Truemper
†1990a Manuscript in preparation, 1990.

Extension of Gerards and Schrijver (1986b). [Same comments apply. The
proliferating authorship may prevent this major contribution from ever being
published—though one hopes not! See Seymour (1995a) for description of
two main theorems.] (SG: Str, M, T)

A.M.H. Gerards and A. Schrijver
1986b Signed graph – regular matroids – grafts. Research Memorandum, Faculteit der

Economische Wetenschappen, Tilburg Univ., 1986.
Essential, major theorems. The (extended) lift matroid of a signed graph
is one of the objects studied. Some of this material is published in Gerards
(1990a). This paper is in the process of becoming Gerards, Lovász, et al.
(1990a). (SG: Str, M)

1986a Matrices with the Edmonds-Johnson property. Combinatorica 6 (1986), 365–379.
MR 88g:05087. Zbl. (565.90048), 641.05039.

A subsidiary result: If −Γ contains no subdivided −K4 , then Γ is t-perfect.
(sg: P: G, Str)
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A.M.H. Gerards and F.B. Shepherd
1998a Strong orientations without even directed circuits. Discrete Math. 188 (1998),

111–125. MR 99i:05091.
1998b The graphs with all subgraphs t -perfect. SIAM J. Discrete Math. 11 (1998),

524–545. Zbl. 980.38493
Extension of Gerards (1989a). An “odd-K4 is a graph whose all-negative
signing is a subdivided −K4 . A “bad-K4 ” is an odd-K4 which does not
consist of exactly two undivided K4 edges that are nonadjacent while the
other edges are replaced by even paths. Thm. 1: A graph that contains no
bad-K4 as a subgraph is t -perfect. Thm. 2 characterizes the graphs that are
subdivisions of 3-connected graphs and contain an odd-K4 but no bad-K4 .
[The fact that ‘badness’ is not strictly a parity property weighs against the
possibility that Gerards (1989a) extends well to signed graphs.]

(p, sg: Str, Alg)
Anna Maria Ghirlanda

See L. Muracchini.
A. Ghouila-Houri

See C. Berge.
Rick Giles

1982a Optimum matching forests. I: Special weights. II: General weights. III: Facets
of matching forest polyhedra. Math. Programming 22 (1982), 1–11, 12–38, 39–51.
MR 82m:05075a,b,c. Zbl. 468.90053, 468.90054, 468.90055. (sg: o)

Mukhtiar Kaur Gill [Mukti Acharya]
See also B.D. Acharya.

1981a A graph theoretical recurrence formula for computing the characteristic polyno-
mial of a matrix. In: S.B. Rao, ed., Combinatorics and Graph Theory (Proc.
Sympos., Calcutta, 1980), pp. 261–265. Lecture Notes in Math., 885. Springer-
Verlag, Berlin, 1981. MR 83f:05047. Zbl. 479.05030. (SG: A)

1981b A note concerning Acharya’s conjecture on a spectral measure of structural balance
in a social system. In: S.B. Rao, ed., Combinatorics and Graph Theory (Proc.
Sympos., Calcutta, 1980), pp. 266–271. Lecture Notes in Math., 885. Springer-
Verlag, Berlin, 1981. MR 84d:05121. Zbl. 476.05073. (SG: B, A)

1982a Contributions to Some Topics in Graph Theory and Its Applications. Ph.D. thesis,
Dept. of Mathematics, Indian Institute of Technology, Bombay, 1982.

Most of the results herein have been published separately. See Gill (1981a,
1981b), Gill and Patwardhan (1981a, 1983a, 1986a). (SG, SD: B, LG, A)

M.K. Gill and B.D. Acharya
1980a A recurrence formula for computing the characteristic polynomial of a sigraph. J.

Combin. Inform. System Sci. 5 (1980), 68–72. MR 81m:05097. Zbl. 448.05048.
(SG: A)

1980b A new property of two dimensional Sperner systems. Bull. Calcutta Math. Soc.
72 (1980), 165–168. MR 83m:05121. Zbl. 531.05058. (SG: B, G)

M.K. Gill and G.A. Patwardhan
1981a A characterization of sigraphs which are switching equivalent to their line sigraphs.

J. Math. Phys. Sci. 15 (1981), 567–571. MR 84h:05106. Zbl. 488.05054.
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(SG: LG)
1982a A characterization of sigraphs which are switching equivalent to their iterated line

sigraphs. J. Combin. Inform. System. Sci. 7 (1982), 287–296. MR 86a:05103. Zbl.
538.05060. (SG: LG)

1986a Switching invariant two-path signed graphs. Discrete Math. 61 (1986), 189–196.
MR 87j:05138. Zbl. 594.05059. (SG, Sw)

John Gimbel
1988a Abelian group labels on graphs. Ars Combinatoria 25 (1988), 87–92. MR 89k:-

05046. Zbl. 655.05034.
The topic is “induced” edge labellings, that is, w(euv) = f(u)f(v) for some
f : V → A . The number of f that induce a given induced labelling, the num-
ber of induced labellings, and a characterization of induced labellings. All
involve the 2-torsion subgroup of A , unless Γ is bipartite. The inspiration
is dualizing magic graphs. [Somewhat dual to Edelman and Saks (1979a).]

(p: i)(VS(Gen): E)
Terry C. Gleason

See also D. Cartwright.
Terry C. Gleason and Dorwin Cartwright

1967a A note on a matrix criterion for unique colorability of a signed graph. Psychome-
trika 32 (1967), 291–296. MR 35 #989. Zbl. 184, 492 (e: 184.49202). (SG: Cl, A)

Fred Glover
See also J. Elam.

F. Glover, J. Hultz, D. Klingman, and J. Stutz
1978a Generalized networks: A fundamental computer-based planning tool. Manage-

ment Sci. 24 (1978), 1209–1220. (GN: Alg, M( bases): Exp, Ref)
Fred Glover and D. Klingman

1973a On the equivalence of some generalized network problems to pure network prob-
lems. Math. Programming 4 (1973), 269–278. MR 47 #6393. Zbl. 259.90012.

(GN: B, I)
1973b A note on computational simplifications in solving generalized transportation

problems. Transportation Sci. 7 (1973), 351–361. MR 54 #6502.
(GN: M( bases), g)

Fred Glover, Darwin Klingman, and Nancy V. Phillips
1992a Network Models in Optimization and Their Applications in Practice. Wiley-

Interscience, New York, 1992.
Textbook. See especially Ch. 5: “Generalized networks.” (GN: Alg: Exp)

F. Glover, D. Klingman, and J. Stutz
1973a Extensions of the augmented predecessor index method to generalized network

problems. Transportation Sci. 7 (1973), 377–384. (GN: M( bases), m)
C.D. Godsil

1985a Inverses of trees. Combinatorica 5 (1985), 33–39. MR 86k:05084. Zbl. 578.05049.
If T is a tree with a perfect matching, then A(T )−1 = A(Σ) where Σ is
balanced and |Σ| ⊇ Γ. Question. When does |Σ| = Γ? [Solved by Simion
and Cao (1989a).] [Cf. Buckley, Doty, and Harary (1984a) and, for a different
notion, Greenberg, Lundgren, and Maybee (1984b).] (sg: A, B)
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J.M. Goethals
See also P.J. Cameron.

Jay R. Goldman and Louis H. Kauffman
1993a Knots, tangles, and electrical networks. Adv. Appl. Math. 14 (1993), 267–306. MR

94m:57013. Zbl. 806.57002. Reprinted in Louis H. Kauffman, Knots and Physics,
2nd edn., pp. 684–723. Ser. Knots Everything, Vol. 1. World Scientific, Singapore,
1993. MR 95i:57010. Zbl. 868.57001.

The parametrized Tutte polynomial [as in Zaslavsky (1992b) et al.] of an R∗ -
weighted graph is used to define a two-terminal “conductance”. Interpreting
weights as crossing signs in a planar link diagram with two blocked regions
yields invariants of tunnel links. [Also see Kauffman (1997a).]

(SGw: Gen: N, Knot, Phys)

Richard Z. Goldstein and Edward C. Turner
1979a Applications of topological graph theory to group theory. Math. Z. 165 (1979),

1–10. MR 80g:20050. Zbl. 377.20027, (387.20034). (SG: T)

Harry F. Gollub
1974a The subject-verb-object approach to social cognition. Psychological Rev. 81 (1974),

286–321. (PsS: vs)

Martin Charles Golumbic
1979a A generalization of Dirac’s theorem on triangulated graphs. In: Allan Gewirtz

and Louis V. Quintas, eds., Second International Conference on Combinatorial
Mathematics (New York, 1978). Ann. New York Acad. Sci. 319 (1979), 242–246.
MR 81c:05077. Zbl. 479.05055.

Further results on chordal bipartite graphs. Their properties imply standard
properties of ordinary chordal graphs. [See (1980a) for more.] (The “only
if” portion of Thm. 4 is false, according to (1980a), p. 267.) (sg: b, cov)

1980a Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York, 1980.
MR 81e:68081. Zbl. 541.05054.

§12.3: “Perfect elimination bipartite graphs,” and §12.4: “Chordal bipartite
graphs,” expound perfect elimination and chordality for bipartite graphs
from Golumbic and Goss (1978a) and Golumbic (1979a). In particular, Cor.
12.11: A bipartite graph is chordal bipartite iff every induced subgraph has
perfect edge elimination scheme. [Problem. Guided by these results, find a
signed-graph generalization of chordality that corresponds to supersolvability
and perfect vertex elimination (cf. Zaslavsky (20xxh)).] (sg: b, cov)

Martin Charles Golumbic and Clinton F. Goss
1978a Perfect elimination and chordal bipartite graphs. J. Graph Theory 2 (1978), 155–

163. MR 80d:05037. Zbl. 411.05060.
A perfect edge elimination scheme is a bipartite analog of a perfect vertex
elimination scheme. A chordal bipartite graph is a bipartite graph in which
every polygon longer than 4 edges has a chord. Analogs of properties of
chordal graphs, e.g., Dirac’s separator theorem, are proved. In particular, a
chordal bipartite graph has a perfect edge elimination scheme. [See Golumbic
(1980a) for more.] (sg: b)

Gary Gordon
See also L. Fern.
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1997a Hyperplane arrangements, hypercubes and mixed graphs. Proc. Twenty-eighth
Southeastern Internat. Conf. on Combinatorics, Graph Theory and Computing
(Boca Raton, Fla., 1997). Congressus Numer. 126 (1997), 65–72. MR 98j:05038.
Zbl. 901.05055.

An explicit bijection between the regions of the real hyperplane arrangement
corresponding to ±K◦n and the set of “good signed [complete] mixed graphs”
Ga of order n . The latter are a notational variant of the acyclic orientations
τ of ±K◦n [and are therefore in bijective correspondence with the regions,
by Zaslavsky (1991b), Thm. 4.4]; the dictionary is: a directed edge in Ga

is an oriented positive edge in τ , while a positive or negative undirected
edge in Ga is an introverted or extroverted negative edge of τ . The main
result, Thm. 1, is an interesting and significant explicit description of the
acyclic orientations of ±K◦n . Namely, one orders the vertices and directs all
positive edges upward; then one steps inward randomly from both ends of
the ordered vertex set, one vertex at a time, at each new vertex orienting
all previously unoriented negative edges to be introverted if the vertex was
approached from below, extroverted if from above in the vertex ordering.
[This clearly guarantees acyclicity.] [Problem. Generalize to arbitrary signed
graphs.]
Lemma 2, “a standard exercise”, is that an orientation of ±K◦n (with the
loops replaced by half edges) is acyclic iff the magnitudes of its net degrees
are a permutation of {1, 3, . . . , 2n − 1]} . [Similarly, an orientation of ±K◦n
is acyclic iff its net degree vector is a signed permutation of {2, 4, . . . , 2n}
(Zaslavsky (1991b), p. 369, but possibly known beforehand in other termi-
nology). Both follow easily from Zaslavsky (1991b), Cor. 5.3: an acyclic
orientation has a vertex that is a source or sink.] (SG: o: i, G)

20xxa The answer is 2n · n! What’s the question? Amer. Math. Monthly 106, No. 7
(August–September, 1999), 636–645.

§5 presents the signed-graph question: an appealing presentation of material
from (1997a). (SG: o, I, G, N: Exp)

Y. Gordon and H.S. Witsenhausen
1972a On extensions of the Gale–Berlekamp switching problem and constants of lp -

spaces. Israel J. Math. 11 (1972), 216–229. MR 46 #3213. Zbl. 238.46009.
Asymptotic estimates of l(Kr,s), the maximum frustration index of signa-
tures of Kr,s , improving the bounds of Brown and Spencer (1971a). (sg: Fr)

Clinton F. Goss
See M.C. Golumbic.

R.L. Graham and N.J.A. Sloane
1985a On the covering radius of codes. IEEE Trans. Inform. Theory IT-31 (1985), 385–

401. MR 87c:94048. Zbl. 585.94012.
See Example b, p. 396 (the Gale–Berlekamp code). (sg: Fr)

Ante Graovac, Ivan Gutman, and Nenad Trinajstić
1977a Topological Approach to the Chemistry of Conjugated Molecules. Lecture Notes in

Chem., 4. Springer-Verlag, Berlin-Heidelberg-New York, 1977. Zbl. 385.05032.
§2.7. “Extension of graph-theoretical considerations to Mobius systems.”

(SG: A, Chem)
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A. Graovac and N. Trinajstić
1975a Mobius molecules and graphs. Croatica Chemica Acta (Zagreb) 47 (1975), 95–104.

(SG: A, Chem)
1976a Graphical description of Möbius molecules. J. Molecular Structure 30 (1976),

416–420.
The “Möbius graph” (i.e., signed graph of a suitably twisted ring hydrocar-
bon) is introduced with examples of the adjacency matrix and characteristic
polynomial. (Chem: SG: A)

John G. del Greco
See del Greco (under ‘D’).

F. Green
1987a More about NP-completeness in the frustration model. OR Spektrum 9 (1987),

161–165. MR 88m:90053. Zbl. 625.90070.
Proves polynomial time for the reduction employed in Bachas (1984a) and
improves the theorem to: the frustration index decision problem on signed
(3-dimensional) cubic lattice graphs with 9 layers is NP-complete. [Cf. Bara-
hona (1982a).] (SG: Fr: Alg)

Jan Green-Krótki
See J. Aráoz.

Harvey J. Greenberg, J. Richard Lundgren, and John S. Maybee
1983a Rectangular matrices and signed graphs. SIAM J. Algebraic Discrete Methods 4

(1983), 50–61. MR 84m:05052. Zbl. 525.05045.
From a matrix B , with row set R and column set C , form the “signed
bipartite graph” BG+ with vertex set R∪C and an edge rick signed sgn bik
whenever bik 6= 0. The “signed row graph” RG+ is the two-step signed graph
of BG+ on vertex set R : that is, rirj is an edge if distBG

+
(ri, rj) = 2 and

its sign is the sign of any shortest rirj -path. If some edge has ill-defined
sign, RG+ is undefined. The “signed column graph” CG+ is similar. The
paper develops simple criteria for existence and balance of these graphs and
the connection to matrix properties. It examines simple special forms of B .

(QM: SG, B, Appl)
1984a Signed graphs of netforms. Proc. Fifteenth Southeastern Conf. on Combinatorics,

Graph Theory and Computing. Congressus Numer. 44 (1984), 105–115. MR
87c:05085. Zbl. 557.05048.

Application of (1983a, 1984b). “Netform” = incidence matrix of a positive
real gain graph (neglecting a minor technicality). Thm. 1: B is a netform iff
RG+(B) exists and is all negative. (Then CG+(B) also exists.) Thm. 2: If
the row set partitions so that all negative elements are in some rows and all
positives are in the other rows, then RG+(B) is all negative and balanced.
Thm. 3: If Σ is all negative and balanced, then B exists as in Thm. 2 with
RG+(B) = Σ. [Equivalent to theorem of Hoffman and Gale (1956a).] B is
an “inverse” of Σ. Thm. 4 concerns “inverting” −Γ in a minimal way. Then
B will be (essentially) the incidence matrix of +Γ.

(SG, gg: i, B, VS, Exp, Appl)
1984b Inverting signed graphs. SIAM J. Algebraic Discrete Methods 5 (1984), 216–223.

MR 86d:05085. Zbl. 581.05052.
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See (1983a). “Inversion” means, given a signed graph ΣR , or ΣR and ΣC ,
finding a matrix B such that ΣR = RG+(B), or ΣR = RG+(B) and ΣC =
CG+(B). The elementary solution is in terms of coverings of ΣR by balanced
cliques. It may be desirable to minimize the size of the balanced clique cover;
this difficult problem is not tackled. (QM: SG, VS, B)

Harvey J. Greenberg and John S. Maybee, eds.
1981a Computer-Assisted Analysis and Model Simplification (Proc. First Sympos., Univ.

of Colorado, Boulder, Col., 1980). Academic Press, New York, 1981. MR 82g:-
00016. Zbl. 495.93001.

Several articles relevant to signed (di)graphs. (QM)(SD, SG: B)
Curtis Greene and Thomas Zaslavsky

1983a On the interpretation of Whitney numbers through arrangements of hyperplanes,
zonotopes, non-Radon partitions, and orientations of graphs. Trans. Amer. Math.
Soc. 280 (1983), 97–126. MR 84k:05032. Zbl. 539.05024.

§9: “Acyclic orientations of signed graphs.” Continuation of Zaslavsky
(1991b), counting acyclic orientations with specified unique source; also, with
edge e having specified orientation and with no termini except at the ends
of e . The proof is geometric. (SG: M, O, G, N)

G. Grimmett
1994a The random-cluster model. In: F.P. Kelly, ed., Probability, Statistics and Optimi-

sation, Ch. 3, pp. 49–63. Wiley, Chichester, 1994. MR 96d:60154. Zbl. 858.60093.
Reviews Fortuin and Kasteleyn (1972a) and subsequent developments esp.
in multidimensional lattices. The viewpoint is mainly probabilistic and as-
ymptotic. §3.7, “Historical observations,” reports Kasteleyn’s account of the
origin of the model. (sgc: Gen: N, Phys: Exp)

Richard C. Grinold
1973a Calculating maximal flows in a network with positive gains. Oper. Res. 21 (1973),

528–541. MR 50 #3900. Zbl. 304.90043.
Objective: to find the maximum output for given input. Basic solutions
correspond to bases of G(Φ′), Φ′ being the underlying gain graph Φ together
with an unbalanced loop adjoined to the sink. Onaga (1967a) also treats this
problem. (GN: M( bases), Alg)

Heinz Gröflin and Thomas M. Liebling
1981a Connected and alternating vectors: polyhedra and algorithms. Math. Program-

ming 20 (1981), 233–244. MR 83k:90061. Zbl. 448.90035. (sg, G)
Jonathan L. Gross

See also J. Chen.
1974a Voltage graphs. Discrete Math. 9 (1974), 239–246. MR 50 #153. Zbl. 286.05106.

(GG: T, Cov)
Jonathan L. Gross and Thomas W. Tucker

1977a Generating all graph coverings by permutation voltage assignments. Discrete
Math. 18 (1977), 273–283. MR 57 #5803. Zbl. 375.55001. (GG: T, Cov)

1979a Fast computations in voltage graph theory. In: Allan Gewirtz and Louis V. Quin-
tas, eds., Second International Conference on Combinatorial Mathematics (New
York, 1978). Ann. New York Acad. Sci. 319 (1979), 247–253. MR 80m:94111.
Zbl. 486.05027. (GG: T, Cov, Sw)
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1987a Topological Graph Theory. Wiley, New York, 1987. MR 88h:05034. Zbl. 621.05013.
Ch. 2: “Voltage graphs and covering spaces.” Ch. 4: “Imbedded voltage
graphs and current graphs.” (GG: T, Cov)
§3.2.2: “Orientability.” §3.2.3: “Rotation systems.” §4.4.5: “Nonorientable
current graphs”, discusses how to deduce, from the signs on a current graph,
the signs of the “derived” graph of the dual voltage graph. [The same rule
gives the signs on the surface dual of any orientation-embedded signed graph.]
(The sign group here is Z2 .) (SG: T)

Jerrold W. Grossman and Roland Häggkvist
1983a Alternating cycles in edge-partitioned graphs. J. Combin. Theory Ser. B 34 (1983),

77–81. MR 84h:05044. Zbl. 491.05039, (506.05040).
They prove the special case in which B is all negative of the following gen-
eralization, which is an immediate consequence of their result. [Theorem. If
B is a bidirected graph such that for each vertex v there is a block of B in
which v is neither a source nor a sink, then B contains a coherent polygon.
(“Coherent” means that at each vertex, one edge is directed inward and the
other outward.)] (p: o)

Martin Grötschel
See also F. Barahona.

M. Grötschel, M. Jünger, and G. Reinelt
1987a Calculating exact ground states of spin glasses: a polyhedral approach. In: J.L.

van Hemmen and I. Morgenstern, eds., Heidelberg Colloquium on Glassy Dynamics
(Proc., 1986), pp. 325–353. Lect. Notes in Physics, Vol. 275. Springer-Verlag,
Berlin, 1987. MR 88g:82002 (book).

§2, “The spin glass model”: finding the weighted frustration index in a
weighted signed graph (Σ, w), or finding a ground state in the correspond-
ing Ising model, is equivalent to the weighted max-cut problem in (−Σ, w).
This article concerns finding the exact weighted frustration index. §3, “Com-
plexity”, describes previous results on NP-completeness and polynomial-time
solvability. §4, “Exact methods”, discusses previous solution methods. §5,
“Polyhedral combinatorics”, shows that finding weighted frustration index
is a linear program on the cut polytope; also expounds related work. The
remainder of the paper concerns a specific cutting-plane method suggested
by the polyhedral combinatorics.

(sg: fr( gen): Alg, G, Ref)(Phys, Ref: Exp)

M. Grötschel and W.R. Pulleyblank
1981a Weakly bipartite graphs and the max-cut problem. Oper. Res. Lett. 1 (1981/82),

23–27. MR 83e:05048. Zbl. 478.05039, 494.90078.
Includes a polynomial-time algorithm, which they attribute to “Waterloo
folklore”, for shortest (more generally, min-weight) even or odd path, hence
(in an obvious way) odd or even polygon. [Attributed by Thomassen (1985a)
to Edmonds (unpublished). Adapts to signed graphs by the negative subdi-
vision trick: Subdivide each positive edge of Σ into two negative edges, each
with half the weight. The min-weight algorithm applied to the subdivision
finds a min-weight (e.g., a shortest) negative polygon of Σ.] [This paper is
very easy to understand. It is one of the best written I know.] [Weakly bipar-
tite graphs are certain signed graphs. Further work: Barahona, Grötschel,
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and Mahjoub (1985a), Polyak and Tuza (1995a), and esp. Guenin (1998a,
20xxa).] (p: Alg, G, Paths, Polygons)(sg: G)

Bertrand Guenin
See also G. Cornuéjols.

1998a On Packing and Covering Polyhedra. Ph.D. dissertation, Grad. Sch. Industrial
Engin., Carnegie-Mellon Univ., 1998. (SG: G)(S(M): G)

1998b A characterization of weakly bipartite graphs. In: Robert E. Bixby, E. Andrew
Boyd, and Roger Z. Ŕıos-Mercado, eds., Integer Programming and Combinatorial
Optimization (6th Internat. IPCO Conf., Houston, 1998, Proc.), pp. 9–22. Lecture
Notes in Computer Sci., Vol. 1412. Springer, Berlin, 1998. Zbl. 909.90264.

Outline of (20xxa). (SG: G)
20xxa A characterization of weakly bipartite graphs. Submitted

Σ is “weakly bipartite” (Grötschel and Pulleyblank 1981a) if its clutter of
negative polygons is ideal (i.e., has the “weak MFMC” property of Seymour
(1977a)). Thm.: Σ is weakly bipartite iff it has no −K5 minor. This proves
part of Seymour’s conjecture (1981a) (see Cornuéjols 20xxa). (SG: G)

Gregory Gutin
See also J. Bang-Jensen.

Gregory Gutin, Benjamin Sudakov, and Anders Yeo
1998a Note on alternating directed cycles. Discrete Math. 191 (1998), 101–107. MR

99d:05050.
Existence of a coherent polygon with alternating colors in a digraph with
an edge 2-coloring is NP-complete. However, if the minimum in- and out-
degrees of both colors are sufficiently large, such a cycle exists. [This prob-
lem generalizes the undirected, edge-2-colored alternating-polygon problem,
which is a special case of the existence of a bidirected coherent polygon—see
Bang-Jensen and Gutin (1997a). Question. Is this alternating cycle problem
also signed-graphic?] (p: o: Polygons: Gen)

Ivan Gutman
See also D.M. Cvetković, A. Graovac and S.-L. Lee.

1978a Electronic properties of Möbius systems. Z. Naturforsch. 33a (1978), 214–216.
MR 58 #8800. (SG: A, Chem)

1988a Topological analysis of eigenvalues of the adjacency matrices in graph theory: A
difficulty with the concept of internal connectivity. Chemical Physics Letters 148
(1988), 93–94.

Points out an ambiguity in the definitions of Lee, Lucchese, and Chu (1987a)
in the case of multiple eigenvalues. [See Lee and Gutman (1989a) for the
repair.] (VS, SGw)

Ivan Gutman, Shyi-Long Lee, Yeung-Long Luo, and Yeong-Nan Yeh
1994a Net signs of molecular graphs: dependence of molecular structure. Internat. J.

Quantum Chem. 49 (1994), 87–95.
How to compute the balanced signing of Γ that corresponds to eigenvalue
λi (see Lee, Lucchese, and Chu (1987a)), without computing the eigenvec-
tor Xi . Theorem: If vr , vs are adjacent, then XirXis =

∑
P f(P ;λi),

where f(P ;λ) := ϕ(G − V (P );λ)/ϕ′(G;λ), ϕ(G;λ) is the characteristic
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polynomial, and the sum is over all paths connecting vr and vs . Hence
σi(vrvs) = sgn (XirXis) is determined. [An interesting theorem. Questions.
Does it generalize if one replaces Γ by a signed graph, this being the bal-
anced (all-positive) case? In such a generalization. if any, how will σ enter
in—by restricting the sum to positive paths, perhaps? What about graphs
with real gains, or weights?] (VS, SGw)

Ivan Gutman, Shyi-Long Lee, Jeng-Horng Sheu, and Chiuping Li
1995a Predicting the nodal properties of molecular orbitals by means of signed graphs.

Bull. Inst. Chem., Academica Sinica No. 42 (1995), 25–31.
Points out some difficulties with the method of Lee and Li (1994a).

(VS, SGw, Chem)
Ivan Gutman, Shyi-Long Lee, and Yeong-Nan Yeh

1992a Net signs and eigenvalues of molecular graphs: some analogies. Chemical Physics
Letters 191 (1992), 87–91.

A connected graph Γ has n eigenvalues and n corresponding balanced sign-
ings (see Lee, Lucchese, and Chu (1987a)). Let S1 ≥ S2 ≥ · · · ≥ Sn be the
net signs of these signings and m = |E| . The net signs satisfy analogs of prop-
erties of eigenvalues. (A) If ∆ ⊂ Γ, then S1(∆) < S1 . (B) S1 = m ≥ S2 +2.
(C, D) For bipartite Γ, Sn = −m . Otherwise, Sn ≥ −m + 2. From (B, C,
D) we have |Si| ≤ m− 2 for all i 6= 1 and, if Γ is bipartite, i 6= n . (E, F) If
Γ is bipartite, then Si = −Sn+1−i and at least a−b net signs equal 0, where
a ≥ b are the numbers of vertices in the two color classes. The analogy is
imperfect, since S1 +S2 + · · ·+Sn ≥ 0, while equality holds for eigenvalues.
[Questions. Some of these conclusions require Γ to be bipartite. Does that
mean that they will generalize to an arbitrary balanced signed graph Σ in
place of the bipartite Γ, the eigenvectors being those of Σ? Will the other
results generalize with Γ replaced by any signed graph? How about real
gains, or weights?] (VS, SGw)

A. Gyárfás
See P. Erdős.

Ervin Győri
See also P. Erdős.

Ervin Györi, Alexandr V. Kostochka, and Tomasz  Luczak
1997a Graphs without short odd cycles are nearly bipartite. Discrete Math. 163 (1997),

279–284. MR 97g:05203. Zbl. 871.05040.
Given all-negative Σ and positive ρ , suppose every odd polygon has length
≥ n/ρ . Then Σ has frustration index ≤ 200ρ2(ln(10ρ))2 (best possible up to
a constant factor) and vertex deletion number ≤ 15ρ ln(10ρ) (best possible
up to a logarithmic factor). The proof is based on an interesting, refining
lemma. [Problem. Generalize to arbitrary Σ.] (sg: P: Fr)

Jurriaan Hage and Tero Harju
1998a Acyclicity of switching classes. European J. Combin. 19 (1998), 321–327. MR

99d:05051. Zbl. 905.05057.
Classifies the switching-equivalent pairs of forests. Thm. 2.2: In a Seidel
switching class of graphs there is at most one isomorphism type of tree;
and there is at most one tree, with exceptions that are completely classi-
fied. Thms. 3.1 and 4.1: In a switching class that contains a disconnected
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forest there are at most 3 forests (not necessarily isomorphic); the cases in
which there are 2 or 3 forests are completely classified. (Almost all are trees
plus isolated vertices.) [Question. Regarding these results as concerning the
negative subgraphs of switchings of signed complete graphs, to what extent
do they generalize to switchings of arbitrary signed simple graphs?] [B.D.
Acharya (1981a) asked which simple graphs switch to forests, with partial
results.] (TG)

20xxa The size of switching classes with skew gains. Submitted.
Introducing “skew gain graphs”, which generalize gain graphs (see Zaslavsky
(1989a)) to incorporate dynamic labelled 2-structures (see Ehrenfeucht and
Rozenberg). Inversion is replaced by a gain-group antiautomorphism δ of
period at most 2. Thus ϕ(e−1) = δ(ϕ(e)), while in switching by τ , one
defines ϕτ (e; v, w) = δ(τ(v))ϕ(e; v, w)τ(w). The authors find the size of a
switching class [phi] in terms of the centralizers and/or δ -centralizers of
various parts of the image of ϕT , that is, ϕ switched to be the identity on
a spanning tree T . The exact formulas depend on whether Γ is complete,
or bipartite, or general, and on the choice of T (the case where T ∼= K1,n−1

being simplest). (GG(Gen): Sw)

Per Hage and Frank Harary
1983a Structural Models in Anthropology. Cambridge Univ. Press, Cambridge, Eng.,

1983. MR 86e:92002.
Signed graphs are treated in Ch. 3 and 6, marked graphs in Ch. 6.

(SG, PsS: B: Exp)(VS: Exp)

Roland Häggkvist
See J.W. Grossman.

J. Hammann
See E. Vincent.

Peter L. Hammer
See also E. Balas, C. Benzaken, E. Boros, J.-M. Bourjolly, Y. Crama, and A.
Fraenkel.

1974a Boolean procedures for bivalent programming. In: P.L. Hammer and G. Zou-
tendijk, eds., Mathematical Programming in Theory and Practice (Proc. NATO
Adv. Study Inst., Figueira da Foz, Portugal, 1972), pp. 311–363. North-Holland,
Amsterdam, and American Elsevier, New York, 1974. MR 57 #18817. Zbl.
335.90034 (book).

1977a Pseudo-Boolean remarks on balanced graphs. In: L. Collatz, G. Meinardus, and
W. Wetterling, eds., Numerische Methoden bei Optimierungsaufgaben, Band 3:
Optimierung bei graphentheoretischen und ganzzahligen Problemen (Tagung, Ober-
wolfach, 1976), pp. 69–78. Internat. Ser. Numer. Math., Vol. 36. Birkhäuser,
Basel, 1977. MR 57 #5833. Zbl. 405.05054. (SG: B)

P.L. Hammer, C. Benzaken, and B. Simeone
1980a Graphes de conflit des fonctions pseudo-booleennes quadratiques. In: P. Hansen

and D. de Werra, eds., Regards sur la Theorie des Graphes (Actes du Colloq.,
Cerisy, 1980), pp. 165–170. Presses Polytechniques Romandes, Lausanne, Switz.,
1980. MR 82d:05054 (book).
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P.L. Hammer, T. Ibaraki, and U. Peled
1980a Threshold numbers and threshold completions. In: M. Deza and I.G. Rosenberg,

eds., Combinatorics 79 (Proc. Colloq., Montreal, 1979), Part II. Ann. Discrete
Math. 9 (1980), 103–106. MR 81k:05092. Zbl. 443.05064. (p: o)

1981a Threshold numbers and threshold completions. In: Pierre Hansen, ed., Studies
on Graphs and Discrete Programming (Proc. Workshop, Brussels, 1979), pp. 125–
145. North-Holland Math. Studies, 59. Ann. Discrete Math., 11. North-Holland,
Amsterdam, 1981. MR 83m:90062. Zbl. 465.00007 (book).

See description of Thm. 8.5.2 in Mahadev and Peled (1995a). (p: o)

P.L. Hammer and N.V.R. Mahadev
1985a Bithreshold graphs. SIAM J. Algebraic Discrete Methods 6 (1985), 497–506. MR

86h:05093. Zbl. 5797.05052.
See description of §8.3 of Mahadev and Peled (1995a). (SG: B: Appl)

P.L. Hammer, N.V.R. Mahadev, and U.N. Peled
1989a Some properties of 2-threshold graphs. Networks 19 (1989), 17–23. MR 89m:05096.

Zbl. 671.05059.
A restricted line graph with signed edges is a proof tool. (SG, LG)

Peter L. Hammer and Sang Nguyen
1979a A partial order in the solution space of bivalent programs. In: Nicos Christofides,

Aristide Mingozzi, Paolo Toth, and Claudio Sandi, eds., Combinatorial Optimiza-
tion, Ch. 4, pp. 93–106. Wiley, Chichester, 1979. MR 82a:90099 (book). Zbl.
414.90063. (sg: o)

Phil Hanlon
1984a The characters of the wreath product group acting on the homology groups of the

Dowling lattices. J. Algebra 91 (1984), 430–463. MR 86j:05046. Zbl. 557.20009.
(gg: M: Aut)

1988a A combinatorial construction of posets that intertwine the independence matroids
of Bn and Dn . Manuscript, 1988.

Computes the Möbius functions of posets obtained from LatG(±K◦n) by
discarding those flats with unbalanced vertex set in a given lower-hereditary
list. Examples include LatG(±K(k)

n ), the exponent denoting the addition
of k negative loops. Generalized and superseded by Hanlon and Zaslavsky
(1998a). (sg: M: Gen: N)

1991a The generalized Dowling lattices. Trans. Amer. Math. Soc. 325 (1991), 1–37. MR
91h:06011. Zbl. 748.05043.

The lattices are based on a rank, n , a group, and a meet sublattice of the
lattice of subgroups of the group. The Dowling lattices are a special case.

(gg: M: Gen: N)

1996a A note on the homology of signed posets. J. Algebraic Combin. 5 (1996), 245–250.
MR 97f:05194. Zbl. 854.06004.

Partial summary of Fischer (1993a). (S)

Phil Hanlon and Thomas Zaslavsky
1998a Tractable partially ordered sets derived from root systems and biased graphs.

Order 14 (1997–98), 229–257. Zbl. 990.03811
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Computes the characteristic polynomials (Thm. 4.1) and hence the Möbius
functions (Cor. 4.4) of posets obtained from LatG(Ω), Ω a biased graph, by
discarding those flats with unbalanced vertex set in a given lower-hereditary
list. Examples include LatG(GK(k)

n ) where G is a finite group, the expo-
nent denoting the addition of k unbalanced loops. The interval structure,
existence of a rank function, covering pairs, and other properties of these
posets are investigated. There are many open problems.

(GG: M, Gen: N, Str, Col)
Pierre Hansen

1978a Labelling algorithms for balance in signed graphs. In: Problèmes Combinatoires
et Theorie des Graphes (Colloq. Internat., Orsay, 1976), pp. 215–217. Colloques
Internat. du CNRS, 260. Editions du C.N.R.S., Paris, 1978. MR 80m:68057. Zbl.
413.05060.

§1: Algorithm 1 labels vertices of a signed graph to detect imbalance and
a negative polygon if one exists. [It is equivalent to switching a maximal
forest to all positive and looking for negative edges.] §2: Algorithm 2 is the
unweighted case of the algorithm of (1984a). Path balance in a signed digraph
is discussed. §3: The frustration index of a signed graph is bounded below
by the negative-polygon packing number, which can be crudely bounded by
Alg. 1. (SG, SD: B, Fr: Alg, sw)

1979a Methods of nonlinear 0–1 programming. In: P.L. Hammer, E.L. Johnson, and
B.H. Korte, eds., Discrete Optimization II (Proc., Banff and Vancouver, 1977),
pp. 53–70. Ann. Discrete Math., Vol. 5. North-Holland, Amsterdam, 1979. MR
84h:90034 (book). Zbl. 426.90063.

See pp. 58–59. (SG: B: Exp)

1983a Recognizing sign solvable graphs. Discrete Appl. Math. 6 (1983), 237–241. MR
84i:68112. Zbl. 524.05048.

Improves the characterization by Maybee (1981a) of sign-solvable digraphs
with an eye to more effective algorithmic recognition. Thm. 2.2. A signed
digraph D is sign solvable iff its positive subdigraph is acyclic and each
strongly connected component has a vertex that is the terminus of no neg-
ative, simple directed path. §3: “An algorithm for sign solvability” in time
O(|V | |E|). (SD: Sol: Alg)

1984a Shortest paths in signed graphs. In: A. Burkard et al., eds., Algebraic Meth-
ods in Operations Research, pp. 201–214. North-Holland Math. Stud., 95. Ann.
of Discrete Math., 19. North-Holland, Amsterdam, 1984. MR 86i:05086. Zbl.
567.05032.

Algorithm to find shortest walks of each sign from vertex x1 to each other
vertex, in a signed digraph with positive integral(?) weights (i.e., lengths) on
the edges. Applied to digraphs with signed vertices and edges; N -balance in
signed graphs; sign solvability. The problem for (simple) paths is discussed
[which is solvable by any min-weight parity path algorithm; see the notes on
Grötschel and Pulleyblank (1981a)].

(SD, WD: Paths, VS, B, Sol: Alg)
Pierre Hansen and Bruno Simeone

1986a Unimodular functions. Discrete Appl. Math. 14 (1986), 269–281. MR 88a:90138.
Zbl. 597.90058.
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Three types of relatively easily maximizable pseudo-Boolean function (“uni-
modular” and two others) are defined. For quadratic pseudo-Boolean func-
tions f , the three types coincide; f is unimodular iff an associated signed
graph is balanced (Thm. 3). Thus one can quickly recognize unimodular qua-
dratic functions, although not unimodular functions in general. If the graph
is a tree, the function can be maximized in linear time. (SG: B, Alg)

Frank Harary
See also L.W. Beineke, A. Blass, F. Buckley, D. Cartwright, G. Chartrand, O.
Frank, and P. Hage.

††1953a On the notion of balance of a signed graph. Michigan Math. J. 2 (1953–1954), 143–
146. Addendum, ibid., preceding p. 1. MR 16, 733. Zbl. 56, 421 (e: 056.42103).

[The birth of signed graph theory. Although Thm. 3 was anticipated by
König (1936a) (Thm. X.11, for finite and infinite graphs) without the termi-
nology of signs, here is the first recognition of the crucial fact that labelling
edges by elements of a group—specifically, the sign group—can lead to a
general theory.] The main theorem (Thm. 3) characterizes balanced signings
as those for which there is a bipartition of the vertex set such that an edge
is positive iff it lies within a part [I call this a Harary bipartition]. Thm. 2:
A signing of a simple [or a loop-free] graph is balanced iff, for each pair of
vertices, every path joining them has the same sign. Discussion of the num-
ber of nonisomorphic signed graphs with specific numbers of vertices and
positive and negative edges. (SG: B, E)

1955a On local balance and N -balance in signed graphs. Michigan Math. J. 3 (1955–
1956), 37–41. MR 17, 394. Zbl. 70, 185 (e: 070.18502).

Σ is (locally) balanced at a vertex v if every polygon on v is positive; then
Thm. 3 ′ : Σ is balanced at v iff every block containing v is balanced. Σ
is N -balanced if every polygon of length ≤ N is positive; Thm. 2 concerns
characterizing N -balance. Lemma 3: For each polygon basis, Σ is balanced
iff every polygon in the basis is positive. [For finite graphs this strengthens
König (1936a) Thm. 13.] (SG: B)

1957a Structural duality. Behavioral Sci. 2 (1957), 255–265. MR 24B #B851.
“Antithetical duality” (pp. 260–261) introduces antibalance. Remarks on
signed and vertex-signed graphs are scattered about the succeeding pages.

(SG: B, P)
1958a On the number of bi-colored graphs. Pacific J. Math. 8 (1958), 743–755. MR 21

#2598. Zbl. 84, 194 (e: 084.19402).
Section 6: “Balanced signed graphs”. (SG: B: E)

1959a Graph theoretic methods in the management sciences. Management Sci. 5 (1959),
387–403. MR 21 #7103. Reprinted in: Samuel Leinhardt, ed., Social Networks:
A Developing Paradigm, pp. 371–387. Academic Press, New York, 1977.

See pp. 400–401. (SG: B: Exp)
1959b On the measurement of structural balance. Behavioral Sci. 4 (1959), 316–323.

MR 22 #3696.
Proposes to measure imbalance by (i) β(Σ), the proportion of balanced poly-
gons (“degree of balance”), (ii) the frustration index (“line index”) [cf. Abel-
son and Rosenberg (1958a)], i.e., the smallest number of edges whose dele-
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tion or equivalently (Thm. 7) negation results in balance, and (iii) the vertex
elimination number: the smallest number of vertices whose deletion results
in balance (“point index”). Thm. 4 is an upper bound on the minimum
β of unbalanced blocks with given cyclomatic number. Thm. 5 is a lower
bound on the maximum. Conjecture. These bounds are best possible. Thm.
6 (contributed by J. Riordan) is an asymptotic evaluation of β(−Kn).

(SG: Fr)
1960a A matrix criterion for structural balance. Naval Res. Logistics Quarterly 7, No. 2

(June, 1960), 195–199. Zbl. 91, 159 (e: 091.15904). (SG: B: A)
1970a Graph theory as a structural model in the social sciences. In: Bernard Harris, ed.,

Graph Theory and Its Applications, pp. 1–16. Academic Press, New York, 1970.
MR 41 #8277. Zbl. 224.05129.

1979a Independent discoveries in graph theory. In: Frank Harary, ed., Topics in Graph
Theory (Proc. Conf., New York, 1977). Ann. New York Acad. Sci. 328 (1979),
1–4. MR 81a:05001. Zbl. 465.05026.

1980a Some theorems about graphs from social sciences. In: Proc. West Coast Conf.
on Combinatorics, Graph Theory and Computing (Arcata, Calif., 1979), pp. 41–
47. Congressus Numerantium, XXVI. Utilitas Math. Publ. Inc., Winnipeg, Man.,
1980. MR 81m:05118. Zbl. 442.92027. (SG: B: History, Exp)

1981a Structural models and graph theory. In: Harvey J. Greenberg and John S. May-
bee, eds., Computer-Assisted Analysis and Model Simplification (Proc. Sympos.,
Boulder, Col., 1980), pp. 31–58. Discussion, pp. 103–111. Academic Press, New
York, 1981. MR 82g:00016 (book). Zbl. 495.93001 (book).

See remarks of Bixby (p. 111). (SG, VS, SD: B, Alg: Exp)
1983a Consistency theory is alive and well. Personality and Social Psychology Bull. 9

(1983), 60–64. (PsS)
1985a The reconstruction conjecture for balanced signed graphs. In: B.R. Alspach and

C.D. Godsil, eds., Cycles in Graphs, pp. 439–442. Ann. Discrete Math., Vol. 27.
North-Holland Math. Stud., Vol. 115. North-Holland, Amsterdam, 1985. MR
87d:05122. Zbl. 572.05048.

Reconstruction from the multiset of vertex-deleted subgraphs. Σ+ is recon-
structible if Σ is connected and balanced and not all positive or all negative.

(SG: B)
F. Harary and G. Gupta

1997a Dynamic graph models. Math. Computer Modelling 25 (1997), no. 7, pp. 79–87.
MR 98b:05092. Zbl. 879.68085.

§3.9, “Signed graphs”, mentions that deletion index = frustration index
(Harary (1959b)). (SG: Fr: Exp)

Frank Harary and Jerald A. Kabell
1980a A simple algorithm to detect balance in signed graphs. Math. Social Sci. 1

(1980/81), 131–136. MR 81j:05098. Zbl. 497.05056. (SG: B, Alg)
1981a Counting balanced signed graphs using marked graphs. Proc. Edinburgh Math.

Soc. (2) 24 (1981), 99–104. MR 83a:05072. Zbl. 476.05043. (SG, VS: E)
Frank Harary and Helene J. Kommel

1978a Matrix measures for transitivity and balance. J. Math. Sociol. 6 (1978/79), 199–



the electronic journal of combinatorics #DS8 67

210. MR 81a:05056. Zbl. 408.05028. (SG: Fr, A)

1979a The graphs with only self-dual signings. Discrete Math. 26 (1979), 235–241. MR
80h:05047. Zbl. 408.05045. (SG, VS: Aut)

Frank Harary and Bernt Lindström
1981a On balance in signed matroids. J. Combin. Inform. System. Sci. 6 (1981), 123–

128. MR 83i:05024. Zbl. 474.05021.
Thm. 1: The number of balanced signings of matroid M is ≤ 2rk (M) , with
equality iff M is binary. Thm. 3: Minimal deletion and negation sets coincide
for all signings of M iff M is binary. Thm. 5: For connected binary M , a
signing is balanced iff every circuit containing a fixed point is balanced.

(S: M: B, Fr)
Frank Harary, Bernt Lindström, and Hans-Olov Zetterström

1982a On balance in group graphs. Networks 12 (1982), 317–321. MR 84a:05055. Zbl.
496.05052.

Implicitly characterizes balance and balancing sets in a gain graph Φ by
switching (proof of Thm. 1). [For balance, see also Acharya and Acharya
(1986a), Zaslavsky (1977a) and (1989a), Lemma 5.3. For abelian gains,
see also Gargano and Quintas (1985a). In retrospect we can see that the
characterization of balanced gains is as the 1-coboundaries with values in
a group, which for abelian groups is essentially classical.] Thm. 1: The
number of balanced gain functions. Thm. 2: Any minimal deletion set is an
alteration set. Thm. 3: l(Φ) ≤ m(1− |G|−1). Thm. 4: l(Σ) ≤ 1

2 (m− n−1
2 ),

with strict inequality if not all degrees are even. [Compare with Akiyama,
Avis, Chvátal, and Era (1981a), Thm. 1.] (GG, SG: sw(B), E(B), Fr)

Frank Harary, J. Richard Lundgren, and John S. Maybee
1985a On signed digraphs with all cycles negative. Discrete Appl. Math. 12 (1985), 155–

164. MR 87g:05108. Zbl. 586.05019.
Which digraphs D can be signed so that every cycle is negative? Three
types of example. Type 1: The vertices can be numbered 1, 2, . . . , n so that
the downward arcs are just (2, 1), (3, 2), . . . , (n, n − 1). (Strong “upper”
digraphs; Thm. 2.) Type 2: No cycle is covered by the remaining cycles
(“free cyclic” digraphs). This type includes arc-minimal strong digraphs.
Type 3: A symmetric digraph, if and only if the underlying graph Γ is
bipartite and no two points on a common polygon and in the same color
class are joined by a path outside the cycle (Thm. 10; proved by signing Γ
via Zaslavsky (1981b)). [Further work in Chaty (1988a).] (SD: B, SG)

Frank Harary, Robert Z. Norman, and Dorwin Cartwright
1965a Structural Models: An Introduction to the Theory of Directed Graphs. Wiley, New

York, 1965. MR 32 #2345. Zbl. 139, 415 (e: 139.41503).
In Ch. 10, “Acyclic digraphs”: “Gradable digraphs”, pp. 275–280. That
means a digraph whose vertices can be labelled by integers so that f(w) =
f(v) + 1 for every arc (v, w). [Equivalently, the Hasse diagram of a graded
poset.] [Characterized by Topp and Ulatowski (1987a).] (GD: b, Exr)
Ch. 13: “Balance in structures”. “Criteria for balance”, pp. 340–346 (cf.
Harary (1953a)); local balance (Harary (1955a)). “Measures of structural
balance”, pp. 346–352: “degree of balance” (proportion of balanced polygons;
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Cartwright and Harary (1956A)); “line-index for balance” [frustration index]
(Abelson and Rosenberg (1958a), Harary (1959b)).
“Limited balance”, pp. 352–355. Harary (1955a); also: Adjacency matrix
(nonsymmetric) A(D,σ) of a signed digraph: entries are 0,±1. The “valency
matrix” is the R(Σ) of Abelson and Rosenberg (1958a). Thm. 13.8: Entries
of R(Σ)k show the existence of (undirected) walks of length k of each sign
between pairs of vertices. [The symbols might be treated as 0, a+ , a− ,
a+ + a− in the group ring R of the sign group. Then R(Σ) is equivalent to
the R -valued adjacency matrix AR(Σ). Thm. 13.8 follows upon substituting
in AkR : 0 7→ o , ma+ 7→ p , ma− 7→ n , ma+ + m′a− 7→ a , where m,m′ are
positive integers. AkR itself provides an exact count of walks of each sign.
Obviously, AR and walk-counting generalize to gain graphs.]
“Cycle-balance and path-balance”, pp. 355–358: here directions of arcs are
taken into account. E.g., Thm. 13.11: Every cycle is positive iff each strong
component is balanced as an undirected graph.

(SG: B, Fr, A: Exp, Exr)(SD: B, Exr)
1968a Introduction a la théorie des graphes orientés. Modèles structuraux. Dunod, Paris,

1968. Zbl. 176, 225 (e: 176.22501).
French edition of (1965a). (GD: b, Exr)

(SG: B, Fr, A: Exp, Exr)(SD: B, Exr)
Frank Harary and Edgar M. Palmer

1967a On the number of balanced signed graphs. Bull. Math. Biophysics 29 (1967),
759–765. Zbl. 161, 209 (e: 161.20904). (SG: B: E)

1973a Graphical Enumeration. Academic Press, New York, 1973. MR 50 #9682. Zbl.
266.05108.

Four exercises and a remark concern signed graphs, balanced signed graphs,
and signed trees. Russian transl.: Kharari and Palmer (1977a). (SG: E, B)

1977a (As “F. Kharari and È. Palmer”) Perechislenie grafov. “Mir”, Moscow, 1977. MR
56 #5353.

Russian translation of (1973a). (SG: E, B)
Frank Harary, Edgar M. Palmer, Robert W. Robinson, and Allen J. Schwenk

1977a Enumeration of graphs with signed points and lines. J. Graph Theory 1 (1977),
295–308. MR 57 #5818. Zbl. 379.05035.

See Bender and Canfield (1983a). (SG, VS: E)
Frank Harary and Michael Plantholt

1983a The derived signed graph of a digraph. Expositiones Math. 1 (1983), 343–347. MR
86h:05056. Zbl. 525.05030. (SG: LG, B)

Frank Harary and Geert Prins
1959a The number of homeomorphically irreducible trees, and other species. Acta Math.

101 (1959), 141–162. MR 21 #653. Zbl. 84, 193 (e: 084.19304). (SG: E)
Frank Harary and Robert W. Robinson

1977a Exposition of the enumeration of point-line-signed graphs enjoying various dual-
ities. In: R.C. Read and C.C. Cadogan, eds., Proc. Second Carribean Conf. in
Combinatorics and Computing (Cave Hill, Barbados, 1977), pp. 19–33. Dept. of
Math., Univ. of the West Indies, Cave Hill, Barbados, 1977. (SG, VS: E)
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Frank Harary and Bruce Sagan
1984a Signed posets. In: Calcutta Mathematical Society Diamond-cum-Platinum Jubilee

Commemoration Volume (1908–1983), Part I, pp. 3–10. Calcutta Math. Soc.,
Calcutta, 1984. MR 87k:06003. Zbl. 588.05048.

A signed poset is a (finite) partially ordered set P whose Möbius function
takes on only values in {0,±1} . S(P ) is the signed graph with V = P
and Eε = {xy : x ≤ y andµ(x, y) = ε1} for ε = +,− . Some examples are
chains, tree posets, and any product of signed posets. Thm. 1 characterizes
P such that |S(P )| ∼= H(P ), the Hasse diagram of P . Thm. 3 characterizes
posets for which S(P ) is balanced. Thm. 4 gives a sufficient condition for
clusterability of S(P ). There are many unanswered questions, most basically
Question 1. Which signed graphs have the form S(P )? [See Zelinka (1988a)
for a partial answer.] (SG, S)

Frank Harary and Marcello Truzzi
1979a The graph of the zodiac: On the persistence of the quasi-scientific paradigm of

astrology. J. Combin. Inform. System Sci. 4 (1979), 147–160. MR 82e:00004
(q.v.). (SG: B)

Katsumi Harashima
See H. Kosako.

Tero Harju
See A. Ehrenfeucht and J. Hage.

David Harries and Hans Liebeck
1978a Isomorphisms in switching classes of graphs. J. Austral. Math. Soc. (A) 26 (1978),

475–486. MR 80a:05109. Zbl. 411.05044.
Given Σ = (Kn, σ) and an automorphism group A of the switching class
[Σ], is A “exposable” on [Σ] (does it fix a representative of [Σ])? General
techniques and a solution for the dihedral group. Done in terms of Seidel
switching of unsigned simple graphs. (A further development from Mallows
and Sloane (1975a). [Related work in M. Liebeck (1982a) and Cameron
(1977a).]) (k: sw, TG: Aut)

Nora Hartsfield and Gerhard Ringel
1989a Minimal quadrangulations of nonorientable surfaces. J. Combin. Theory Ser. A

50 (1989), 186-195. MR 90j:57003. Zbl. 665.51007.
“Cascades”: see Youngs (1968b). (sg: O: Appl)

Kurt Hässig
1975a Theorie verallgemeinerter Flüsse und Potentiale. In: Siebente Oberwolfach-Tagung

uber Operations Research (1974), pp. 85–98. Operations Research Verfahren, Band
XXI. A. Hain, Meisenheim am Glan, 1975. MR 56 #8434. Zbl. 358.90070.

(GN: I)
1979a Graphentheoretische Methoden des Operations Research. Leitfaden der angew.

Math. und Mechanik, 42. B.G. Teubner, Stuttgart, 1979. MR 80f:90002. Zbl.
397.90061.

Ch. 5: “Verallgemeinerte Fluss- und Potentialdifferenzen-probleme.”
(GN: I, M, B: Exp, Ref)

Refael Hassin
1981a Generalizations of Hoffman’s existence theorem for circulations. Networks 11
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(1981), 243–254. MR 83c:90055. Zbl. 459.90026. (GN)
Patrick Headley

1997a On a family of hyperplane arrangements related to the affine Weyl groups. J.
Algebraic Combin. 6 (1997), 331–338. MR 98e:52010. Zbl. 970.66199.*

The characteristic polynomials of the Shi hyperplane arrangements S(W )
of type W for each Weyl group W , evaluated computationally. S(W ) is
obtained by splitting the reflection hyperplanes of W in two in a certain
way; thus S(An−1) splits the arrangement representing LatG(Kn)—more
precisely, it represents Latb Φ where Φ = (Kn, ϕ0) ∪(Kn, ϕ1) (see Stanley
(1996a) for notation); that of type Bn splits the arrangement representing
LatG(±K•n), and so on. [See also Athanasiadis (1996a).] (gg: G, M, N)

Fritz Heider
1946a Attitudes and cognitive organization. J. Psychology 21 (1946), 107–112.

No mathematics, but a formative article. [See Cartwright and Harary
(1956a).] (PsS)

1979a On balance and attribution. In: Paul W. Holland and Samuel Leinhardt, eds., Per-
spectives on Social Network Research (Proc. Sympos., Dartmouth Coll., Hanover,
N.H., 1975), Ch. 2, pp. 11–23. Academic Press, New York, 1979. (PsS)(SG: B)

Richard V. Helgason
See J.L. Kennington.

I. Heller
1957a On linear systems with integral valued solutions. Pacific J. Math. 7 (1957), 1351–

1364. MR 20 #899. Zbl. 79, 19 (e: 0779.01903).
I. Heller and C. B. Tompkins

1956a An extension of a theorem of Dantzig’s. In: H. W. Kuhn and A. W. Tucker, eds.,
Linear Inequalities and Related Systems, pp. 247–252. Annals of Math. Studies,
No. 38. Princeton Univ. Press, Princeton, N.J., 1956. MR 18, 459. Zbl. 72, 378
(e: 072.37804). (sg: I, B)

Robert L. Hemminger and Joseph B. Klerlein
1979a Line pseudodigraphs. J. Graph Theory 1 (1977), 365–377. MR 57 #5812. Zbl.

379.05032.
An attempt, intrinsically unsuccessful, to represent the (signed) line graph
of a digraph (see Zaslavsky 20xxb) by a digraph. [Continued by Klerlein
(1975a).] (sg: LG, o)

Robert L. Hemminger and Bohdan Zelinka
1973a Line isomorphisms on dipseudographs. J. Combin. Theory Ser. B 14 (1973), 105–

121. MR 47 #3230. Zbl. 263.05107. (sg: LG, o)
J.A. Hertz

See K.H. Fischer.
Hector Hevia

See G. Chartrand.
Dorit S. Hochbaum
20xxa A framework for half integrality and 2-approximations with applications to feasible

cut and minimum satisfiability. Submitted.
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Slightly extends Hochbaum and Naor (1994a) and Hochbaum, Megiddo,
Naor, and Tamir (1993a). (GN: I(D): Alg)

Dorit S. Hochbaum, Nimrod Megiddo, Joseph (Seffi) Naor, and Arie Tamir
1993a Tight bounds and 2-approximation algorithms for integer programs with two vari-

ables per inequality. Math. Programming Ser. B 62 (1993), 69–83. MR 94k:90050.
Zbl. 802.90080.

Approximate solution of integer linear programs with real, dually gain-graph-
ic coefficient matrix. [See Sewell (1996a).] (GN: I(D): Alg)

Dorit S. Hochbaum and Joseph (Seffi) Naor
1994a Simple and fast algorithms for linear and integer programs with two variables

per inequality. SIAM J. Computing 23 (1994), 1179–1192. MR 95h:90066. Zbl.
831.90089.

Linear and integer programs with real, dually gain-graphic coefficient matrix:
feasibility for linear programs, solution of integer programs when the gains
are positive (“monotone inequalities”), and identification of “fat” polytopes
(that contain a sphere larger than a unit hypercube). (GN: I(D): Alg, Ref)

Cornelis Hoede
1981a The integration of cognitive consistency theories. Memorandum nr. 353, Dept. of

Appl. Math., Twente Univ. of Tech., Enschede, The Netherlands, Oct., 1981.
(PsS: Gen)(SG, VS: B)

1982a Anwendungen von Graphentheoretischen Methoden und Konzepten in den Social-
wissenschaften. Memorandum nr. 390, Dept. of Appl. Math., Twente Univ. of
Tech., Enschede, the Netherlands, May, 1982.

Teil 4: “Kognitive Konsistenz.” (PsS: Gen: Exp)

††1992a A characterization of consistent marked graphs. J. Graph Theory 16 (1992), 17–23.
MR 93b:05141. Zbl. 748.05081.

Characterizes when one can sign the vertices of a graph so every polygon has
positive sign product, solving the problem of Beineke and Harary (1978b).
[The definitive word.] (VS: B: Str)

Alan J. Hoffman
See also David Gale.

1970a −1 −
√

2? In: Richard Guy et al., eds., Combinatorial Structures and Their
Applications (Proc. Calgary Internat. Conf., 1969), pp. 173–176. Gordon and
Breach, New York, 1970. Zbl. 262.05133. (LG)

1972a Eigenvalues and partitionings of the edges of a graph. Linear Algebra Appl. 5
(1972), 137–146. MR 46 #97. Zbl. 247.05125. (p: A, Fr)

1974a On eigenvalues of symmetric (+1,−1) matrices. Israel J. Math. 17 (1974), 69–75.
MR 50 #2202. Zbl. 281.15003.

Eigenvalues of signed complete graphs. (k: A)
1975a Spectral functions of graphs. In: Proceedings of the International Congress of

Mathematicians (Vancouver, 1974), Vol. 2, pp. 461–463. Canad. Math. Congress,
Montreal, 1975. MR 55 #7850. Zbl. 344.05164. (TG, A)

1976a On spectrally bounded signed graphs. (Abstract.) In: Trans. Twenty-First Con-
ference of Army Mathematicians (White Sands, N.M., 1975), pp. 1–5. ARO Rep.
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76-1. U.S. Army Research Office, Research Triangle Park, N.C., 1976. MR 58
#27648.

Abstract of (1977b). (SG: LG)

1977a On graphs whose least eigenvalue exceeds −1 −
√

2. Linear Algebra Appl. 16
(1977), 153–165. MR 57 #9607. Zbl. 354.05048. (LG)

1977b On signed graphs and gramians. Geometriae Dedicata 6 (1977), 455–470. MR 57
#3167. Zbl. 407.05064. (SG: LG)

[A. J. Hoffman and D. Gale]
1956a Appendix [to the paper of Heller and Tompkins]. In: H. W. Kuhn and A. W.

Tucker, eds., Linear Inequalities and Related Systems, pp. 252–254. Annals of
Math. Studies., No. 38. Princeton Univ. Press, Princeton, N.J., 1956.

Alan J. Hoffman and Peter Joffe
1978a Nearest S -matrices of given rank and the Ramsey problem for eigenvalues of

bipartite S -graphs. In: Problèmes Combinatoires et Théorie des Graphes (Colloq.
Internat., Orsay, 1976), pp. 237–240. Colloques Internat. du CNRS, 260. Editions
du C.N.R.S., Paris, 1978. MR 81b:05080. Zbl. 413.05031. (SG: A)

Alan J. Hoffman and Francisco Pereira
1973a On copositive matrices with −1, 0, 1 entries. J. Combinatorial Theory Ser. A 14

(1973), 302–309. MR 47 #5029. Zbl. 273.15019.
Franz Höfting and Egon Wanke

1993a Polynomial algorithms for minimum cost paths in periodic graphs. In: Vijaya Ra-
machandran et al., eds., Proceedings of the Fourth Annual ACM-SIAM Symposium
on Discrete Algorithms (Austin, Tex., 1993), pp. 493–499. Assoc. Comput. Mach.,
New York, and Soc. Indust. Appl. Math., Philadelphia, 1993. MR 93m:05184.
Zbl. 801.68133.

Given a finite gain digraph Φ (the “static graph”) with gains in Zd and a ra-
tional cost for each edge, find a minimum-cost walk (“path”) in its canonical
covering graph Φ̃ with given initial and final vertices. (GD( Cov): Alg)

1994a Polynomial time analysis of toroidal periodic graphs. In: Serge Abiteboul and
Eli Shamir, eds., Automata, Languages and Programming (Proc. 21st Internat.
Colloq., ICALP 94, Jerusalem, 1994), pp. 544–555. Lect. Notes Computer Sci.,
Vol. 820. Springer-Verlag, Berlin, 1994. MR 96c:05164.

Take a gain digraph Φ (the “static graph”) with gains in Zα = Zα1×· · ·×Zαd

(where α = (α1, · · · , αd)) and its canonical covering digraph Φ̃ (the “toroidal
periodic graph”). Treated algorithmically via integer linear programming
and linear Diophantine equations: existence of directed paths (NP-complete,
but polynomial-time if Φ is strongly connected) and number of strongly
connected components of Φ̃ . (GD( Cov): Alg, G)

1995a Minimum cost paths in periodic graphs. SIAM J. Computing 24 (1995), 1051–
1067. MR 96d:05061. Zbl. 839.05063.

Full version of (1993a). The min-cost problem is expressed as an integer lin-
ear program. Various conditions under which the problem is NP-hard, even
a very restricted version without costs (Thms. 3.3, 3.5), or polynomial-time
solvable (e.g.: without costs, when Φ is an undirected gain graph: Thm. 3.4;
with costs, when d is fixed: Thm. 4.5). (GD, GG( Cov): Alg, G, Ref)
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20xxa Polynomial time analysis of toroidal periodic graphs. Submitted.
Full version of (1994a). (GD( Cov): Alg, G)

Paul W. Holland and Samuel Leinhardt
1971a Transitivity in structural models of small groups. Comparative Group Studies 2

(1971), 107–124. (PsS: SG: B)

Paul W. Holland and Samuel Leinhardt, eds.
1979a Perspectives on Social Network Research (Proc. Math. Soc. Sci. Board Adv. Res.

Symp. on Social Networks held at Dartmouth College, Hanover, N.H., September
18–21, 1975). Academic Press, New York, 1979. (PsS, SG)

John Hultz
See also F. Glover.

John Hultz and D. Klingman
1979a Solving singularly constrained generalized network problems. Appl. Math. Optim.

4 (1978), 103–119. MR 57 #15414. Zbl. 373.90075. (GN: M(bases))

John E. Hunter
1978a Dynamic sociometry. J. Math. Sociology 6 (1978), 87–138. MR 58 #20631.

(SG: B, Cl)

C.A.J. Hurkens
1989a On the existence of an integral potential in a weighted bidirected graph. Linear

Algebra Appl. 114/115 (1989), 541–553. MR 90c:05142. Zbl. 726.05050.
Given: a bidirected graph B (with no loose or half edges or positive loops)
and an integer weight be on each edge. Wanted: an integral vertex weighting
x such that I(B)Tx ≤ b , where I(B) is the incidence matrix. Such x exists
iff (i) every coherent polygonal or handcuff walk has nonnegative total weight
and (ii) each doubly odd Korach walk (a generalization of a coherent handcuff
that has a cutpoint dividing it into two parts, each with odd total weight)
has positive total weight. This improves a theorem of Schrijver (1991a) and
is best possible. Dictionary: “path” (“cycle”) = coherent (closed) walk.

(sg: O: I)

T. Ibaraki
See also Y. Crama and P.L. Hammer.

T. Ibaraki and U.N. Peled
1981a Sufficient conditions for graphs to have threshold number 2. In: Pierre Hansen,

ed., Studies on Graphs and Discrete Programming (Proc. Workshop, Brussels,
1979), pp. 241–268. North-Holland Math. Studies, 59. Ann. Discrete Math., 11.
North-Holland, Amsterdam, 1981. MR 84f:05056. Zbl. 479.05058. (p: o)

Takeo Ikai
See H. Kosako.

Yoshiko T. Ikebe and Akihisa Tamura
20xxa Perfect bidirected graphs. Submitted

A transitively closed bidirection of a simple graph is perfect iff its underlying
graph is perfect. (See Johnson and Padberg (1982a) for definitions.) [Also
proved by Sewell (1996a).] (sg: O: I, G)
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Masao Iri and Katsuaki Aoki
1980a A graphical approach to the problem of locating the origin of the system failure.

J. Oper. Res. Soc. Japan 23 (1980), 295–312. MR 82c:90041. Zbl. 447.90036.
(SD, VS: Appl)

Masao Iri, Katsuaki Aoki, Eiji O’Shima, and Hisayoshi Matsuyama
1976a [A graphical approach to the problem of locating the system failure.] (In Japanese.)

[???] 76 (135) (1976), 63–68. (SD, VS: Appl)
1979a An algorithm for diagnosis of system failures in the chemical process. Computers

and Chem. Eng. 3 (1979), 489–493 (1981).
The process is modelled by a signed digraph with some nodes v marked by
µ(v) ∈ {+,−, 0} . (Marks +,− indicate a failure in the process.) Object: to
locate the node which is origin of the failure. An oversimplified description
of the algorithm: µ is extended arbitrarily to V . Arc (u, v) is discarded if
0 6= µ(u)µ(v) 6= σ(u, v). If the resulting digraph has a unique initial strongly
connected component S , the nodes in it are possible origins. Otherwise,
this extension provides no information. (I have overlooked: special marks on
“controlled” nodes; speedup by stepwise extension and testing of µ .) [This
article and/or (1976a) seems to be the origin of a whole literature. See e.g.
Chang and Yu (1990a), Kramer and Palowitch (1987a).]

(SD, VS: Appl, Alg)
C. Itzykson

See R. Balian.
P.L. Ivanescu [P.L. Hammer]

See E. Balas and P.L. Hammer.
Sousuke Iwai

See O. Katai.
François Jaeger

1992a On the Kauffman polynomial of planar matroids. In: Jaroslav Nešetřil and
Miroslav Fiedler, eds., Fourth Czechoslovak Symposium on Combinatorics, Graphs
and Complexity (Prachatice, 1990), pp. 117–127. Ann. Discrete Math., Vol. 51.
North-Holland, Amsterdam, 1992. MR 94d:57016. Zbl. 763.05021.

(This is not the colored Tutte polynomial of Kauffman (1989a).) Jaeger
shows that the Kauffman polynomial, originally defined for link diagrams
and here transformed to an invariant of signed plane graphs, depends only
on the edge signs and the polygon matroid. It can also be reformulated to
be essentially independent of signs. Problem. Define a similar invariant for
more general matroids. (SGc, S(M): N, Knot)

François Jaeger, Nathan Linial, Charles Payan, and Michael Tarsi
1992a Group connectivity of graphs—a nonhomogeneous analogue of nowhere-zero flow

properties. J. Combin. Theory Ser. B 56 (1992), 165–182. MR 93h:05088. Zbl.
824.05043.

Let A be abelian group. Γ is “A -colorable” if every A -gain graph on Γ has
a proper group-coloring (as in Zaslavsky (1991a)). Prop. 4.2. Every simple
planar graph is A-colorable for every abelian group A of order ≥ 6. (For
the same reason as the classical 6-Color Theorem.) [Improved by Lai and
Zhang (20xxb).] (GG: Col)
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John C. Jahnke
See J.O. Morrissette.

John J. Jarvis and Anthony M. Jezior
1972a Maximal flow with gains through a special network. Oper. Res. 20 (1972), 678–688.

MR 47 #6286. Zbl. 241.90021. (GN: M(bases))
Clark Jeffries

1974a Qualitative stability and digraphs in model ecosystems. Ecology 55 (1974), 1415–
1419.

Sufficient (and necessary) conditions for sign stability in terms of negative
cycles and a novel color test. Proofs are sketched or (for necessity) absent.

(SD: Sta)
Clark Jeffries, Victor Klee, and Pauline van den Driessche

1977a When is a matrix sign stable? Canad. J. Math. 29 (1977), 315–326. MR 56 #5603.
Zbl. 383.15005. (SD: Sta)

Paul A. Jensen and J. Wesley Barnes
1980a Network Flow Programming. Wiley, New York, 1980. MR 82f:90096. Zbl. 502.-

90057. Reprinted by: Robert E. Krieger, Melbourne, Fla., 1987. MR 89a:90152.
§1.4: “The network-with-gains model.” §2.8: “Networks with gains—exam-
ple applications.” Ch. 9: “Network manipulation algorithms for the gener-
alized network.” Ch. 10: “Generalized minimum cost flow problems.”

(GN: M(bases))
Sec. 5.5: “Negative cycles.” (OG: M(bases))

1984a Potokovoe programmirovanie. Radio i Svyaz, Moskva, 1984. Zbl. 598.90035.
Russian translation of (1980a). (GN: M(bases))(OG: M(bases))

P.A. Jensen and Gora Bhaumik
1977a A flow augmentation approach to the network with gains minimum cost flow prob-

lem. Management Sci. 28 (1977), No. 6 (Feb., 1977), 631–643. MR 55 #14163.
Zbl. 352.90024. (GN)

Tommy R. Jensen and Bjarne Toft
1f995a Graph Coloring Problems. Wiley, New York, 1995. MR 95h:05067. Zbl. 950.45277.

8.14: “t -perfect graphs.” Related to all-negative Σ with no subgraph homeo-
morphic to −K4 (no “odd-K4 ”). See Gerards and Schrijver (1986a), Gerards
and Shepherd (1998b).
15.9: “Square hypergraphs.” Related to nonexistence of even cycles in a
digraph and to sign nonsingularity. See Seymour (1974a) and Thomassen
(1985a, 1986a, 1992a). (sd: P: b, Sol: Exp)

R.H. Jeurissen
1975a Covers, matchings and odd cycles of a graph. Discrete Math. 13 (1975), 251–260.

MR 54 #168. Zbl. 311.05129. (ec: b)
1981a The incidence matrix and labellings of a graph. J. Combin. Theory Ser. B 30

(1981), 290–301. MR 83f:05048. Zbl. 409.05042, (457.05047). (SG: I, EC)
1983a Disconnected graphs with magic labellings. Discrete Math. 43 (1983), 47–53. MR

84c:05064. Zbl. 499.05053. (SG: I, EC)
1983b Pseudo-magic graphs. Discrete Math. 43 (1983), 207–214. MR 84g:05122. Zbl.

514.05054. (SG: I, EC)
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1988a Magic graphs, a characterization. European J. Combin. 9 (1988), 363–368. MR
89f:05138. Zbl. 657.05065.

William S. Jewell
1962a Optimal flow through networks with gains. Oper. Res. 10 (1962), 476–499. MR

26 #2325. Zbl. (e: 109.38203). (GN)

Anthony M. Jezior
See J.J. Jarvis.

Samuel Jezný and Marián Trenkler
1983a Characterization of magic graphs. Czechoslovak Math. J. 33 (108) (1983), 435–438.

MR 85c:05030. Zbl. 571.05030. (p: I)

Peter Joffe
See A.J. Hoffman.

Eugene C. Johnsen
1989a The micro-macro connection: Exact structure and process. In: Fred Roberts,

ed., Applications of Combinatorics and Graph Theory to the Biological and Social
Sciences, pp. 169–201. IMA Vols. Math. Appl., Vol. 17. Springer-Verlag, New
York, 1989. MR 90g:92089. Zbl. 725.92026 (q.v.).

An elaborate classificatory analysis of “triads” (signed complete directed
graphs of 3 vertices) vis-á-vis “macrostructures” (signed complete directed
graphs) with reference to structural interactions and implications of triadic
numerical restrictions on “dyads” (s.c.d.g. of 2 vertices). Connections to
certain models of affect in social psychology. [“Impenetrability! That’s what
I say!” “Would you tell me, please,” said Alice, “what that means?”]

( K, SD, SG: B, PsS: Exp)

Eugene C. Johnsen and H. Gilman McCann
1982a Acyclic triplets and social structure in complete signed digraphs. Social Networks

3 (1982), 251–272. (SD: B, Cl)

Charles R. Johnson and John Maybee
1991a Qualitative analysis of Schur complements. In: Applied Geometry and Discrete

Mathematics: The Victor Klee Festschrift, pp. 359–365. DiMACS Ser. Discrete
Math. Theoret. Computer Sci., Vol. 4. Amer. Math. Soc., Providence, 1991. MR
92h:15004. Zbl. 742.15009.

In square matrix A let A[S] be the principal submatrix with rows and
columns indexed by S . Thm. 1: Assume A[S] is sign-nonsingular in stan-
dard form and i, j /∈ S . Then the (i, j) entry of the Schur complement of
A[S] has sign determined by the sign pattern of A iff, in the signed digraph
of A , every path i→ j via S has the same sign. (QM: SD)

Charles R. Johnson, D.D. Olesky, Michael Tsatsomeros, and P. van den Dries-
sche

1993a Spectra with positive elementary symmetric functions. Linear Algebra Appl. 180
(1993), 247–261. MR 94a:15028. Zbl. 778.15006.

Suppose the signed digraph D of an n × n matrix has longest cycle length
k and all cycles of −D are negative. Theorem: If k = n−1, the eigenvalues
lie in a domain subtending angle < 2π/k . This is known for k = 2 but false
for k = n− 3. (QM, SD)
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Ellis L. Johnson
See also J. Edmonds and G. Gastou.

1965a Programming in networks and graphs. Report ORC 65-1, Operations Research
Center, Univ. of California, Berkeley, Calif., Jan. 1965.

§7: “Flows with gains.” §8: “Linear programming in an undirected graph.”
§9: “Integer programming in an undirected graph.”

(GN: I, M( bases))(ec: I, M( bases), Alg)

1966a Networks and basic solutions. Oper. Res. 14 (1966), 619–623. (GN)

Ellis L. Johnson and Sebastiano Mosterts
1987a On four problems in graph theory. SIAM J. Algebraic Discrete Methods 8 (1987),

163–185. MR 88d:05097. Zbl. 614.05036.
Two of the problems: Given a signed graph (edges called “even” and “odd”
rather than “positive” and “negative”). The co-postman problem is to find a
minimum-cost deletion set (of edges). The “odd circuit” problem is to find a
minimum-cost negative polygon. The Chinese postman problem is described
in a way that involves cobalance and “switching” around a polygon.

(SG: Fr(Gen), I)

Ellis L. Johnson and Manfred W. Padberg
1982a Degree-two inequalities, clique facets, and biperfect graphs. In: Achim Bachem,

Martin Grotschel, and Bernhard Korte, eds., Bonn Workshop on Combinatorial
Optimization (Fourth, 1980), pp. 169–187. North-Holland Math. Studies, 66.
Ann. Discrete Math., 16. North-Holland, Amsterdam, 1982. MR 84j:05085. Zbl.
523.52009.

Geometry of the bidirected stable set polytope P (B) (which generalizes the
stable set polytope to bidirected graphs), defined as the convex hull of 0, 1
solutions of xi+xj ≤ 1, −xi−xj ≤ −1, xi ≤ xj for extroverted, introverted,
and directed edges of B . (Thus, undirected graphs correspond to extroverted
bidirected graphs.) It suffices to treat transitively closed bidirections of sim-
ple graphs ([unfortunately] called “bigraphs”). [Such a bidirected graph must
be balanced.] A “biclique” (S+, S−) is the Harary bipartition of a balanced
complete subgraph (S+ , S− are the source and sink sets of the subgraph).
It is “strong” if no external vertex has an edge directed out of every vertex
of S+ and an edge directed into every vertex of S− . Strong bicliques gen-
erate facet inequalities of the polytope. Call B perfect if these facets (and
nonnegativity) determine P (B). Γ is “biperfect” if every transitively closed
bidirection B of Γ is perfect. Conjectures: Γ is biperfect iff it is perfect.
Γ is perfect iff some transitively closed bidirection is perfect. [Both proved
by Sewell (1996a) and independently by Ikebe and Tamura (20xxa). See e.g.
Tamura (1997a), Conforti (20xxa) for further work.] (sg: O: I, G, sw)

Leif Kjær Jørgensen
1989a Some probabilistic and extremal results on subdivisions and odd subdivisions of

graphs. J. Graph Theory 13 (1989), 75–85. MR 90d:05186. Zbl. 672.05070.
Let σop(Γ), or σodd(Γ), be the largest s for which −Γ contains a subdivision
of −Ks (an “odd-path-KsS ”), or [−Γ] contains an antibalanced subdivision
of Ks (an “odd-KsS ”). Thm. 4: σop(Γ), σodd(Γ) ≈

√
n . Thms. 7, 8 (simpli-

fied): For p = 4, 5 and large enough n = |V | , σodd(Γ) ≥ p or Γ is a specific
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exceptional graph. Conjecture 9. The same holds for all p ≥ 4. [Problem.
Generalize this to signed graphs.] (p: X)

Tadeusz Józefiak and Bruce Sagan
1992a Free hyperplane arrangements interpolating between root system arrangements.

In: Séries formelles et combinatoire algébrique (Actes du colloque, Montréal,
1992), pp. 265–270. Publ. Lab. Combin. Inform. Math., Vol. 11. Dép. de math.
et d’informatique, Univ. de Québec à Montréal, 1992.

Summarizes the freeness results in (1993a). (sg, gg: G, m, N)
1993a Basic derivations for subarrangements of Coxeter arrangements. J. Algebraic Com-

bin. 2 (1993), 291–320. MR 94j:52023. Zbl. 798.05069.
The hyperplane arrangements (over fields with characteristic 6= 2) corre-
sponding to certain signed graphs are shown to be “free”. Explicit bases
and the exponents are given. The signed graphs are: +Kn−1 ⊆ Σ1 ⊆ +Kn

(known), ±Kn ⊆ Σ2 ⊆ ±K◦n , ±Kn ⊆ Σ3 ⊆ ±K◦n ; also, those obtained from
+Kn or K◦n by adding all negative links in the order of their larger vertex (as-
suming ordered vertices) (Thms. 4.1, 4.2) or smaller vertex (Thms. 4.4, 4.5);
and those obtained from ±Kn−1 by adding positive edges ahead of negative
ones (Thm. 4.3). [For further developments see Edelman and Reiner (1994a).]
Similar theorems hold for complex arrangements when the sign group is re-
placed by the complex s-th roots of unity (§5). The Möbius functions of Σ2 ,
known from Hanlon (1988a), are deduced in §6. (sg, gg: G, m, N)

M. Jünger
See M. Grötschel.

Mark Jungerman and Gerhard Ringel
1978a The genus of the n -octahedron: Regular cases. J. Graph Theory 2 (1978), 69-75.

MR 58 #5315. Zbl. 384.05037.
“Cascades”: see Youngs (1968b). (sg: O: Appl)

Jerald A. Kabell
See also F. Harary.

1985a Co-balance in signed graphs. J. Combin. Inform. System Sci. 10 (1985), 5–8. MR
89i:05232. Zbl. 635.05028.

Cobalance means that every cutset has positive sign product. Thm.: Σ
is cobalanced iff every vertex star has evenly many negative edges. For
planar graphs, corollaries of this criterion and Harary’s bipartition theorem
result from duality. [The theorem follows easily by looking at the negative
subgraph.] (SG: B(D), B)

1988a An algorithmic look at cycles in signed graphs. 250th Anniversary Conf. on Graph
Theory (Fort Wayne, Ind., 1986). Congressus Numerantium 63 (1988), 229–230.
MR 90d:05143. Zbl. 666.05046. (SG, SD: B: Alg)

Jeff Kahn and Joseph P.S. Kung
1980a Varieties and universal models in the theory of combinatorial geometries. Bull.

Amer. Math. Soc. (N.S.) 3 (1980), 857–858. MR 81i:05051. Zbl. 473.05025.
Announcement of (1982a). (gg: M)

††1982a Varieties of combinatorial geometries. Trans. Amer. Math. Soc. 271 (1982), 485–
499. MR 84j:05043. Zbl. 503.05010. Reprinted in: Joseph P.S. Kung, A Source
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Book in Matroid Theory, pp. 395–499, with commentary, pp. 335–338. Birkhäuser,
Boston, 1986. MR 88e:05028. Zbl. 597.05019.

A “variety” is a class closed under deletion, contraction, and direct summa-
tion and having for each rank a “universal model”, a single member contain-
ing all others. There are two nontrivial types of variety of finite matroids:
matroids representable over GF(q), and gain-graphic matroids with gains
in a finite group G . The universal models of the latter are the Dowling
geometries Qn(G).
It is incidentally proved that Dowling geometries of non-group quasigroups
cannot exist in rank n ≥ 4. (gg: M)

1986a A classification of modularly complemented geometric lattices. European J. Com-
bin. 7 (1986), 243–248. MR 87i:06026. Zbl. 614.05018.

A geometric lattice of rank ≥ 4, if not a projective geometry with a few
points deleted, is a Dowling lattice. (gg: M)

Jeff Kahn and Roy Meshulam
1998a On the number of group-weighted matchings. J. Algebraic Combin. 7 (1998),

285–290. MR 99b:05113. Zbl. 899.05042.
Continues Aharoni, Meshulam, and Wajnryb (1995a) (q.v., for definitions),
generalizing its Thm. 1.3 (the case |K| = 2 of the following). Let m =
number of 0-weight matchings, δ = minimum degree. Thm. 1.1: If m > 0
then m ≥ (δ − k + 1)! where k = |K| . Conjecture 1.2. k can be reduced.
(See the paper for details.) [Question. Is there a generalization to weighted
digraphs? One could have two kinds of arcs: some weighted from K , and
some weighted 0. The perfect matching might be replaced by an alternating
Hamilton cycle or a spanning union of disjoint alternating cycles.] (WG)
Thm. 2.1: Let D be a simple digraph with weights in an abelian group K .
If all outdegrees are > k , where k = |K| , then there is a nonempty set of
disjoint cycles whose total weight is 0. (WD)

Ajai Kapoor
See M. Conforti.

Roman Kapuscinski
See P. Doreian.

Richard M. Karp, Raymond E. Miller, and Shmuel Winograd
1967a The organization of computations for uniform recurrence equations. J. Assoc.

Computing Machinery 14 (1967), 563–590. MR 38 #2920. Zbl. (e 171.38305).
(gd: cov)

P.W. Kasteleyn
See also C.M. Fortuin.

P.W. Kasteleyn and C.M. Fortuin
1969a Phase transitions in lattice systems with random local properties. In: Interna-

tional Conference on Statistical Mechanics (Proc., Kyoto, 1968), pp. 11–14. Sup-
plement to J. Physical Soc. Japan, Vol. 26, 1969. Physical Society of Japan,
[Tokyo?], 1969.

A specialization of the parametrized dichromatic polynomial of a graph:
QΓ(q, p;x, 1) where qe = 1−pe . [Essentially, announcing Fortuin and Kaste-
leyn (1972a).] (sgc: Gen: N, Phys)



the electronic journal of combinatorics #DS8 80

Osamu Katai
1979a Studies on aggregation of group structures and group attributes through quantifi-

cation methods. D.Eng. dissertation, Kyoto Univ., 1979.
Osamu Katai and Sousuke Iwai

1978a Studies on the balancing, the minimal balancing, and the minimum balancing
processes for social groups with planar and nonplanar graph structures. J. Math.
Psychology 18 (1978), 140–176. MR 83m:92072. Zbl. 394.92027. (SG: Fr, Alg)

1978b Graph-theoretic models of social group structures and indices of group structures.
(In Japanese.) Systems and Control (Shisutemu to Seigyo) 22 (1978), 713–722.
MR 80d:92038. (Exp)

1978c On the characterization of balancing processes of social systems and the derivation
of the minimal balancing processes. IEEE Trans. Systems Man Cybernetics SMC-8
(1978), 337–348. MR 57 #18886. Zbl. 383.92025.

1978d Characterization of social balance by statistical and finite-state systems theoret-
ical analysis. In: Internat. Conf. Cybernetics and Society (Proc. Conf., Tokyo,
November, 1978).

Louis H. Kauffman
See also J.R. Goldman.

1986a Signed graphs. Abstract 828-57-12, Abstracts Amer. Math. Soc. 7, No. 5 (1986),
p. 307.

Announcement of (1989a). (SGc: Knot: N)

1988a New invariants in the theory of knots. Amer. Math. Monthly 95 (1988), 195–242.
MR 89d:57005. Zbl. 657.57001.

A leisurely development of Kauffman’s combinatorial bracket polynomial of a
link diagram and the Jones and other knot polynomials, including the basics
of (1989a). (Knot, SGc: N: Exp)

†1989a A Tutte polynomial for signed graphs. Discrete Appl. Math. 25 (1989), 105–127.
MR 91c:05082. Zbl. 698.05026.

The Tutte polynomial, also called “Kauffman’s bracket of a signed graph”
and equivalent to his bracket of a link diagram, is defined by a sum over
spanning trees of terms that depend on the signs and activities of the edges
and nonedges of the tree. The point is that the deletion-contraction recur-
rence over an edge has parameters dependent on the color of the edge; also,
the parameters of the two colors are related. The purpose is to develop the
bracket of a link diagram combinatorially. §3.2, “Link diagrams”: how link
diagrams correspond to signed plane graphs. §4, “A polynomial for signed
graphs”, defines the general sign-colored graph polynomial Q[Σ](A,B, d) by
deletion-contraction, modified multiplication on components, and evaluation
on graphs of loops and isthmi. §5, “A spanning tree expansion for Q[G]” [G
means Σ], proves Q[Σ] exists by producing a spanning-tree expansion, shown
independent of the edge ordering by a direct argument. [No dichromatic form
of Q[Σ] appears; but see successor articles.] §6, “Conclusion”, remarks that
Q[Σ] is invariant under signed-graphic Reidemeister moves II and III. [This
significant work, inspired by Thistlethwaite (1988a), led to independent but
related generalizations by Przytycka and Przytycki (1988a), Schwärzler and
Welsh (1993a), Traldi (1989a), and Zaslavsky (1992b) that were partially
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anticipated by Fortuin and Kasteleyn (1972a). Also see (1997a).]
(SGc: N, Knot)

1997a Knots and electricity. In: S. Suzuki, ed., Knots ’96 (Proc. Fifth Internat. Re-
search Institute Math. Soc. Japan, Tokyo, 1996), pp. 213–230. World Scientific,
Singapore, 1997.

§2, “A state summation for classical electrical networks”, uses a form of the
parametrized dichromatic polynomial QΓ(B,A; 1, 1) [as in Zaslavsky (1992b)
et al.], where A(e), B(e) ∈ C∗ , to compute conductances as in Goldman and
Kauffman (1993a). (sgc: Gen: N: Exp)
§3: “The bracket polynomial”, discusses the connections with signed graphs
and electricity. Problem: Is there a signed graph, not reducible by signed-
graphic Reidemeister moves (see (1989a)) to a tree with loops, whose sign-
colored dichromatic polynomial is trivial? If not, the Jones polynomial de-
tects the unknot. (SGc: N: Exp)(SGc: N)

John G. Kemeny and J. Laurie Snell
1962a Mathematical Models in the Social Sciences. Blaisdell, Waltham, Mass., 1962. Re-

printed by MIT Press, Cambridge, Mass., 1972. MR 25 #3797. Zbl. (256.92003).
Chapter VIII: “Organization theory: Applications of graph theory.” See pp.
97–101 and 105–107. (SG: B: Exp)

John W. Kennedy
See M.L. Gargano.

Jeff L. Kennington and Richard V. Helgason
1980a Algorithms for Network Programming. Wiley, New York, 1980. MR 82a:9013.

Zbl. 502.90056.
Ch. 5: “The simplex method for the generalized network problem.”

(GN: M( Bases): Exp)

F. Kharari and È. Palmer [Frank Harary and Edgar M. Palmer]
See F. Harary and E.M. Palmer (1977a).

A. Khelladi
1987a Nowhere-zero integral chains and flows in bidirected graphs. J. Combin. Theory

Ser. B 43 (1987), 95–115. MR 88h:05045. Zbl. 617.90026.
Improves the result of Bouchet (1983a). (SG: M, Flows)

Shin’ichi Kinoshita
See also T. Yajima.

Shin’ichi Kinoshita and Hidetaka Terasaka
1957a On unions of knots. Osaka Math J. 9 (1957), 131–153. MR 20 #4846. Zbl.

080.17001.
Employs the sign-colored graph of a link diagram (Bankwitz 1930a) to form
certain combinations of links. (SGc: Knot)

M. Kirby
See A. Charnes.

Scott Kirkpatrick
1977a Frustration and ground-state degeneracy in spin glasses. Phys. Rev. B 16, No. 10

(1977), 4630–4641. (Phys: SG, B, Sw)
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Victor Klee
See also C. Jeffries.

1971a The greedy algorithm for finitary and cofinitary matroids. In: Theodore S. Motz-
kin, ed., Combinatorics, pp. 137–152. Proc. Symp. Pure Math., Vol. 19. Amer.
Math. Soc., Providence, R.I., 1971. MR 48 #10865. Zbl. 229.05031.

Along with Simões-Pereira (1972a), invents the bicircular matroid (here, for
infinite graphs). (Bic)

1989a Sign-patterns and stability. In: Fred Roberts, ed., Applications of Combinatorics
and Graph Theory to the Biological and Social Sciences, pp. 203–219. IMA Vols.
Math. Appl., Vol. 17. Springer-Verlag, New York, 1989. MR 90h:34081. Zbl.
747.05057.

When are various forms of stability of a linear differential equation ẋ = Ax
determined solely by the sign pattern of A? A survey of elegant combinato-
rial criteria. Signed digraphs [alas] play but a minor role.

(Sta, SD: Exp, Ref)

Victor Klee, Richard Ladner, and Rachel Manber
1984a Signsolvability revisited. Linear Algebra Appl. 59 (1984), 131–157. MR 86a:15004.

Zbl. 543.15016. (SD, QM: Sol, Alg)

Victor Klee and Pauline van den Driessche
1977a Linear algorithms for testing the sign stability of a matrix and for finding

Z -maximum matchings in acyclic graphs. Numer. Math 28 (1977), 273–285. Zbl.
348.65032, (352.65020). (SD: QM, Sta, Alg)

Peter Kleinschmidt and Shmuel Onn
1995a Oriented matroid polytopes and polyhedral fans are signable. In: Egon Balas and

Jens Clausen, eds., Integer Programming and Combinatorial Optimization (4th
Internat. IPCO Conf., Copenhagen, 1995, Proc.), pp. 198–211. Lecture Notes in
Computer Sci., Vol. 920. Springer, Berlin, 1995. MR 97b:05040.

In a graded partially ordered set with 0 and 1, assign a sign to each covering
pair (x, y) where y is covered by 1. This is an “exact signing” if in every
upper interval there is just one y whose coverings are all positive. Then the
poset is “signable”. (S: G)

1996a Signable posets and partitionable simplicial complexes. Discrete Computat. Geom.
15 (1996), 443–466. MR 97a:52014. Zbl. 853.52010.

See (1995a) for definition. Signability is a generalization to posets of parti-
tionability of a simplicial complex (Prop. 3.1). Shellable posets, and face lat-
tices of spherical polytopes and oriented matroid polytopes, are signable. A
stronger property of a simplicial complex, “total signability”, which applies
for instance to simplicial oriented matroid polytopes (Thm. 5.12), implies
the upper bound property (Thm. 4.4). Computational complexity of face
counting and of deciding shellability and partitionability are discussed in §6.

(S: G, Alg)

Joseph B. Klerlein
See also R.L. Hemminger.

1975a Characterizing line dipseudographs. In: F. Hoffman et al., eds., Proceedings of the
Sixth Southeastern Conference on Combinatorics, Graph Theory and Computing
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(Boca Raton, 1975), pp. 429–442. Congressus Numerantium, XIV. Utilitas Math.
Publ. Inc., Winnipeg, Man., 1975. MR 53 #190. Zbl. 325.05106.

Continues the topic of Hemminger and Kerlein (1977a). (sg: LG, o)
Darwin Klingman

See J. Elam, F. Glover, and J. Hultz.
Elizabeth Klipsch
20xxa Some signed graphs that are forbidden link minors for orientation embedding. In

preparation.
For each n ≥ 5, either −Kn or its 1-edge deletion, but not both, is a forbid-
den link minor. Which one it is, is controlled by Euler’s polyhedral formula,
provided n ≥ 7. [A long version with excruciating detail is available.]

(SG: T, P)
Muralidharan Kodialam and James B. Orlin

1991a Recognizing strong connectivity in (dynamic) periodic graphs and its relation to
integer programming. In: Proceedings of the Second Annual ACM-SIAM Sym-
posium on Discrete Algorithms (San Francisco, 1991), pp. 131–135. Assoc. for
Computing Machinery, New York, 1991. Zbl. 800.68639.

Linear programming methods to find the strongly connected components of
a periodic digraph from the static graph: i.e., of the covering digraph of a
gain digraph Φ with gains in Qd by looking at Φ. Cf. Cohen and Megiddo
(1993a), whose goals are similar but algorithms differ.

(GD(Cov): B, Polygons: Alg)
János Komlós

1997a Covering odd cycles. Combinatorica 17 (1997), 393–400. MR 99b:05114. Zbl.
902.05036.

Sharp asymptotic upper bounds on frustration index and vertex elimination
number for all-negative signed graphs with fixed negative girth. Improves
Bollobás, Erdős, Simonovits, and Szemerédi (1978a). [Problem. Generalize
to arbitrary signed graphs or signed simple graphs.] (P: Fr)

Helene J. Kommel
See F. Harary.

Dénes König
1936a Theorie der endlichen und unendlichen Graphen. Mathematik und ihre Anwen-

dungen, Band 16. Akademische Verlagsgesellschaft, Leipzig, 1936. Reprinted by
Chelsea, New York, 1950. MR 12, 195. Zbl. 13, 228 (e: 013.22803).

§X.3, “Komposition von Büsheln”, contains Thms. 9–16 of Ch. X. I restate
them in terms of a signature on the edge set; König says subgraph or p -
subgraph (“p-Teilgraph”) to mean what we would call the negative edge set
of a signature or a balanced signature. Instead of signed switching, König
speaks of set summation (“composition”) with a vertex star (“Büschel”). His
theorems apply to finite and infinite graphs except where stated otherwise.
Thm. 9: The edgewise product of balanced signatures is balanced. Thm.
10: Every balanced signing of a finite graph is a switching of the all-positive
signature. Thm. 11: A signature is balanced iff it has a Harary bipartition
[see Harary (1953a)]. Thm. 12 (cor. of 11): A graph is bicolorable iff every
polygon has even length. [König makes this fundamental theorem a corollary
of a signed-graph theorem!] Thm. 13: A signature is balanced if (not only
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if) every polygon of a fundamental system is positive. Thm. 14: A graph
with n vertices (a finite number) and c components has 2n−c balanced
signings. Thm. 16: The set of all vertex switchings except for one in each
finite component of Γ forms a basis for the space of all finitely generated
switchings. (sg: B, sw, E)

1990a Theory of Finite and Infinite Graphs. Transl. Richard McCoart, commentary by
W.T. Tutte, biographical sketch by T. Gallai. Birkhäuser, Boston, 1990. MR
91f:01026.

English translation of (1936a). §X.3: “Composition of stars”. The term
“Kreis” (circle, meaning polygon) is translated as “cycle”—one of the innu-
merable meanings of “cycle”. (sg: B, sw, E)

Hideo Kosako, Suck Joong Moon, Katsumi Harashima, and Takeo Ikai
1993a Variable-signed graph. Bull. Univ. Osaka Pref. Ser. A 42 (1993), 37–49. MR

96e:05167. Zbl. 798.05070.
“Variable-signed graph” = signed simple (di)graph Σ with switching func-
tion p and switched graph Σp . Known basic properties of switching are
established. More interesting: planar duality when |Σ| is planar. The pla-
nar dual |Σ|∗ inherits the same edge signs; a dual vertex has sign of the
surrounding primal face boundary. Property 9 is in effect the statements:
(1) If a signed plane graph has f negative face boundaries, then l(Σ) ≥ f/2.
(2) If the negative faces fall into two connected groups with oddly many faces
in each, (1) can be improved to ≥ f/2 + 1. Finally, incidence matrices are
studied that are only superficially related to signs. [The paper is hard to
interpret due to mathematical imprecision and language difficulty.]

(SG: Sw, fr, D, I)
Alexandr V. Kostochka

See A.A. Ageev and E. Györi.
A. Kotzig

1968a Moves without forbidden transitions in a graph. Mat. Časopis 18 (1968), 76–80.
MR 39 #4038. Zbl. (e: 155.31901). (p: o)

David Krackhardt
See P. Doreian.

M.A. Kramer and B.L. Palowitch, Jr.
1987a A rule-based approach to fault diagnosis using the signed directed graph. AIChE

J. 33 (1987), 1067–1078. MR 88j:94060.
Vertex signs indicate directions of change in vertex variables; signed directed
edges describe relations among these directions.
Truth tables for a signed edge as a function of endpoint signs. Algorithms
for deducing logical rules about states (assignments of vertex signs) from the
signed digraph. Has a useful discussion of previous literature, e.g., Iri, Aoki,
O’Shima, and Matsuyama (1979a). (SD, VS: Appl, Alg, Ref)

I. Krasikov
1988a A note on the vertex-switching reconstruction. Internat. J. Math. Math. Sci. 11

(1988), 825–827. MR 89i:05204. Zbl. 663.05046.
Following up Stanley (1985a), a signed Kn is reconstructible from its single-
vertex switching deck if its negative subgraph is disconnected [therefore also
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if its positive subgraph is disconnected] or if the minimum degree of its
positive or negative subgraph is sufficiently small. All done in terms of Seidel
switching of unsigned simple graphs. (k: sw, TG)

1994a Applications of balance equations to vertex switching reconstruction. J. Graph
Theory 18 (1994), 217–225. MR 95d:05091. Zbl. 798.05039.

Following up Krasikov and Roditty (1987a), (Kn, σ) is reconstructible from
its s -vertex switching deck if s = 1

2n− r where r ∈ {0, 2} and r ≡ n
(mod 4), or r = 1 ≡ n (mod 2); also, if s = 2 and the minimum degree
of the positive or negative subgraph is sufficiently small. Also, bounds on
|E−| if (Kn, σ) is not reconstructible. Negative-subgraph degree sequence:
reconstructible when s = 2 and n ≥ 10. Done in terms of Seidel switching
of unsigned simple graphs. (k: sw, TG)

1996a Degree conditions for vertex switching reconstruction. Discrete Math. 160 (1996),
273–278. MR 97f:04137. Zbl. 863.05056.

If the minimum degrees of its positive and negative subgraphs obey certain
bounds, a signed Kn is reconstructible from its s -switching deck. The main
bound involves the least and greatest even zeros of the Krawtchouk polyno-
mial Kn

s (x). Done in terms of Seidel switching of unsigned simple graphs.
[More details in Zbl.] (k: sw, TG)

Ilia Krasikov and Simon Litsyn
1996a On integral zeros of Krawtchouk polynomials. J. Combin. Theory Ser. A 74 (1996),

71–99. MR 97i:33005. Zbl. 853.33008.
Among the applications mentioned (pp. 72–73): 2. “Switching reconstruction
problem”, i.e., graph-switching reconstruction as in Stanley (1985a) etc. 4.
“Sign reconstruction problem”, i.e., reconstructing a signed graph from its
s-edge negation deck, which is the multiset of signed graphs obtained by
separately negating each subset of s edges (here called “switching signs”, but
it is not signed-graph switching); this is a new problem. (k: sw, TG)(SG)

I. Krasikov and Y. Roditty
1987a Balance equations for reconstruction problems. Arch. Math. (Basel) 48 (1987),

458–464. MR 88g:050996. Zbl. 594.05049.
§2: “Reconstruction of graphs from vertex switching”. Corollary 2.3. If a
signed Kn is not reconstructible from its s-vertex switching deck, a certain
linear Diophantine system (the “balance equations”) has a certain kind of
solution. For s = 1 the balance equations are equivalent to Stanley’s (1985a)
theorem; for larger s they may or may not be. All is done in terms of Seidel
switching of unsigned simple graphs. [Ellingham and Royle (1992a) note a
gap in the proof of Lemma 2.5.] (k: sw, TG)

1992a Switching reconstruction and Diophantine equations. J. Combin. Theory Ser. B
54 (1992), 189–195. MR 93e:05072. Zbl. 702.05062 (749.05047).

Main Theorem. Fix s ≥ 4. If n is large and (for odd s) not evenly even,
every signed Kn is reconstructible from its s-vertex switching deck. Different
results hold for s = 2, 3. (This is based on and strengthens Stanley (1985a).)
Theorems 5 and 6 concern reconstructing subgraph numbers. All done in
terms of Seidel switching of unsigned simple graphs. (k: sw, TG)

1994a More on vertex-switching reconstruction. J. Combin. Theory Ser. B 60 (1994),
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40–55. MR 94j:05090. Zbl. 794.05092.
Based on (1987a) and strengthening Stanley (1985a): Theorem 7. A signed
Kn is reconstructible if the Krawtchouk polynomial Kn

s (x) “has one or two
even roots [lying] far from n/2” (the precise statement is complicated). Nu-
merous other partial results, e.g., a signed Kn is reconstructible if s =
1
2 (n − r) where r = 0, 1, 3, or 2, 4, 5, 6 with side conditions. All is done in
terms of Seidel switching of unsigned simple graphs. (k: sw, TG)

Jan Kratochv́il, Jaroslav Nešetřil, and Ondřej Zýka
1992a On the computational complexity of Seidel’s switching. In: Jaroslav Nešetřil and

Miroslav Fiedler, eds., Fourth Czechoslovak Symposium on Combinatorics, Graphs
and Complexity (Prachatice, 1990), pp. 161–166. Ann. Discrete Math., Vol. 51.
North-Holland, Amsterdam, 1992. MR 93j:05156. Zbl. 768.68047.

Is a given graph switching equivalent to a graph with a specified property?
(This is Seidel switching of simple graphs.) Depending on the property, this
question may be in P or be NP-complete, whether the original property is
in P or is NP-complete. Properties: containing a Hamilton path; containing
a Hamilton polygon; no induced P2 ; regularity; etc. Thm. 4.1: Switching
isomorphism and graph isomorphism are polynomially equivalent.

(TG: Sw: Alg)

Vijaya Kumar [G.R. Vijayakumar]
See G.R. Vijayakumar.

Joseph P.S. Kung
See also J.E. Bonin and J. Kahn.

1986a Numerically regular hereditary classes of combinatorial geometries. Geom. Dedi-
cata 21 (1986), 85–105. MR 87m:05056. Zbl. 591.05019.

Examples include Dowling geometries, Ex. (6.2), and the bias matroids of
full group expansions of graphs in certain classes; see pp. 98–99. (GG: M)

1990a Combinatorial geometries representable over GF (3) and GF (q). I. The number of
points. Discrete Computat. Geom. 5 (1990), 83–95. MR 90i:05028. Zbl. 697.51007.

The Dowling geometry over the sign group is the largest simple ternary
matroid not containing the “Reid matroid”. (sg: M: X)

1990b The long-line graph of a combinatorial geometry. II. Geometries representable
over two fields of different characteristic. J. Combin. Theory Ser. B 50 (1990),
41–53. MR 91m:51007. Zbl. 645.05026.

Dowling geometries used in the proof of Prop. (1.2). (gg: M)
1993a Extremal matroid theory. In: Neil Robertson and Paul Seymour, eds., Graph

Structure Theory (Proc., Seattle, 1991), pp. 21–61. Contemp. Math., Vol. 147.
Amer. Math. Soc., Providence, R.I., 1993. MR 94i:05022. Zbl. 791.05018.

Survey and new results. See: §2.7: “Gain-graphic matroids.” P. 30, fn. 9.
§4.3: “Varieties.” §4.5. “Framed gain-graphic matroids.” §6.4: “Matroids
representable over two different characteristics.” §8: “Concluding remarks,”
on a possible ternary analog of Seymour’s decomposition theorem.

(GG: M: X, Str, Exp, Ref)
1993b The Radon transforms of a combinatorial geometry. II. Partition lattices. Adv.

Math. 101 (1993), 114–132. MR 95b:05051. Zbl. 786.05018.
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Dowling lattices are lower-half Sperner. The proof is given only for partition
lattices. (gg: M)

1996a Matroids. In: M. Hazewinkel, ed., Handbook of Algebra, Vol. 1, pp. 157–184.
North-Holland (Elsevier), Amsterdam, 1996. MR 98c:05040. Zbl. 856.05001.

§6.2: “Gain-graphic matroids.” (GG: M: Exp)
1996b Critical problems. In: Joseph E. Bonin, James G. Oxley, and Brigitte Servatius,

eds., Matroid Theory (Proc., Seattle, 1995), pp. 1–127. Contemp. Math., Vol. 197.
Amer. Math. Soc., Providence, R.I., 1996. MR 97k:05049. Zbl. 862.05019.

A remarkable more-than-survey with numerous new results and open prob-
lems. §4.5: “Abstract linear functionals in Dowling group geometries”. §6:
“Dowling geometries and linear codes”, concentrates on higher-weight Dowl-
ing geometries, extending Bonin (1993b). §7.4: “Critical exponents of classes
of gain-graphic geometries”. §7.5: “Growth rates of classes of gain-graphic
geometries”. §8.5: “Jointless Dowling group geometries”. Corollary 8.30.
§8.11: “Tangential blocks in Z(A)”. Also see pp. 56, 61, 88, 92, 114.

(GG, Gen: M)
1998a A geometric condition for a hyperplane arrangement to be free. Adv. Math. 135

(1998), 303–329. Zbl. 905.05017
Delete from a Dowling geometry a subset S that contains no whole plane.
Found: necessary and sufficient conditions for the characteristic polynomial
to factor completely over the integers. When the geometry corresponds to a
hyperplane arrangement, many more of the arrangements are not free than
are free; however, if S contains no whole line, all are free (so the characteristic
polynomial factors completely over Z) while many are not supersolvable.

(gg: M: N)
Joseph P.S. Kung and James G. Oxley

1988a Combinatorial geometries representable over GF (3) and GF (q). II. Dowling ge-
ometries. Graphs Combin. 4 (1988), 323–332. MR 90i:05029. Zbl. 702.51004.

For n ≥ 4, the Dowling geometry of rank n over the sign group is the
unique largest simple matroid of rank n that is representable over GF(3)
and GF(q). (sg: M: X)

David Kuo
See J.-H. Yan.

Richard Ladner
See V. Klee.

George M. Lady and John S. Maybee
1983a Qualitatively invertible matrices. Math. Social Sci. 6 (1983), 397–407. MR 85f:-

15005. Zbl. 547.15002.
In terms of signed graphs, restates and completes the characterizations of
sign-invertible matrices A due to Bassett, Maybee, and Quirk (1968a) and
George M. Lady (The structure of qualitatively determinate relationships.
Econometrica 51 (1983), 197–218. MR 85c:90019. Zbl. 517.15004) and re-
veals the sign pattern of A−1 in terms of path signs in the associated signed
digraph. (QM: Sol: SD)

J.C. Lagarias
1985a The computational complexity of simultaneous diophantine approximation prob-
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lems. SIAM J. Computing 14 (1985), 196–209. MR 86m:11048. Zbl. 563.10025.
Theorem F: Feasibility of integer linear programs with at most two variables
per constraint is NP -complete. (GN(I): D: Alg)

Hong-Jian Lai and Xiankun Zhang
20xxa Group colorability of graphs. Submitted

Simple graphs only are considered. The [abelian] “group chromatic number”
χ1(Γ) = minm such that Γ is A -colorable (as in Jaeger, Linial, Payan, and
Tarsi (1992a)) for every abelian A of order ≥ m . Various results, e.g., Γ
is Z2 -colorable iff it is a forest; analog of Brooks’ Theorem (stronger than
the original because χ1(Γ) ≥ χ(Γ); analog of Nordhaus-Gaddum Theorem
involving the complementary graph. [Thus χ1(Γ) seems to resemble ordinary
chromatic number more than it does gain-graph coloring.] (GG: Col)

20xxb Coloring a graph with elements in an Abelian group. Submitted
Continues (20xxa). Thm.: If Γ is simple and has no K5 minor, then χ1(Γ) ≤
5, improving on Jaeger, Linial, Payan, and Tarsi (1992a). (GG: Col)

Kelvin Lancaster
1981a Maybee’s “Sign solvability”. In: Harvey J. Greenberg and John S. Maybee, eds.,

Computer-Assisted Analysis and Model Simplification (Proc. Sympos., Boulder,
Col., 1980), pp. 259–270. Academic Press, New York, 1981. MR 82g:00016 (book).
Zbl. 495.93001 (book).

Comment on Maybee (1981a). (QM: Sol: SD)
Andrea S. LaPaugh and Christos H. Papadimitriou

1984a The even-path problem for graphs and digraphs. Networks 14 (1984), 507–513.
MR 86g:05057. Zbl. 552.68059.

Fast algorithms for existence of even paths between two given vertices (or
any two vertices) of a graph. The corresponding digraph problem is NP-
complete. [Signed (di)graphs are similar, due to the standard reduction by
negative subdivision.] [See also, e.g., works by Thomassen.]

(P: Paths: Alg)(sd: P: Paths: Alg)
Michel Las Vergnas

See A. Björner.
Monique Laurent

See M.M. Deza and A.M.H. Gerards.
Eugene L. Lawler

1976a Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and Win-
ston, New York, 1976. MR 55 #12005. Zbl. 413.90040.

Ch. 6: “Nonbipartite matching.” §3: Bidirected flows. (sg: O)
Ch. 4: “Network flows.” §8: “Networks with losses and gains.” §12: “Inte-
grality of flows and the unimodular property.” (GN)(sg: I, B)

Jason Leasure
See L. Fern.

Bruno Leclerc
1981a Description combinatoire des ultramétriques. Math. Sci. Humaines No. 73 (1981),

5–37. MR 82m:05083. Zbl. 476.05079. (SG: B)
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Jon Lee
1989a Subspaces with well-scaled frames. Linear Algebra Appl. 114/115 (1989), 21–56.

MR 90k:90111. Zbl. 675.90061.
See Section 9. (sg: O: I, Flows, Alg)

Shyi-Long Lee
See also I. Gutman.

1989a Comment on ‘Topological analysis of the eigenvalues of the adjacency matrices in
graph theory: A difficulty with the concept of internal connectivity’. J. Chinese
Chem. Soc. 36 (1989), 63–65.

Response to Gutman (1988a). Proposes weighted net sign: divide by number
of nonzero vertex signs. The goal is to have the ordering of net signs correlate
more closely with that of eigenvalues. (VS, SGw, Chem)

1989b Net sign analysis of eigenvectors and eigenvalues of the adjacency matrices in graph
theory. Bull. Inst. Chem., Academica Sinica No. 36 (1989), 93–104.

Expounds principally Lee, Lucchese, and Chu (1987a) and Lee and Gutman
(1989a). Examples include all connected, simple graphs of order ≤ 4 and
some aromatics. (VS, SGw, Exp, Chem)

1992a Topological analysis of five-vertex clusters of group IVa elements. Theoretica
Chimica Acta 81 (1992), 185–199.

See Lee, Lucchese, and Chu (1987a). More examples; again, eigenvalue and
net-sign orderings are compared. (VS, SGw, Chem)

Shyi-Long Lee and Ivan Gutman
1989a Topological analysis of the eigenvectors of the adjacency matrices in graph theory:

Degenerate case. Chemical Physics Letters 157 (1989), 229–232.
Supplements Lee, Lucchese, and Chu (1987a) to answer an objection by
Gutman (1988a), by treating vertex signs corresponding to multidimensional
eigenspaces. (VS, SGw, Chem)

Shyi-Long Lee and Chiuping Li
1994a Chemical signed graph theory. Internat. J. Quantum Chem. 49 (1994), 639–648.

Varies Lee, Lucchese, and Chu (1987a) by taking net signs of all balanced
signings, instead of only those obtained from eigenvectors, for small paths,
polygons, and polygons with short tails. The distribution of net sign, over
all signings of each graph, is more or less binomial. (VS, SGw, Chem)

1994b On generating molecular orbital graphs: the first step in signed graph theory. Bull.
Inst. Chem., Academica Sinica No. 41 (1994), 69–75.

Abbreviated presentation of (1994a). (VS, SGw: Exp)
Shyi-Long Lee and Feng-Yin Li

1990a Net sign approach in graph spectral theory. J. Molecular Structure (Theochem)
207 (1990), 301–317.

Similar topics to S.-L. Lee (1989a, 1989b). Several examples of order 6.
(VS, SGw, Exp, Chem)

1990b Net sign analysis of five-vertex chemical graphs. Bull. Inst. Chem., Academica
Sinica No. 37 (1990), 83–97.

See Lee, Lucchese, and Chu (1987a). Treats all connected, simple graphs of
order 5. (VS, SGw, Chem)



the electronic journal of combinatorics #DS8 90

Shyi-Long Lee, Feng-Yin Li, and Friday Lin
1991a Topological analysis of eigenvalues of particle [sic] in one- and two-dimensional

simple quantal systems: Net sign approach. Internat. J. Quantum Chem. 39
(1991), 59–70.

See Lee, Lucchese, and Chu (1987a). §II: Net signs calculated for paths.
§§III, IV: Planar graphs with two different types of potential, yielding com-
plicated results. (VS, SG, Chem)

Shyi-Long Lee, Robert R. Lucchese, and San Yan Chu
1987a Topological analysis of eigenvectors of the adjacency matrices in graph theory: The

concept of internal connectivity. Chemical Physics Letters 137 (1987), 279–284.
MR 88i:05130. Zbl. none.

Introduces the net sign of a (balanced) signed graph. A graph has vertices
signed according to the signs of an eigenvector Xi of the adjacency matrix,
µ(vr) = sgn (Xir), and σ(vrvs) = µ(vr)µ(vs) [hence Σ is balanced]. Note
that a vertex can have ‘sign’ 0. Net sign of a [hydrocarbon] chemical graph
is applied to prediction of properties of molecular orbitals.

(VS, SGw, Chem)
Shyi-Long Lee, Yeung-Long Luo, and Yeong-Nan Yeh

1991a Topological analysis of some special graphs. III. Regular polyhedra. J. Cluster
Sci. 2 (1991), 105–116.

See Lee, Lucchese, and Chu (1987a). Net signs for the Platonic polyhedra
(Table I). (VS, SGw, Chem)

Shyi-Long Lee and Yeong-Nan Yeh
1990a Topological analysis of some special classes of graphs. Hypercubes. Chemical

Physics Letters 171 (1990), 385–388.
Follows up Lee, Lucchese, and Chu (1987a) and Lee and Gutman (1989a),
calculating net signs of eigenspatially signed hypercube graphs of dimensions
up to 6 by means of a general graph-product formula. (VS, SGw, Chem)

1993a Topological analysis of some special classes of graphs. II. Steps, ladders, cylinders.
J. Math. Chem. 14 (1993), 231–241. MR 95f:05079.

See Lee, Lucchese, and Chu (1987a). Net signs and eigenvalues are compared.
(VS, SGw, Chem)

Samuel Leinhardt
See also J.A. Davis and P.W. Holland.

Samuel Leinhardt, ed.
1977a Social Networks: A Developing Paradigm. Academic Press, New York, 1977.

An anthology reprinting some basic papers in structural balance theory.
(PsS, SG: B, Cl)

P.W.H. Lemmens and J.J. Seidel
1973a Equiangular lines. J. Algebra 24 (1973), 494–512. MR 46 #7084. Zbl. 255.50005.

(TG, G)

Marianne Lepp [Marianne L. Gardner]
See R. Shull.

David W. Lewit
See E.G. Shrader.
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Chiuping Li
See I. Gutman and S.-L. Lee.

Feng-Hin Li
See S.-L. Lee.

Hans Liebeck
See D. Harries.

Martin W. Liebeck
1980a Lie algebras, 2-graphs and permutation groups. Bull. London Math. Soc. 33

(1982), 76–85. MR 81f:05095. Zbl. 499.05031.
Examines the F Aut ([Σ])-module F V (Σ), where Σ is a signed complete
graph and F is a field of characteristic 2. (TG: Aut)

1982a Groups fixing graphs in switching classes. J. Austral. Math. Soc. (A) 33 (1982),
76–85. MR 83h:05048. Zbl. 499.05031.

Given an abstract group A , which of its permutation representations are
exposable on every invariant switching class of signed complete graphs [see
Harries and H. Liebeck (1978a) for definitions]? (k: sw, TG: Aut)

Thomas M. Liebling
See H. Groflin.

Magnhild Lien and William Watkins
20xxa Dual graphs and knot invariants. Submitted

The Kirchhoff (“Laplacian”) matrices of a signed plane graph and its dual
have the same invariant factors. The proof is via the signed graphs of knot
diagrams. (SGc: D, I, Knot)

Ko-Wei Lih
See J.-H. Yan.

Friday Lin
See S.-L. Lee.

Bernt Lindström
See F. Harary.

Nathan Linial
See F. Jaeger.

Sóstenes Lins
1981a A minimax theorem on circuits in projective graphs. J. Combin. Theory Ser. B

30 (1981), 253–262. MR 82j:05074. Zbl. 457.05057.
For Eulerian Σ in projective plane, max. number of edge-disjoint negative
polygons = min. number of edges cut by a noncontractible closed curve that
avoids the vertices. [Generalized by Schrijver (1989a).] (SG: T, fr, Alg)

1982a Graph-encoded maps. J. Combin. Theory Ser. B 32 (1982), 171–181. MR
83e:05049. Zbl. 465.05031, (478.05040).

See §4. (sg: T: b)

1985a Combinatorics of orientation reversing polygons. Aequationes Math. 29 (1985),
123–131. MR 87c:05051. Zbl. 592.05019. (sg, p: T, Fr)
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J.H. van Lint and J.J. Seidel
1966a Equilateral point sets in elliptic geometry. Proc. Koninkl. Ned. Akad. Wetenschap.

Ser. A 69 (= Indag. Math. 28) (1966), 335–348. MR 34 #685. Zbl. 138, 417 (e:
138.41702). Reprinted in Seidel (1991a), pp. 3–16. (TG, G)

Marc J. Lipman and Richard D. Ringeisen
1978a Switching connectivity in graphs. In: F. Hoffman et al., eds., Proceedings of the

Ninth Southeastern Conference. on Combinatorics, Graph Theory and Computing
(Boca Raton, 1978), pp. 471–478. Congressus Numerantium, XXI. Utilitas Math.
Publ. Inc., Winnipeg, Man., 1978. MR 80k:05073. Zbl. 446.05033. (TG)

Simon Litsyn
See I. Krasikov.

Charles H.C. Little
See C.P. Bonnington.

M. Loebl
See Y. Crama.

D.O. Logofet and N.B. Ul’yanov
1982a Necessary and sufficient conditions for the sign stability of matrices. (In Russian.)

Dokl. Akad. Nauk SSSR 264 (1982), 542–546. MR 84j:15018. Zbl. 509.15008.
Necessity of Jeffries’ (1974a) sufficient conditions. (Sta)

D.O. Logofet and N.B. Ul’janov [N.B. Ul’yanov]
1982b Necessary and sufficient conditions for the sign stability of matrices. Soviet Math.

Dokl. 25 (1982), 676–680. MR 84j:15018. Zbl. 509.15008.
English translation of (1982a). (Sta)

M. Loréa
1979a On matroidal families. Discrete Math. 28 (1979), 103–106. MR 81a:05029. Zbl.

409.05050.
Discovers the “count” matroids of graphs (see Whiteley (1996a)).

(Bic: Gen)
Janice R. Lourie

1964a Topology and computation of the generalized transportation problem. Manage-
ment Sci. 11 (1965), No. 1 (Sept., 1964), 177–187. (GN: M(bases))

L. Lovász
See also J.A. Bondy and Gerards et al. (1990a).

1965a On graphs not containing independent circuits. (In Hungarian.) Mat. Lapok 16
(1965), 289–299. MR 35 #2777. Zbl. 151, 334 (e 151.33403).

Characterization of the graphs having no two vertex-disjoint polygons. See
Bollobás (1978a) for exposition in English. [Major Problem. Characterize
the biased graphs having no two vertex-disjoint unbalanced polygons. This
theorem is the contrabalanced case. The sign-biased case was also solved by
Lovász; see Seymour (1995a). McQuaig (1993a) might be relevant.]

(GG: Polygons)
1983a Ear-decompositions of matching-covered graphs. Combinatorica 3 (1983), 105–

117. MR 85b:05143. Zbl. 516.05047.
It is hard to escape the feeling that we are dealing with all-negative signed
graphs and their −K4 and −K◦2 minors. [And indeed, see Gerards and
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Schrijver (1986a) and Gerards et al. (1990a) and the notes on Seymour
(1995a).] (P: Str)

L. Lovász and M.D. Plummer
1986a Matching Theory. North-Holland Math. Stud., Vol. 121. Ann. Discrete Math.,

Vol. 29. Akadémiai Kiadó, Budapest, and North-Holland, Amsterdam, 1986. MR
88b:90087. Zbl. 618.05001.

L. Lovász, L. Pyber, D.J.A. Welsh, and G.M. Ziegler
1995a Combinatorics in pure mathematics. In: R.L. Graham, M. Grötschel, and L.

Lovász, eds., Handbook of Combinatorics, Vol. II, Ch. 41, pp. 2039–2082. North-
Holland (Elsevier), Amsterdam, and MIT Press, Cambridge, Mass., 1995. MR
97f:00003. Zbl. 851.52017.

§7: “Knots and the Tutte polynomial”, considers the signed graph of a knot
diagram (pp. 2076–77). (SGc: Knot)

Robert R. Lucchese
See S.-L. Lee.

Tomasz  Luczak
See E. Györi.

J. Richard Lundgren
See H.J. Greenberg and F. Harary.

Yeung-Long Luo
See I. Gutman and S.-L. Lee.

Enzo Maccioni
See F. Barahona.

Thomas L. Magnanti
See R.K. Ahuja.

N.V.R. Mahadev
See also P.L. Hammer.

N.V.R. Mahadev and U.N.Peled
1995a Threshold Graphs and Related Topics. Ann. Discrete Math., Vol. 56. North-

Holland, Amsterdam, 1995. MR 97h:05001. Zbl. 950.36502.
§8.3: “Bithreshold graphs” (from Hammer and Mahadev (1985a)), and §8.4:
“Strict 2-threshold graphs” (from Hammer, Mahadev, and Peled (1989a)),
characterize two types of threshold-like graph. In each, a different signed
graph H is defined on E(Γ) so that Γ is of the specified type iff H is
balanced. (The negative part of H is the “conflict graph”, Γ∗ .) The reason
is that one wants Γ to decompose into two subgraphs, and the subgraphs,
if they exist, must be the two parts of the Harary bipartition of H . [Thus
one also gets a fast recognition algorithm (though not the fastest possible)
for the desired type from the fast recognition of balance.] (SG: B: Appl)
§8.5: “Recognizing threshold dimension 2.” Based on Raschle and Simon
(1995a). Given: Γ ⊆ Kn such that Γ∗ is bipartite. Orient −Kn so that Γ-
edges are introverted and the other edges are extroverted. Their “alternating
cycle” is a coherent closed walk in this orientation. Let us call it “black” (in
a given black-white proper coloring of Γ∗ ) if its Γ-edges are all black. Thm.
8.5.2 (Hammer, Ibaraki, and Peled (1981a)): If there is a black coherent
closed walk in E0 , then there is a coherent tour (closed trail) of length 6
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(which is a pair of joined triangles or a hexagon—their AP5 and AP6 ).
Thm. 8.5.4: Given that there is no black coherent hexagon, one can recolor
quickly so there is no black coherent 6-tour. Thm. 8.5.9: Given that there
is no ‘double’ coherent hexagon (the book’s “double AP6 ”), one can recolor
quickly so there is no black coherent hexagon. Thm. 8.5.28: Any 2-coloring
of Γ∗ can be quickly transformed into one with no ‘double’ coherent hexagon.
[Question. Can any of this, especially Thm. 8.5.2, be generalized to arbitrary
oriented all-negative graphs B ? Presumably, this would require first defining
a conflict graph on the introverted edges of B . More remotely, consider
generalizing to bidirected complete or arbitrary graphs.] (p: o, Alg)
§9.2.1: “Threshold signed graphs.” In this version it’s not clear where the
signs are! (and their role is trivial). Real weights are assigned to the vertices
and an edge receives the sign of the weight product of its endpoints.

(sg: b)
Ali Ridha Mahjoub

See F. Barahona.
J.M. Maillard

See J. Vannimenus.
M. Malek-Zavarei and J.K. Aggarwal

1971a Optimal flow in networks with gains and costs. Networks 1 (1971), 355–365. MR
45 #4896. Zbl. 236.90026. (GN: b)

R.B. Mallion
See A.C. Day.

C.L. Mallows and N.J.A. Sloane
1975a Two-graphs, switching classes and Euler graphs are equal in number. SIAM J.

Appl. Math. 28 (1975), 876–880. MR 55 #164. Zbl. 275.05125, (297.05129).
Thm. 1: For all n , the number of unlabelled two-graphs of order n [i.e.,
switching isomorphism classes of signed Kn ’s] equals the number of unla-
belled even-degree simple graphs on n vertices. The key to the proof is that
a permutation fixing a switching class fixes a signing in the class. (Seidel
(1974a) proved the odd case, where the fixing property is simple.) Thm. 2:
The same for the labelled case. [More in Cameron (1977b), Cameron and
Wells (1986a), Cheng and Wells (1984a, 1986a).]
To prove the fixing property they find the conditions under which a given
permutation π of V (Kn) and switching set C fix some signed Kn . [More
in Harries and Liebeck (1978a), M. Liebeck (1982a), and Cameron (1977b).]

(TG: Aut, E)
Rachel Manber

See also R. Aharoni and V. Klee.
1982a Graph-theoretical approach to qualitative solvability of linear systems. Linear Al-

gebra Appl. 48 (1982), 457–470. MR 84g:68054. Zbl. 511.15008. (SD, QM: Sol)
Rachel Manber and Jia-Yu Shao

1986a On digraphs with the odd cycle property. J. Graph Theory 10 (1986), 155–165.
MR 88i:05090. Zbl. 593.05032. (SD, SG: P)

Dănuţ Marcu
I cannot vouch for the authenticity of these articles. See MR 97a:05095 and Zbl.
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701.51004. Also see MR 92a:51002, 92b:51026, 92h:11026, 97k:05050; and Marcu
(1981b).

1980a On the gradable digraphs. An. Ştiinţ. Univ. “Al. I. Cuza” Iaşi Secţ. I a Mat.
(N.S.) 26 (1980), 185–187. MR 82k:05056 (q.v.). Zbl. 438.05032.

See Harary, Norman, and Cartwright (1965a) for the definition. (GD: b)

1981a No tournament is gradable. An. Univ. Bucureşti Mat. 30 (1981), 27–28. MR
83c:05069. Zbl. 468.05028.

See Harary, Norman, and Cartwright (1965a) for the definition. The tour-
naments of order 3 are not gradable, whence the titular theorem. (GD: b)

1981b Some results concerning the even cycles of a connected digraph. Studia Univ.
Babeş-Bolyai Math. 26 (1981), 24–28. MR 83e:05058. Zbl. 479.05032.

§1, “Preliminary considerations”, appears to be an edited, unacknowledged
transcription of portions of Harary, Norman, and Cartwright (1965a) (or
possibly (1968a)), pp. 341–345. Wording and notation have been modified,
a trivial corollary has been added, and some errors have been introduced;
but the mathematics is otherwise the same down to details of proofs. §2,
“Results”, is largely a list of the corollaries resulting from setting all signs
negative. The exception is Thm. 2.5, for which I am not aware of a source;
however, it is simple and well known. (sg(SD): B)

1987a Note on the matroidal families. Riv. Math. Univ. Parma (4) 13 (1987), 407–412.
MR 89k:05025.

Matroidal families of (multi)graphs (see Simões-Pereira (1973a)) correspond
to functions on all isomorphism types of graphs that are similar to matroid
rank functions, e.g., submodular. This provides insight into matroidal fami-
lies, e.g., it immediately shows there are infinitely many. (Bic, EC: Gen)

Harry Markowitz
1955a Concepts and computing procedures for certain Xij programming problems. In:

H.A. Antosiewicz, ed., Proceedings of the Second Symposium in Linear Program-
ming (Washington, D.C., 1955), Vol. II, pp. 509–565. Nat. Bur. Standards of U.S.
Dept. of Commerce, and Directorate of Management Analysis, DCS Comptroller,
HQ, U.S. Air Force, 1955. Sponsored by Office of Scientific Res., Air Res. and
Develop. Command. MR 17, 789.

Also see RAND Corporation Paper P-602, 1954. (GN: m(bases))
Clifford W. Marshall

1971a Applied Graph Theory. Wiley-Interscience, New York, 1971. MR 48 #1951. Zbl.
226.05101.

“Consistency of choice” discusses signed graphs, pp. 262–266.
(SG: B, A: Exp)

J.H. Mason
1977a Matroids as the study of geometrical configurations. In: Higher Combinator-

ics (Proc. NATO Adv. Study Inst., Berlin, 1976), pp. 133–176. NATO Adv.
Study Inst. Ser., Ser. C: Math. Phys. Sci., Vol. 31. Reidel, Dordrecht, 1977. MR
80k:05037. Zbl. 358.05017.

§§2.5-2.6: “The lattice approach” and “Generalized coordinates”, pp. 172–
174, propose a purely matroidal and more general formulation of Dowling’s
construction of his lattices. (gg(Gen): M)
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1981a Glueing matroids together: A study of Dilworth truncations and matroid ana-
logues of exterior and symmetric powers. In: Algebraic Methods in Graph Theory
(Proc., Szeged, 1978), Vol. II, pp. 519–561. Colloq. Math. Soc. János Bolyai, 25.
North-Holland, Amsterdam, 1981. MR 84i:05041. Zbl. 477.05022.

Dowling matroids are an example in §1. (gg: M)
R.A. Mathon

See F.C. Bussemaker and Seidel (1991a).
Hisayoshi Matsuyama

See M. Iri.
Laurence R. Matthews

1977a Bicircular matroids. Quart. J. Math. Oxford (2) 28 (1977), 213–227. MR 58
#21732. Zbl. 386.05022.

Thorough study of bicircular matroids, introduced by Klee (1971a) and
Simões-Pereira (1972a). (Bic)

1978a Properties of bicircular matroids. In: Problèmes Combinatoires et Théorie des
Graphes (Colloq. Internat., Orsay, 1976), pp. 289–290. Colloques Internat. du
CNRS, 260. Editions du C.N.R.S., Paris, 1978. MR 81a:05030. Zbl. 427.05021.

(Bic)
1978b Matroids on the edge sets of directed graphs. In: Optimization and Operations

Research (Proc. Workshop, Bonn, 1977), pp. 193–199. Lecture Notes in Economics
and Math. Systems, 157. Springer, Berlin, 1978. MR 80a:05103. Zbl. 401.05031.

(gg: M)

1978c Matroids from directed graphs. Discrete Math. 24 (1978), 47–61. MR 81e:05055.
Zbl. 388.05005.

Invents poise, modular poise, and antidirection matroids of a digraph.
(gg: M)

1979a Infinite subgraphs as matroid circuits. J. Combin. Theory Ser. B 27 (1979), 260–
273. MR 81e:05056. Zbl. 433.05018. (Bic: Gen)

Laurence R. Matthews and James G. Oxley
1977a Infinite graphs and bicircular matroids. Discrete Math. 19 (1977), 61–65. MR 58

#16348. Zbl. 386.05021. (Bic)
Jean François Maurras

1972a Optimization of the flow through networks with gains. Math. Programming 3
(1972), 135–144. MR 47 #2993. Zbl. 243.90048. (GN: M)

John S. Maybee
See also L. Bassett, J. Genin, H.J. Greenberg, F. Harary, C.R. Johnson, and G.M.
Lady.

1974a Combinatorially symmetric matrices. Linear Algebra Appl. 8 (1974), 529–537. MR
56 #11845. Zbl. (438.15021).

Survey and simple proofs. (QM: sd, gg, Sta)(Exp)

1980a Sign solvable graphs. Discrete Appl. Math. 2 (1980), 57–63. MR 81g:05063. Zbl.
439.05024. (SD: QM: Sol)

1981a Sign solvability. In: Harvey J. Greenberg and John S. Maybee eds., Computer-
Assisted Analysis and Model Simplification (Proc. Sympos., Boulder, Col., 1980),
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pp. 201–257. Discussion, p. 321. Academic Press, New York, 1981. MR 82g:00016
(book). Zbl. 495.93001 (book).

For comments, see Lancaster (1981a). (QM: Sol: SD)
1989a Qualitatively stable matrices and convergent matrices. In: Fred Roberts, ed.,

Applications of Combinatorics and Graph Theory to the Biological and Social Sci-
ences, pp. 245–258. IMA Vols. Math. Appl., Vol. 17. Springer-Verlag, New York,
1989. MR 90h:34082. Zbl.708.15007.

Signed (di)graphs play a role in characterizations. See e.g. §7. See also
Roberts (1989a), §4. (QM, SD)

John S. Maybee and Stuart J. Maybee
1983a An algorithm for identifying Morishima and anti-Morishima matrices and balanced

digraphs. Math. Social Sci. 6 (1983), 99–103. MR 85f:05084. Zbl. 567.05038.
A linear-time algorithm to determine balance or antibalance of the undi-
rected signed graph of a signed digraph. The algorithm of Harary and Kabell
(1980a) appears to be different. (SG: B, P: Alg)

John Maybee and James Quirk
1969a Qualitative problems in matrix theory. SIAM Rev. 11 (1969), 30–51. MR 40

#1127. Zbl. 186, 335 (e: 186.33503).
An important early survey with new results.

(QM, SD: Sol, Sta, b; Exp(in part), Ref)
John S. Maybee and Daniel J. Richman

1988a Some properties of GM-matrices and their inverses. Linear Algebra Appl. 107
(1988), 219–236. MR 89k:15039. Zbl. 659.15021.

Square matrix A is a GM-matrix if, for every positive and negative cycle P
and N in its signed digraph, V (P ) ⊇ V (N). Classification of irreducible
GM-matrices; connections with the property that each p×p principal minor
has sign (−1)p ; some conclusions about the inverse. (SD: QM)

John S. Maybee and Gerry M. Weiner
1987a L-functions and their inverses. SIAM J. Algebraic Discrete Methods 8 (1987),

67–76. MR 88a:26021. Zbl. 613.15005.
An L-function is a nonlinear generalization of a qualitative linear function.
Signed digraphs play a small role. (QM, SD)

Stuart J. Maybee
See J.S. Maybee.

W. Mayeda and M.E. Van Valkenburg
1965a Properties of lossy communication nets. IEEE Trans. Circuit Theory CT-12

(1965), 334–338. (GN)
R. Maynard

See F. Barahona and I. Bieche.
Richard D. McBride

See G.G. Brown.
H. Gilman McCann

See E.C. Johnsen.
William McCuaig

1993a Intercyclic digraphs. In: Neil Robertson and Paul Seymour, eds., Graph Structure
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Theory (Proc., Seattle, 1991), pp. 203–245. Contemp. Math., Vol. 147. Amer.
Math. Soc., Providence, R.I., 1993. MR 94f:05062. Zbl. 789.05042.

Characterizes the digraphs with no two disjoint cycles as well as those with
no two arc-disjoint cycles. [Since cycles do not form a linear subclass of
polygons, this is not a biased-graphic theorem, but it might be of use in
studying biased graphs that have no two disjoint balanced polygons. See
Lovász (1965a).] (Str)

†20xxa Pólya’s permanent problem. Submitted.
Question 1. Does a given digraph D have an even cycle? Question 2. Can
a given digraph D be signed so that every cycle is negative? (These prob-
lems are easily seen to be equivalent.) The main theorem (the “Even Dicycle
Thm.”) is a structural characterization of digraphs that have a signing in
which every cycle is negative. (These were previously characterized by for-
bidden minors in Seymour and Thomassen (1987a).)
The main theorem is proved also in Robertson, Seymour, and Thomas (20xx-
a). (SD: p: Str)( SG)

20xxb When all dicycles have the same length. Submitted.
Uses the main theorem of (20xxa) and Robertson, Seymour, and Thomas
(20xxa) to prove: a digraph has an edge weighting in which all cycles have
equal nonzero total weight iff it does not contain a “double dicycle”: a sym-
metric digraph whose underlying simple graph is a circle. There is also a
structural description of such digraphs. (SD: p: Str)(Sw)

William McCuaig, Neil Robertson, P.D. Seymour, and Robin Thomas
20xxa Permanents, Pfaffian orientations, and even directed circuits. Extended abstract.

In: Proceedings of the 1997 Symposium on the Theory of Computing
Extended abstract of McCuaig (20xxa) and Robertson, Seymour, and Tho-
mas (20xxa). (SD: p)

W.D. McCuaig and M. Rosenfeld
1985a Parity of cycles containing specified edges. In: B.R. Alspach and C.D. Godsil,

eds., Cycles in Graphs, pp. 419–431. Ann. Discrete Math., Vol. 27. North-Holland
Math. Stud., Vol. 115. North-Holland, Amserdam, 1985. MR 87g:05139. Zbl.
583.05037.

In a 3-connected graph, almost any two edges are in an even and an odd
polygon. [By the negative-subdivision trick this generalizes to signed graphs.]
(P, sg: B)

T.A. McKee
1984a Balance and duality in signed graphs. Proc. Fifteenth Southeastern Conf. on

Combinatorics, Graph Theory and Computing (Baton Rouge, 1984). Congressus
Numer. 44 (1984), 11–18. MR 87b:05124. Zbl. 557.05046. (SG: B: D)

1987a A local analogy between directed and signed graphs. Utilitas Math. 32 (1987),
175–180. MR 89a:05075. Zbl. 642.05023. (SG: D, Cl, B)

Kathleen A. McKeon
See G. Chartrand.

Nimrod Megiddo
See E. Cohen and D. Hochbaum.
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Roy Meshulam
See R. Aharoni and J. Kahn.

Robert Messer
See E.M. Brown.

Marc Mézard, Giorgio Parisi, and Miguel Angel Virasoro
1987a Spin Glass Theory and Beyond. World Scientific Lecture Notes in Physics, Vol. 9.

World Scientific, Singapore, 1987. MR 91k:82066.
Focuses on the Sherrington-Kirkpatrick model, i.e., underlying complete
graph, emphasising the Parisi-type model (see articles reprinted herein),
which posits numerous metastable states, separated by energy barriers of
greatly varying heights and subdividing as temperature decreases. Essen-
tially heuristic (as noted in MR): that is, the ideas awaited [and still largely
await] mathematical justification.
Many original articles on Ising and vector models (both of which are based
on weighted signed graphs) are reprinted herein, though few are of general
signed-graphic interest.
[See also, i.a., Toulouse (1977a, etc.), Chowdhury (1986a), Stern (1989a), Fis-
cher and Hertz (1991a), Vincent, Hammann, and Ocio (1992a) for physics,
Barahona (1982a, etc.), Grötschel, Jünger, and Reinelt (1987a) for mathe-
matics.] (Phys, SG: Fr: Exp, Ref)
Ch. 0, “Introduction”, briefly compares, in the obvious way, balance in social
psychology with frustration in spin glasses. (Phys, PsS: SG: B: Exp)
Pt. I, “Spin glasses”, Ch. 2, “The TAP approach”: pp. 19–20 describe 1-
vertex switching of a weighted signed graph to reduce frustration, not how-
ever necessarily producing the frustration index (minimum frustration).

(Phys: SG: Fr, Sw, Alg: Exp)
Raymond E. Miller

See R.M. Karp.
William P. Miller

See J.E. Bonin.
Edward Minieka

1972a Optimal flow in a network with gains. INFOR 10 (1972), 171–178. Zbl. 234.90012.
(GN: M(indep), B)

1978a Optimization Algorithms for Networks and Graphs. Marcel Dekker, New York and
Basel, 1978. MR 80a:90066. Zbl. 427.90058.

§4.6: “Flows with gains,” pp. 151–174. Also see pp. 80–81.
(GN: B, Sw, m(indep): Exp)

1981a Algoritmy Optimizatsii na Setyakh i Grafakh. Transl. M.B. Katsnel’son and M.I.
Rubinshtĕın; ed. E.K. Maslovskĭı. Mir, Moskva, 1981. MR 83f:90118. Zbl.
523.90058.

Russian translation of (1978a). (GN: B, Sw, m(indep): Exp)
V. Mishra

1974a Graphs Associated With (0,+1,−1) Arrays. Doctoral thesis, Indian Inst. of Tech-
nology, Bombay, 1974.

S. Mitra
1962a Letter to the editors. Behavioral Sci. 7 (1962), 107.
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Treats only signed Kn . Viewed with hindsight, observes that balance holds
iff I + A(Σ) = vvT for some vector v of ±1’s; also, defines switching and
observes [I call this the Switching Thm. of Frustration] that frustration index
l(Σ) = minimum number of negative edges over all switchings. States a
simple “algorithm” for computing l(Σ) [but without a stopping rule, and
the obvious ones are invalid]. (sg: k: A, sw, Fr)

Bojan Mohar
1989a An obstruction to embedding graphs in surfaces. Discrete Math. 78 (1989), 135–

142. MR 90h:05046. Zbl. 686.05019.
The “overlap matrix” of a signed graph with respect to a rotation system
and a spanning tree provides a lower bound on the demigenus that sometimes
improves on that from Euler’s formula. (SG: T)

Elliott W. Montroll
1964a Lattice statistics. In: Edwin F. Beckenbach, ed., Applied Combinatorial Mathe-

matics, Ch. 4, pp. 96–143. Wiley, New York, 1964. MR 30 #4687 (book). Zbl.
141, 155 (e: 141.15503).

§4.4: “The Pfaffian and the dimer problem”. Exemplified by the square lat-
tice, expounds Kasteleyn’s method of signing edges to make the Pfaffian term
signs all positive. Partial proofs. §4.7, “The Ising problem”, pp. 127–129,
explains application to the Ising model. Exceptionally readable. [Further
development in, e.g., Vazirani and Yannakakis (1988a, 1989a).]

(SG, Phys: Exp)
J.W. Moon and L. Moser

1966a An extremal problem in matrix theory. Mat. Vesnik 3 (18) (1966), 209–211. MR
34 #7385. Zbl. (e: 146.01401). (sg: Fr)

Suck Jung Moon
See H. Kosako.

M.A. Moore
See A.J. Bray.

Michio Morishima
1952a On the laws of change of the price-system in an economy which contains comple-

mentary commodities. Osaka Economic Papers 1 (1952), 101–113.
§4: “Alternative expression of the assumptions (1),” can be interpreted with
hindsight as proving that, for a signed Kn , every triangle is positive iff the
signature switches to all positive. (Everything is done with sign-symmetric
matrices, not graphs, and switching is not mentioned in any form.)

(sg: b, sw)
Julian O. Morrissette

1958a An experimental study of the theory of structural balance. Human Relations 11
(1958), 239–254.

Proposes that edges have strengths between −1 and +1 instead of pure signs.
The Cartwright-Harary degree of balance (1956a), computed from polygons,
is modified to take account of strength. In addition, signed graphs are allowed
to have edges of two types, say U and A , and only short mixed-type polygons
enter into the degree of balance. This is said to be more consistent with the
experimental data reported herein. (PsS, SG, Gen: Fr)
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Julian O. Morrissette and John C. Jahnke
1967a No relations and relations of strength zero in the theory of structural balance.

Human Relations 20 (1967), 189–195.
Reports an experiment; then discusses problems with and alternatives to the
Cartwright-Harary (1956a) polygon degree of balance. (PsS: Fr)

L. Moser
See J.W. Moon.

Sebastiano Mosterts
See E.L. Johnson.

Andrej Mrvar
See P. Doreian.

Luigi Muracchini and Anna Maria Ghirlanda
1965a Sui grafi segnati ed i grafi commutati. Statistica (Bologna) 25 (1965), 677–680.

MR 33 #7272.
A partially successful attempt to use unoriented signed graphs to define a line
graph of a digraph. [See Zaslavsky (20xxb) for the correct signed-graph ap-
proach.] The Harary-Norman line digraph is also discussed. (SG: B, LG)

Kunio Murasugi
1988a On the signature of a graph. C.R. Math. Rep. Acad. Sci. Canada 10 (1988),

107–111. MR 89h:05056.
The signature of a sign-colored graph (see 1989a) is an invariant of the sign-
colored graphic matroid. (SGc: I, m)

1989a On invariants of graphs with applications to knot theory. Trans. Amer. Math.
Soc. 314 (1989), 1–49. MR 89k:57016. Zbl. 726.05051.

Studies a dichromatic form, PΣ(x, y, z), of Kauffman’s (1989a) Tutte poly-
nomial of a sign-colored graph. The deletion-contraction parameters are
aε = 1, bε = xε for ε = ±1; the initial values are such that PΣ(x, y, z) =
y−1QΣ(a, b; y, z) of Zaslavsky (1992b). The polynomial is shown to be, in
effect, an invariant of the sign-colored graphic matroid.
Much unusual graph theory is in here. A special focus is the degrees of the
polynomial. First Main Thm. 3.1: Formulas for the maximum and minimum
combined degrees of PΣ(x, y, z). §7, “Signature of a graph”, studies the
signature (σ in the paper, s here) of the Kirchhoff matrix BΣ obtained
by changing the diagonal of A(Σ) so the row sums are 0. Prop. 7.2 is a
matrix-tree theorem [entirely different from that of Zaslavsky (1982a)]. The
Second Main Thm. 8.1 bounds the signature: |V |−2β0(Σ−) + 1 ≤ s ≤ |V |−
2β0(Σ+)+1 (β0 = number of components), with equality characterized. The
Kirchhoff matrix is further examined later on. §9, “Dual graphs”: Differing
from most studies, here the dual of a sign-colored plane graph is the planar
dual with same edge signs [however, negating all colors is a triviality]. §10,
“Periodic graphs”: These graphs might be called branched covering graphs
of signed gain graphs with finite cyclic gain group. [Thus they generalize the
periodic graphs of Collatz (1978a) and others.] §§12–15 concern applications
to knot theory. (SGc: N, I, GG(Cov), D, Knot)

1991a Invariants of graphs and their applications to knot theory. In: S. Jackowski, B.
Oliver, and K. Pawa lowski, eds., Algebraic topology Poznań 1989 (Proc., Poznań,
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1989), pp. 83–97. Lecture Notes in Math., Vol. 1474. Springer-Verlag, Berlin,
1991. MR 92m:57015. Zbl. 751.57007.

§§1–3 expound results from (1989a) on the dichromatic polynomial and the
signature of a sign-colored graph and knot applications. §5 discusses the
signed Seifert graph of a link diagram. (SGc: N, I, Knot: Exp)

1993a Musubime riron to sono ōnō. [Knot Theory and Its Applications.] (In Japanese.)
1993.

See (1996a). (SGc: Knot)
1996a Knot Theory and Its Applications. Birkhäuser, Boston, 1996. MR 97g:57011. Zbl.

864.57001.
Updated translation of (1993a) by Bohdan Kurpita. Pp. 36–37: Construction
of signed plane graph from link diagram, and conversely. (SGc: Knot)

Kunio Murasugi and Jozef H. Przytycki
1993a An Index of a Graph with Applications to Knot Theory. Mem. Amer. Math. Soc.,

Vol. 106, No. 158. Amer. Math. Soc., Providence, R.I., 1993. MR 94d:57025. Zbl.
792.05047.

Ch. I, “Index of a graph”. The “index” is the largest number of “inde-
pendent” edges, where “independent” has a complicated recursive definition
(unrelated to matchings), one of whose requirements is that the edges be
“singular” (simple, i.e., nonmultiple links). The positive or negative index of
a sign-colored graph is similar except that the independent edges must all be
positive or negative. [The general notion is that of the index of a graph-sub-
graph pair. The signs pick out complementary subgraphs.] Thm. 2.4: Each
of these indices is additive on blocks of a bipartite graph. The main interest,
because of applications to knot theory, is in bipartite plane graphs. Ch. II,
“Link theory”: Pp. 26–27 define the sign-colored Seifert graph of an oriented
link diagram and apply the graphical index theory. (SGc: N, D, Knot)

Tadao Murata
1965a Analysis of lossy communication nets by modified incidence matrices. In: M.E.

Van Valkenburg, ed., Proceedings, Third Annual Allerton Conference on Circuit
and System Theory (Monticello, Ill., 1965), pp. 751–761. Dept. of Electrical Eng.
and Coordinated Sci. Lab., Univ. of Illinois, Urbana, Ill.; and Circuit Theory
Group, Inst. of Electrical and Electronics Engineers, [1965]. (GN: I)

Takeshi Naitoh
See K. Ando.

Kazuo Nakajima
See H. Choi.

Daishin Nakamura and Akihisa Tamura
1998a The generalized stable set problem for claw-free bidirected graphs. In: Robert

E. Bixby, E. Andrew Boyd, and Roger Z. Ŕıos-Mercado, eds., Integer Program-
ming and Combinatorial Optimization (6th Internat. IPCO Conf., Houston, 1998,
Proc.), pp. 69–83. Lecture Notes in Computer Sci., Vol. 1412. Springer, Berlin,
1998. Zbl. 907.90272

The problem of the title is solvable in polynomial time. See Johnson and Pad-
berg (1982a), Tamura (1997a) for definitions. They reduce to simple graphs,
transitively bidirected with no sink or introverted edge (called “canonical”
bidirected graphs). (sg: O: G, Sw, Alg)
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20xxa A linear time algorithm for the generalized stable set problem on triangulated
bidirected graphs. Submitted (sg: O: G. Alg)

L. Nanjundaswamy
See E. Sampathkumar.

Joseph (Seffi) Naor
See D. Hochbaum.

C.St.J.A. Nash-Williams
1960a On orientations, connectivity, and odd-vertex-pairings in finite graphs. Canad. J.

Math. 12 (1960), 555–567. MR 22 #9455. Zbl. 96, 380 (e: 096.38002).

1969a Well-balanced orientations of finite graphs and unobtrusive odd-vertex-pairings.
In: W.T. Tutte, ed., Recent Progress in Combinatorics (Proc. Third Waterloo
Conf., 1968), pp. 133–149. Academic Press, New York, 1969. MR 40 #7146. Zbl.
209, 557 (e: 209.55701).

Roman Nedela and Martin Škoviera
1996a Regular embeddings of canonical double coverings of graphs. J. Combin. Theory

Ser. B 67 (1996), 249–277. MR 97e:05078. Zbl. 856.05029.
By “canonical double covering” of Γ they mean the signed covering graph
Σ̃ of Σ = −Γ, but without reversing orientation at the negative covering
vertex [as one would do in a signed covering graph (cf. e.g. Zaslavsky 1992a)],
because orientable embeddings of Γ are being lifted to orientable embeddings
of Σ̃ . [Thus these can be thought of as not signed graphs but rather voltage
(i.e., gain) graphs with 2-element voltage group.] Instead of reversal they
twist the negative-vertex rotations by taking a suitable power. In some cases
this allows classifying the orientable, regular embeddings of Σ̃ .

(P: Cov, T, Aut)

1997a Exponents of orientable maps. Proc. London Math. Soc. (3) 75 (1997), 1–31. MR
98i:05059. Zbl. 877.05012.

Main topic: the theory of twisting of rotations as in (1996a).
(GG: Cov, T, Aut)

Portions concern double covering graphs of signed graphs. §7: “Antipodal
and algebraically antipodal maps”. A map is “antipodal” if it is the ori-
entable double covering of a nonorientable map; that is, as a graph it is the
canonical double covering of an unbalanced signed graph. A partial algebraic
criterion for a map to be antipodal. §9: “Regular embeddings of canonical
double coverings of graphs”. See (1996a). (sg, P: Cov, T, Aut)

1997b Regular maps from voltage assignments and exponent groups. European J. Com-
bin. 18 (1997), 807–823. MR 98j:05061. Zbl. 908.05036.

Cases in which the classification of (1996a) is necessarily incomplete are
studied by taking larger voltage (i.e., gain) groups and twisting the rotations
at covering vertices by taking a power that depends on the position of the
vertex in its fiber. Main result: the (very special) conditions on twisting
under which a regular map lifts to a regular map. (GG: Cov, T, Aut)

Toshio Nemoto
See K. Ando.
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H. Nencka
See Ph. Combe.

Jaroslav Nešetřil
See J. Kratochv́il.

A. Neumaier
1982a Completely regular twographs. Arch. Math. (Basel) 38 (1982), 378–384. MR

83g:05066. Zbl. 475.05045.
In the signed graph (Kn, σ) of a two-graph (see D.E. Taylor 1977a), a
“clique” is a vertex set that induces an antibalanced subgraph. A two-graph
is “completely regular” if every clique of size i lies in the same number of
cliques of size i + 1, for all i . Thm. 1.4 implies there is only a small finite
number of completely regular two-graphs. (TG)

Sang Nguyen
See P.L. Hammer.

Juhani Nieminen
1976a Weak balance: a combination of Heider’s theory and cycle and path-balance. Con-

trol Cybernet. 5 (1976), 69–73. MR 55 #2639. (SD: B)
Peter Nijkamp

See F. Brouwer.
Robert Z. Norman

See also F. Harary.
Robert Z. Norman and Fred S. Roberts

1972a A derivation of a measure of relative balance for social structures and a charac-
terization of extensive ratio systems. J. Math. Psychology 9 (1972), 66–91. MR
45 # 2121. Zbl. 233.92006.

Polygon (“cycle”) indices of imbalance: the proportion of polygons that are
unbalanced, with polygons weighted nonincreasingly according to length.

1972b A measure of relative balance for social structures. In: Joseph Berger, Morris
Zelditch, Jr., and Bo Anderson, eds., Sociological Theories in Progress, Ch. 14,
pp. 358–391. Houghton Mifflin, Boston, 1972.

Exposition and application of (1972a).
Beth Novick and András Sebö

1995a On combinatorial properties of binary spaces. In: Egon Balas and Jens Clausen,
eds., Integer Programming and Combinatorial Optimization (4th Internat. IPCO
Conf., Copenhagen, 1995, Proc.), pp. 212–227. Lecture Notes in Computer Sci.,
Vol. 920. Springer-Verlag, Berlin, 1995. MR 96h:0503.

The clutter of negative circuits of a signed binary matroid (M,σ). Important
are the lift and extended lift matroids, L(M,σ) and L0(M,σ), defined as in
signed graph theory. An elementary result: the clutter is signed-graphic iff
L0(M,σ)/e0 is graphic (which is obvious). There are also more substantial
but complicated results. [See Cornuéjols (20xxa), §8.4.] (S(M): M)

1996a On ideal clutters, metrics and multiflows. In: William H. Cunningham, S. Thomas
McCormick, and Maurice Queyrann, eds., Integer Programming and Combinato-
rial Optimization (5th Internat. IPCO Conf., Vancouver, 1996, Proc.), pp. 275–
287. Lecture Notes in Computer Sci., Vol. 1084. Springer-Verlag, Berlin, 1996.
MR 98i:90075. (S(M): M)
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Cyriel van Nuffelen
1973a On the rank of the incidence matrix of a graph. Colloque sur la Theorie des

Graphes (Bruxelles, 1973). Cahiers Centre Etudes Rech. Oper. 15 (1973), 363–
365. MR 50 #162. Zbl. 269.05116.

The unoriented incidence matrix has rank = rank(G(−Γ)). [Because the
matrix represents G(−Γ).] (p: I, ec)

1976a On the incidence matrix of a graph. IEEE Trans. Circuits Systems CAS-23 (1976),
572. MR 56 #186.

Summarizes (1973a). (p: I, ec)
M. Ocio

See E. Vincent.
E. Olaru

See St. Antohe.
D.D. Olesky

See C.R. Johnson.
Kenji Onaga

1966a Dynamic programming of optimum flows in lossy communication nets. IEEE
Trans. Circuit Theory CT-13 (1966), 282–287. (GN)

1967a Optimal flows in general communication networks. J. Franklin Inst. 283 (1967),
308–327. MR 36 #1189. Zbl. (e: 203.22402). (GN)

Shmuel Onn
See also P. Kleinschmidt.

1997a Strongly signable and partitionable posets. European J. Combin. 18 (1997), 921–
938. MR 99d:06007. Zbl. 887.06003.

For “signability” see Kleinschmidt and Onn (1995a). A strong signing is an
exact signing that satisfies a recursive condition on lower intervals. (S, G)

Rikio Onodera
1968a On signed tree-graphs and cotree-graphs. RAAG Res. Notes (3) No. 133 (1968),

ii + 29 pp. MR 38 #5671. Zbl. (e: 182.58201). (SG: B)
The Open University

1981a Graphs and Digraphs. Unit 2 in Course TM361: Graphs, Networks and Design.
The Open University Press, Walton Hall, Milton Keynes, England, 1981. MR
none. Zbl. none.

Social sciences (pp. 21–23). Signed digraphs (pp. 50–52). [Published version:
see Wilson and Watkins (1990a).] (SG, PsS, SD: Exp)

Peter Orlik and Louis Solomon
1980a Unitary reflection groups and cohomology. Invent. Math. 59 (1980), 77–94. MR

81f:32017. Zbl. 452.20050. (gg: M, G)

1982a Arrangements defined by unitary reflection groups. Math. Ann. 261 (1982), 339–
357. MR 84h:14006. Zbl. 491.51018. (gg: M, G)

1983a Coxeter arrangements. In: Peter Orlik, ed., Singularities (Arcata, Calif., 1981),
Part 2, pp. 269–291. Proc. Symp. Pure Math., Vol. 40. Amer. Math. Soc., Provi-
dence, R.I., 1983. MR 85b:32016. (gg: M, G)
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James B. Orlin
See also R.K. Ahuja, M. Kodialam, and R. Shull.

1984a Some problems on dynamic/periodic graphs. In: Progress in combinatorial op-
timization (Proc. Conf., Waterloo, Ont., 1982), pp. 273–293. Academic Press,
Toronto, 1984. MR 86m:90058. Zbl. 547.05060.

Problems on 1-dimensional periodic graphs (i.e., covering (di)graphs of Z-
gain graphs Φ) that can be solved in Φ: connected components, strongly
connected components, directed path from one vertex to another, Eulerian
trail (directed or not), bicolorability, and spanning tree with minimum aver-
age cost. (GG, GD: Cov: Paths, Polygons, Col: Alg)

1985a On the simplex algorithm for networks and generalized networks. Math. Program-
ming Study 24 (1985), 166–178. MR 87k:90102. Zbl. 592.90031.

(GN: M(Bases): Alg)
Charles E. Osgood and Percy H. Tannenbaum

1955a The principle of congruity in the prediction of attitude change. Psychological Rev.
62 (1955), 42–55. (VS: PsS)

Eiji O’Shima
See M. Iri.

James G. Oxley
See also J.P.S. Kung and L.R. Matthews.

1992a Infinite matroids. In: Neil White, ed., Matroid Applications, Ch. 3, pp. 73–90.
Encycl. Math. Appl., Vol. 40. Cambridge Univ. Press, Cambridge, Eng., 1992.
MR 93f:05027. Zbl. 766.05016.

See Exercise 3.20. (Bic: Exp)
1992a Matroid Theory. Oxford Univ. Press, Oxford, 1992. MR 94d:05033. Zbl. 784.-

05002.
§10.3, Exercise 3 concerns the Dowling lattices of GF(q)∗ . (gg: M: Exp)

Manfred W. Padberg
See E.L. Johnson

Steven R. Pagano
†1998a Separability and Representability of Bias Matroids of Signed Graphs. Ph.D. thesis,

Dept. of Mathematical Sciences, Binghamton University, 1998.
Ch. 1: “Separability”. Graphical characterization of bias-matroid k -separa-
tions of a biased graph. Also, some results on the possibility of k -separations
in which one or both sides are connected subgraphs. (GG: M: Str)
Ch. 2: “Representability”. The bias matroid of every signed graph is repre-
sentable over all fields with characteristic 6= 2. For which signed graphs is
it representable in characteristic 2 (and therefore representable over GF(4),
by the theorem of Geoff Whittle, A characterization of the matroids repre-
sentable over GF(3) and the rationals. J. Combin. Theory Ser. B 65 (1995),
222–261. MR 96m:05046. Zbl. 835.05015.)? Solved (for 3-connected signed
graphs having vertex-disjoint negative polygons and hence nonregular ma-
troid). There are two essentially different types: (i) two balanced graphs
joined by three independent unbalanced digons; (ii) a cylindrical signed
graph, possibly with balanced graphs adjoined by 3-sums. [See notes on
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Seymour (1995a) for definition of (ii) and for Lovász’s structure theorem in
the case without vertex-disjoint negative polygons.] (SG: M: I, Str, T)
Ch. 3: “Miscellaneous results”. (SG: M: I, Str)

20xxa Binary signed graphs. Submitted (SG: M: I, Str)

20xxb Signed graphic GF(4) forbidden minors. Submitted (SG: M)

20xxc GF(4)-representations of bias matroids of signed graphs: The 3-connected case.
Submitted (SG: M: I, Str, T)

Edgar M. Palmer
See F. Harary and F. Kharari.

B.L. Palowitch, Jr.
See M.A. Kramer.

Christos H. Papadimitriou
See also E.M. Arkin and A.S. LaPaugh.

Christos H. Papadimitriou and Kenneth Steiglitz
1982a Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, Engle-

wood Cliffs, N.J., 1982. MR 84k:90036. Zbl. 503.90060.
See Ch. 10, Problems 6–7, p. 244, for bidirected graphs and flows in relation
to the matching problem. (sg: O: Flows)

1985a Kombinatornaya optimiztsiya. Algoritmy i Slozhnost’. Transl. V.B. Alekseev.
Mir, Moskva, 1985. MR 86i:90067. Zbl. 598.90067.

Russian translation of (1982a). (sg: O: Flows)
Giorgio Parisi

See M. Mézard.
Philippa Pattison

1993a Algebraic Models for Social Networks. Structural Analysis in the Social Sciences,
7. Cambridge Univ. Press, Cambridge, 1993.

Ch. 8, pp. 258–9: “The balance model. The complete clustering model.”
Embedded in a more general framework. (SG, S: A, B, Cl: Exp)

G.A. Patwardhan
See B.D. Acharya and M.K. Gill.

Charles Payan
See F. Jaeger.

Edmund R. Peay
1977a Matrix operations and the properties of networks and directed graphs. J. Math.

Psychology 15 (1977), 89–101. MR 56 #2690 (q.v.). Zbl. 352.05039.
(SD, WD: A: Gen)

1977b Indices for consistency in qualitative and quantitative structures. Human Rela-
tions 30 (1977), 343–361.

Proposes an index of nonclusterability for signed graphs and generalizes to
edges weighted by a linearly ordered set. (SG, Gen: Cl: Fr)

1982a Structural models with qualitative values. J. Math. Sociology 8 (1982), 161–192.
MR 83d:92107. Zbl. 486.05060.

See mainly §3: “Structural consistency.” (sd: Gen: B, Cl)
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Uri N. Peled
See S.R. Arikati, P.L. Hammer, T. Ibaraki, and N.V.R. Mahadev.

Francisco Pereira
See A.J. Hoffman.

M. Petersdorf
1966a Einige Bemerkungen über vollständige Bigraphen. Wiss. Z. Techn. Hochsch. Il-

menau 12 (1966), 257–260. MR 37 #1275. Zbl. (e: 156.44302).
Treats signed Kn ’s. Satz 1: max l(Σ) = b(n − 1)2/4c with equality iff Σ
is antibalanced. [From which follows easily the full Thm. 14 of Abelson
and Rosenberg (1958a).] Also, some further discussion of antibalanced and
unbalanced cases. [For extensions of this problem see notes on Erdős, Győri,
and Simonovits (1992a).] (SG: Fr)

J.L. Phillips
1967a A model for cognitive balance. Psychological Rev. 74 (1967), 481–495.

Proposes to measure imbalance of a signed (di)graph by largest eigenvalue
of a matrix close to I + A(Σ). (Cf. Abelson (1967a).) Possibly, means to
treat only graphs that are complete aside from isolated vertices. [Somewhat
imprecise.] Summary of Ph.D. thesis. (SG: B, Fr, A)

Nancy V. Phillips
See F. Glover.

Jean-Claude Picard and H. Donald Ratliff
1973a A graph-theoretic equivalence for integer programs. Oper. Res. 21 (1973), 261–269.

MR 50 #12240. Zbl. 263.90021.
A minor application of signed switching to a weighted graph arising from an
integer linear program. (sg: sw)

P. Pincus
See S. Alexander.

Tomaž Pisanski and Jože Vrabec
1982a Graph bundles. Preprint Ser., Dept. Math., Univ. Ljubljana, 1982.

Definition (see Pisanski, Shawe-Taylor, and Vrabec (1983a)), examples, su-
perimposed structure, classification. (GG: Cov(Gen))

Tomaž Pisanski, John Shawe-Taylor, and Jože Vrabec
1983a Edge-colorability of graph bundles. J. Combin. Theory Ser. B 35 (1983), 12–19.

MR 85b:05086. Zbl. 505.05034, (515.05031).
A graph bundle is, roughly, a covering graph with an arbitrary graph Fv
(the “fibre”) over each vertex v , so that the edges covering e : vw induce an
isomorphism Fv → Fw . (GG: Cov(Gen): ECol)

Michael Plantholt
See F. Harary.

M.D. Plummer
See L. Lovász.

Svatopluk Poljak
See also Y. Crama.
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Svatopluk Poljak and Daniel Turźık
1982a A polynomial algorithm for constructing a large bipartite subgraph, with an ap-

plication to a satisfiability problem. Canad. J. Math. 34 (1982), 519–524. MR
83j:05048. Zbl. 471.68041, (487.68058).

Main Theorem: For a simple, connected signed graph of order n and size
|E| = m , the frustration index l(Σ) ≤ g(m,n) := 1

2m −
1
2d

1
2 (n − 1)e . The

proof is algorithmic, by constructing a (relatively) small deletion set. Dic-
tionary: Σ is an “edge-2-colored graph” (G, c), E+ and E− are called E1

and E2 , a balanced subgraph is “generalized bipartite”, and m − l(Σ) is
what is calculated. [Thus for a connected, simple graph, D(Γ) ≤ g(m,n):
see Akiyama, Avis, Chvátal, and Era (1981a).] (SG: Fr, Alg)

1986a A polynomial time heuristic for certain subgraph optimization problems with guar-
anteed worst case bound. Discrete Math. 58 (1986), 99–104. MR 87h:68131. Zbl.
585.05032.

Generalizes (1982a), with application to signed graphs in Cor. 3.
(SG: Fr, Alg)

1987a On a facet of the balanced subgraph polytope. Časopis Pěst. Mat. 112 (1987),
373–380. MR 89g:57009. Zbl. 643.05059.

The polytope PB(Σ) (the authors write PBL ) is the convex hull in RE of
incidence vectors of balanced edge sets. It generalizes the bipartite sub-
graph polytope PB(Γ) = PB(−Γ) (see Barahona, Grötschel, and Mahjoub
(1985a)), but is essentially equivalent to it according to Prop. 2: The neg-
ative-subdivision trick preserves facets of the polytope. Thm. 1 gives new
facets, corresponding to certain circulant subgraphs. (They are certain unions
of two Hamilton polygons, each having constant sign.) (SG: Fr, G)

1992a Max-cut in circulant graphs. Discrete Math. 108 (1992), 379–392. MR 93k:05101.
Further development of (1987a) for all-negative Σ. The import for general
signed graphs is not discussed. (P: Fr, G)

Svatopluk Poljak and Zsolt Tuza
1995a Maximum cuts and large bipartite subgraphs. In: W. Cook, L. Lovaśz, and P.

Seymour, eds., Combinatorial Optimization (Papers from the DIMACS Special
Year), pp. 181–244. DIMACS Ser. Discrete Math. Theoret. Computer Sci., Vol.
20. Amer. Math. Soc., Providence, R.I., 1995. MR 95m:90008. Zbl. 819.00048.

Surveys max-cut and weighted max-cut [that is, max. size balanced subgraph
and max. weight balanced subgraph in all-negative signed graphs]. See
esp. §2.9: “Bipartite subgraph polytope and weakly bipartite graphs”. [The
weakly bipartite classes announced by Gerards suggested that a signed-graph
characterization of weakly bipartite graphs is called for. This is provided by
Guenin (20xxa).]
§1.2, “Lower bounds, expected size, and heuristics”, surveys results for all-
negative signed graphs that are analogous to results in Akiyama, Avis, Chvá-
tal, and Era (1981a) (q.v.), etc. [Problem. Generalize any of these results,
that are not already generalized, to signed simple graphs and to simply signed
graphs.] (p: Fr, tg(Sw): Exp, Ref)

Y. Pomeau
See B. Derrida.
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Dragos Popescu [Dragoş-Radu Popescu]
See Dragoş-Radu Popescu.

Dragoş-Radu Popescu [Dragos Popescu]
1979a Proprietati ale grafurilor semnate. [Properties of signed graphs.] (In Romanian.

French summary.) Stud. Cerc. Mat. 31 (1979), 433–452. MR 82b:05111. Zbl.
426.05048.

A signed Kn is balanced or antibalanced or has a positive and a negative
polygon of every length k = 3, . . . , n . For odd n , the signed Kn if not
balanced has at least n−1

2 Hamiltonian polygons. For even n , −Kn does
not maximize the number of negative polygons. A “polygon basis” is a
set of the smallest number of polygons whose signs determine all polygon
signs. This is proved to have

(
n−1

2

)
members. Furthermore, there is a basis

consisting of k -gons for each k = 3, . . . , n . [A polygon basis in this sense
is the same as a basis of polygons for the binary cycle space. See Zaslavsky
(1981b), Topp and Ulatowski (1987a).] (SG: Fr)

1991a Cicluri ı̂n grafuri semnate. [Cycles in signed graphs.] (In Romanian; French
summary.) Stud. Cercet. Mat. 43, No. 3/4 (1991), 85–219. MR 92j:05114. Zbl.
751.05060.

Ch. 1: “A-balance” (p. 91). Let F be a spanning subgraph of Kn and A
a signed Kn . The “product” of signed graphs is Σ1 ∗ Σ2 whose underlying
graph is |Σ1|∪ |Σ2| , signed as in Σi for an edge in only one Σi but with sign
σ1(e)σ2(e) if in both. Let GF denote the group of all signings of F ; let GF (A)
be the group generated by the set of restrictions to F of isomorphs of A . A
member of GF (A) is “A -balanced”; other members of GF are A-unbalanced.
We let Σ̂ denote the coset of Σ and ≈ the “isomorphism” of cosets induced
by graph isomorphism, i.e., cosets are isomorphic if they have isomorphic
members. Let Σ̇ be the isomorphism class of Σ, ˆ̂Σ the isomorphism class

of Σ̂ , and
◦
Σ :=

⋃ ˆ̂Σ. Now choose a system of representatives of the coset
isomorphism classes, R = {Σ1, . . . ,Σl} . Prop. 1.4.1. Each Σ̇ intersects
exactly one Σ̂i . Let Ri = {Σi1, . . . ,Σiai} be a system of representatives of
Σ̂i/ ∼=, arranged so that |E−(Σij)| is a minimum when j = 1. This minimum

value is the “[line] index of A-imbalance” of each Σ ∈
◦
Σi and is denoted by

δA(Σ). (§2.1: Taking A to be Kn with one vertex star all negative makes
this equal the frustration index l(Σ).) Prop. 1.5.1. δA(Σ) is the least number
of edges whose sign needs to be changed to make Σ A-balanced. Prop. 1.5.2.
δA(Σ) = |E−(Σ)| iff |E−(Σ) ∩E−(F, β)| ≤ 1

2 |E−(F, β)| for every signing β)
of F . Finally, for each Σ ∈ GF define the “Σ-relation” on coset isomorphism
classes ˆ̂Σi to be the relation generated by negating in Σ1 all the edges
of E−(Σ), extended by isomorphism and transitivity. This is well defined
(Prop. 1.6.1) and symmetric (Prop. 1.6.2) and is preserved under negation
of coset isomorphism classes (Prop. 1.6.4, 1.6.5). Self-negative classes, such

that ˆ̂Σ ≈ − ˆ̂Σ, are the subject of Prop. 1.6.3.
Ch. 2: “Signed complete graphs” (p. 106). §2.5: “H -graphs”. If H is a
signed Kh , a “standard H -graph” Σ is a signed Kn such that Σ− ∼= H− ∪·
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Kc
n−h . Prop. 2.5.3. Assume certain hypotheses on n , |X0| for X0 ⊆ V (Σ),

and a quantity D−(H) derived from negative degrees. Then |E−| = l(Σ)⇒
the induced subgraph G:X0 is a standard H -graph with |E−(Σ:X0)| =
l(Σ:X0). The cases H− = K1 , K2 , and a 2-edge path are worked out. For
the former, Prop. 2.5.3 reduces to Sozański’s (1976a) Thm. 3.
Ch. 3: “Frustration index” (p. 158). Some upper bounds.
Ch. 4: “Evaluations, divisibility properties” (p. 174). Similar to parts of
(1996a) and Popescu and Tomescu (1996b).
Ch. 5: “Maximal properties” (p. 198). §5.1: “Minimum number and max-
imum number of negative stars, resp. 2-stars”. §5.2 is a special case of
Popescu and Tomescu (1996a), Thm. 2. §5.3: “On the maximum number of
negative cycles in some signed complete graphs”. Shows that Conjecture 1
is false for even n ≥ 6. Some results on the odd case.
Conjecture 1 (Tomescu). A signed complete graph of odd order has the most
negative polygons iff it is antibalanced. (Partial results are in §5.3.) [This
example maximizes l(Σ). A somewhat related conjecture is in Zaslavsky
(1997b).] Conjecture 2. See (1993a). Conjecture 3. Given k and m , there is
n(k,m) so that for any n ≥ n(k,m), a signed Kn with m negative edges has
(a) the most negative k -gons iff the negative edges are pairwise nonadjacent;
(b) the fewest iff the negative edges form a star.

(SG: B(Gen), K, Fr, E: Polygons, Paths)

1993a Problem 17. Research Problems at the Internat. Conf. on Combinatorics (Kesz-
thely, 1993). Unpublished manuscript. János Bolyai Math. Soc., Budapest, 1993.

Conjecture. An unbalanced signed complete graph has the minimum number
of negative polygons iff its frustration index equals 1. (SG: Fr)

1996a Une méthode d’énumération des cycles négatifs d’un graphe signé. Discrete Math.
150 (1996), 337–345. MR 97c:05077. Zbl. 960.39919.

The numbers of negative subgraphs, especially polygons and paths of length
k , in an arbitrarily signed Kn . Formulas and divisibility and congruence
properties. Extends part of Popescu and Tomescu (1996a).

(SG: K, E: Polygons, Paths)
Dragoş-Radu Popescu and Ioan Tomescu

1996a Negative cycles in complete signed graphs. Discrete Appl. Math. 68 (1996), 145–
152. MR 98f:05098. Zbl. 960.35935.

The number cp of negative polygons of length p in a signed Kn with s
negative edges. Thm. 1. For n sufficiently large compared to p and s ,
cp is minimized if E− is a star (iff, when s > 3) and is maximized iff
E− is a matching. Thm. 2. cp is divisible by 2p−2−blog2(p−1)c . Thm. 3.
If s ∼ λn and p ∼ µn and the negative-subgraph degrees are bounded
(this is essential), then asymptotically the fraction of negative p-gons is
1
2 (1− e−4λµ). (SG: K: Fr, E: Polygons)

1996b Bonferroni inequalities and negative cycles in large complete signed graphs. Eu-
ropean J. Combin. 17 (1996), 479–483. MR 97d:05177. Zbl. 861.05036.

A much earlier version of (1996a) with delayed publication. Contains part
of (1996a): a version of Thm. 1 and a restricted form of Thm. 3.
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(SG: K: Fr, E: Polygons)
Alexander Postnikov

1997a Intransitive trees. J. Combin. Theory Ser. A 79 (1997), 360–366. MR 98b:05036.
Zbl. 876.05042.

§4.2 mentions the lift matroid of the integral poise gains of a transitively
oriented complete graph. [See also Stanley (1996a).] (GG: M, G)

Alexander Postnikov and Richard P. Stanley
20xxa Deformations of Coxeter hyperplane arrangements. Submitted.

Geert Prins
See F. Harary.

Sharon Pronchik
See L. Fern.

Andrzey Proskurowski
See A.M. Farley.

J. Scott Provan
1983a Determinacy in linear systems and networks. SIAM J. Algebraic Discrete Methods

4 (1983), 262–278. MR 84g:90061. Zbl. 558.93018. (Sol, GN)
1987a Substitutes and complements in constrained linear models. SIAM J. Algebraic

Discrete Methods 8 (1987), 585–603. MR 89c:90072. Zbl. 645.90049.
§4: “Determinacy in a class of network models.” [Fig. 1 and Thm. 4.7 hint
at possible digraph version of signed-graph or gain-graph bias matroid.]

(?sg, gg: m(?bases): gen)
Teresa M. Przytycka and Józef H. Przytycki

1988a Invariants of chromatic graphs. Tech. Rep. No. 88-22, Univ. of British Columbia,
Vancouver, B.C., 1988.

Generalizing concepts from Kauffman (1989a). [See also Traldi (1989a) and
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pp. 63–108. Contemp. Math., Vol. 147. Amer. Math. Soc., Providence, R.I., 1993.
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processes.” §4.5: “Stability in pulse processes.” Stability is connected to
eigenvalues of A(Σ). (SDw, SD, WD: B, A, PsS: Exp, Exr, Ref)

1978a Graph Theory and Its Applications to Problems of Society. CBMS-NSF Regional
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Ch. 9: “Balance theory and social inequalities.” Ch. 10: “Pulse processes
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England, 1981. MR 83c:05071. Zbl. 462.05035.

The “bilayered digraphs” of §7 are identical to simply signed, loop-free di-
graphs (where multiple arcs are allowed if they differ in sign or direction).
Thm. 1: Their number bn = number of self-complementary digraphs of or-
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ice, 1990), pp. 297–308. Ann. Discrete Math., Vol. 51. North-Holland, Amster-
dam, 1992. MR 94h:05040. Zbl. 764.05036. (TG: Exp, Ref)

1995a Geometric representations of graphs. Linear Multilinear Algebra 39 (1995), 45–57.
MR 97e:05149a. Zbl. 832.05079. Errata. Linear Multilinear Algebra 39 (1995),
405. MR 97e:05149b. Zbl. 843.05078.
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See §4. (SG: A, G: Exp)
1995b Discrete non-Euclidean geometry. In: F. Buekenhout, ed., Handbook of Incidence

Geometry: Buildings and Foundations, Ch. 15, pp. 843–920. North-Holland (El-
sevier), Amsterdam, 1995. MR 96m:52001. Zbl. 826.51012.

§3.2: “Equidistant sets in elliptic (d−1)-space.” §3.3: “Regular two-graphs.”
(TG: A, G: Exp)

J.J. Seidel and D.E. Taylor
1981a Two-graphs, a second survey. In: L. Lovász and Vera T. Sós, eds., Algebraic

Methods in Graph Theory (Proc. Internat. Colloq., Szeged, 1978), Vol. II, pp. 689–
711. Colloq. Math. Soc. János Bolyai, 25. János Bolyai Math. Soc., Budapest,
and North-Holland, Amsterdam, 1981. MR 83f:05070. Zbl. 475.05073. Reprinted
in Seidel (1991a), pp. 231–254. (TG)

J.J. Seidel and S.V. Tsaranov
1990a Two-graphs, related groups, and root systems. Algebra, Groups and Geometry.

Bull. Soc. Math. Belg. Ser. A 42 (1990), 695–711. MR 95m:20046. Zbl. 736.05048.
A group Ts(Σ) is defined from a signed complete graph Σ: its generators
are the vertices and its relations are (uv−σ(uv))2 = 1 for each edge uv . It
is invariant under switching, hence determined by the two-graph of Σ. A
certain subgraph of a Coxeter group of a tree T is isomorphic to Ts(Σ)
for suitable ΣT constructed from T . [Generalized in Cameron, Seidel, and
Tsaranov (1994a). More on ΣT under Tsaranov (1992a). The construction
of ΣT is simplified in Cameron (1994a).] (TG: A, G)

Charles Semple and Geoff Whittle
1996a Partial fields and matroid representation. Adv. Appl. Math. 17 (1996), 184–208.

MR 97g:05046. Zbl. 859.05035.
§7: “Dowling group geometries”. A Dowling geometry of a group G has a
partial-field representation iff G is abelian and has at most one involution.

(gg: M: I)
E.C. Sewell

1996a Binary integer programs with two variables per inequality. Math. Programming
75 (1996), Ser. A, 467–476. MR 97m:90059 . Zbl. 874.90138.

See Johnson and Padberg (1982a) for definitions. §2, “Equivalence to stable
set problem”: Optimization on the bidirected stable set polytope is reduced
to optimization on a stable set polytope with no more variables. Results
of Bourjolly (1988a) and Hochbaum, Megiddo, Naor, and Tamir (1993a)
can thereby be explained. §3, “Perfect bigraphs”, proves the conjectures of
Johnson and Padberg (1982a): a transitively closed bidirection of a simple
graph is perfect iff its underlying graph is perfect. [Also proved by Ikebe and
Tamura (20xxa).] Dictionary: “Bigraph” = bidirected graph B . “Stable”
set in B = vertex set inducing no introverted edge. (SG: O: I, G, sw)

P.D. Seymour
See also Gerards, Lovász, et al. (1990a), W. McCuaig, and N. Robertson.

1974a On the two-colouring of hypergraphs. Quart. J. Math. Oxford (2) 25 (1974), 303–
312. MR 51 #7927. Zbl. 299.05122. (sd: P: b)

1977a The matroids with the max-flow min-cut property. J. Combin. Theory Ser. B 23
(1977), 189–222. MR 57 #2960. Zbl. 375.05022.
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The central example is Q6 = C−(−K4), the clutter of (edge sets of) negative
polygons in −K4 . P. 199: the extended lift matroid L0(−K4) = F ∗7 , the dual
Fano matroid. Result (3.4) readily generalizes (by the negative-subdivision
trick) to: every C−(Σ) is a binary clutter, that is, a port of a binary matroid.
[This is also immediate from the construction of L0(Σ).]
P. 200, (i)–(iii): amongst minor-minimal binary clutters without the “weak
MFMC property” are the circuit clutter of F ∗7 and C(−K5) and its blocker.
Main Thm. (§5): A binary clutter is “Mengerian” (I omit the definition) iff it
does not have C−(−K4) as a minor. (See p. 200 for the antecedent theorem
of Gallai.)
[See Cornuéjols (20xxa), Guenin (1998b) for more.] (sg, P: M, G)

1981a Matroids and multicommodity flows. European J. Combin. 2 (1981), 257–290.
MR 82m:05030. Zbl. 479.05023.

Conjecture (based on (1977a)). A binary clutter has the weak MFMC prop-
erty iff no minor is either the circuit clutter of F7 or C−(−K5) or its blocker.
(s(m), sg: M)

†1995a Matroid minors. In: R.L. Graham, M. Grötschel, and L. Lovász, eds., Handbook of
Combinatorics, Vol. I, Ch. 10, pp. 527–550. North-Holland (Elsevier), Amsterdam,
and MIT Press, Cambridge, Mass., 1995. MR 97a:05055. Zbl. 960.24825.

In Thm. 6.6, p. 546, interpreting G as a signed graph and an “odd-K4 ” as
a subdivision of −K4 gives the signed graph generalization, due to Gerards
and Schrijver (1986a) [also Gerards (1990a), Thm. 3.2.3]. Let Σ be a signed
simple, 3-connected graph in which no 3-separation has > 4 edges on both
sides. Then Σ has no −K4 minor iff either (i) deleting some vertex makes
it balanced (the complete lift matroid of this type is graphic); or (ii) it is
cylindrical: it can be drawn on a cylindrical surface that has a lengthwise red
line so that an edge is negative iff it crosses the red line an odd number of
times [Note: the extended lift matroid of this type is cographic, as observed
by, I think, Gerards and Schrijver or by Lovász]. [See Pagano (1998a) for
another use of cylindrical signed graphs.] [Problem. Find the forbidden
topological subgraphs, link minors, and Y∆ graphs for cylindrical signed
graphs.] [Question. Embed a signed graph in the plane with k distinguished
faces so that a polygon’s sign is the parity of the number of distinguished
faces it surrounds. Cylindrical embedding is k = 1. For each k , which signed
graphs are so embeddable?] (SG: Str, T)
Thm. 6.7, pp. 546–547, generalizes to signed graphs, interpreting G as a
signed graph and an “odd cycle” as a negative polygon. Take a signed
simple, 3-connected, internally 4-connected graph. It has no two vertex-
disjoint negative polygons iff it is one of four types: (i) deleting some vertex
makes it balanced; (ii) deleting the edges of an unbalanced triangle makes
it balanced; (iii) it has order ≤ 5; (iv) it can be orientation-embedded in
the projective plane. This is due to Lovász; see, if you can, Gerards et
al. (1990a). [A 2-connected Σ has no vertex-disjoint negative polygons iff
G(Σ) is binary iff G(Σ) is regular iff the lift matroid L(Σ) is regular. See
Pagano (1998a) for classification of Σ with vertex-disjoint negative polygons
according to representability of the bias matroid.] (SG: Str, m, T)
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Paul Seymour and Carsten Thomassen
1987a Characterization of even directed graphs. J. Combin. Theory Ser. B 42 (1987),

36–45. MR 88c:05089. Zbl. 607.05037.
“Even” means every signing contains a positive cycle. A digraph is even
iff it contains a subdigraph that is obtained from a symmetric odd-polygon
digraph by subdivision and a vertex-splitting operation. [Cf. Thomassen
(1985a).] (sd: p: Str)

L. de Sèze
See J. Vannimenus.

Bryan L. Shader
See Richard A. Brualdi.

Jia-Yu Shao
See R. Manber.

John Shawe-Taylor
See T. Pisanski.

F.B. Shepherd
See A.M.H. Gerards.

Ronald G. Sherwin
1975a Structural balance and the sociomatrix: Finding triadic valence structures in

signed adjacency matrices. Human Relations 28 (1975), 175–189.
A very simple [but not efficient] matrix algorithm for counting different types
of polygons in a signed (di)graph. [“Valence” means sign, unfortunately.]

(sg, SD: B: Alg)
Jeng-Horng Sheu

See I. Gutman.
Elizabeth G. Shrader and David W. Lewit

1962a Structural factors in cognitive balancing behavior. Human Relations 15 (a962),
265–276.

For Γ ⊂ Kn and signing σ of Γ, “plausibility” = mean and “differentiability”
= standard deviation of f(Kn, σ

′) over all extensions of σ to Kn , where f
is any function that measures degree of balance. Proposed: tendency toward
balance is high when plausibility and differentiability are high. A specific
f , based on triangles and quite complicated, is studied for n = 4, with
experiments. (sg, fr, PsS)

Alan Shuchat
See R. Shull.

Randy Shull, James B. Orlin, Alan Shuchat, and Marianne L. Gardner
1989a The structure of bases in bicircular matroids. Discrete Appl. Math. 23 (1989),

267–283. MR 90h:05040. Zbl. 698.05022.
[See Coullard, del Greco, and Wagner (1991a).] (Bic(Bases))

Randy Shull, Alan Shuchat, James B. Orlin, and Marianne Lepp
1993a Recognizing hidden bicircular networks. Discrete Appl. Math. 41 (1993), 13–53.

MR 94e:90122. Zbl. 781.90089. (GN: Bic: I, Alg)
1997a Arc weighting in hidden bicircular networks. Proc. Twenty-eighth Southeastern In-

ternat. Conf. on Combinatorics, Graph Theory and Computing (Boca Raton, Fla.,
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1997). Congressus Numer. 125 (1997), 161–171. MR 98m:05181. Zbl. 902.90157.
(GN: Bic: I, Alg)

E.E. Shult
See P.J. Cameron.

B. Simeone
See C. Benzaken, J.-M. Bourjolly, P.L. Hammer, and P. Hansen.

Slobodan K. Simić
See also D.M. Cvetković.

1980a Graphs which are switching equivalent to their complementary line graphs I. Publ.
Inst. Math. (Beograd) (N.S.) 27 (41) (1980), 229–235. MR 82m:05077. Zbl.
531.05050. (TG: LG)

1982a Graphs which are switching equivalent to their complementary line graphs II.
Publ. Inst. Math. (Beograd) (N.S.) 31 (45) (1982), 183–194. MR 85d:05207. Zbl.
531.05051. (TG: LG)

R. Simion and D.-S. Cao
1989a Solution to a problem of C. D. Godsil regarding bipartite graphs with unique

perfect matching. Combinatorica 9 (1989), 85–89. MR 90f:05113. Zbl. 688.05056.
Answering Godsil (1985a): |Σ| = Γ iff Γ consists of a bipartite graph with
a pendant edge attached to every vertex. [Surely there is a signed-graphic
generalization of Godsil’s and this theorem in which bipartiteness becomes
balance or something like it.] (sg: A, b)

J.M.S. Simões-Pereira
1972a On subgraphs as matroid cells. Math. Z. 127 (1972), 315–322. MR 47 #6522. Zbl.

226.05016, (243.05022).
“Cell” = circuit. Along with Klee (1971a), invents the bicircular matroid
(here, for finite graphs) (Thm. 1). Suppose we have matroids on the edge
sets of all [simple] graphs, such that the class of circuits is a [nonempty] union
of homeomorphism classes of connected graphs. Thm. 2: The polygon and
bicircular matroids [and free matroids] are the only such matroids. (Bic)

1973a On matroids on edge sets of graphs with connected subgraphs as circuits. Proc.
Amer. Math. Soc. 38 (1973), 503–506. MR 47 #3214. Zbl. 241.05114, 264.05126.

A family of (isomorphism types of) [simple] connected graphs is “matroidal”
if for any Γ the class of subgraphs of Γ that are in the family constitute the
circuits of a matroid on E(Γ). Bicircular and even-cycle matroids are the
two nicest examples. A referee contributes the even-cycle matroid [cf. Doob
(1973a)]. Thm.: The family cannot be finite [unless it is void or consists of
K2 ]. [See Marcu (1987a) for a valuable new viewpoint.] (Bic, EC, Gen)

1975a On matroids on edge sets of graphs with connected subgraphs as circuits II. Dis-
crete Math. 12 (1975), 55–78. MR 54 #7298. Zbl. 307.05129.

Partial results on describing matroidal families of simple, connected graphs.
Five basic types: free [omitted in the paper], cofree, polygon, bicircular, and
even-cycle. If the family does not correspond to one of these, then every
member has ≥ 3 independent polygons and minimum degree ≥ 3.

(Bic, EC: Gen)
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1978a A comment on matroidal families. In: Problèmes Combinatoires et Théorie des
Graphes (Colloq. Internat., Orsay, 1976), pp. 385–387. Colloques Internat. du
CNRS, 260. Editions du C.N.R.S., Paris, 1978. MR 81b:05031. Zbl. 412.05023.

Two small additions to (1973a, 1975a); one is that a matroidal family not one
of the five basic types must contain Kp,q(p) for each m ≥ 3, with q(p) ≥ p .

(Bic, EC: Gen)
1992a Matroidal families of graphs. In: Neil White, ed., Matroid Applications, Ch. 4, pp.

91–105. Encycl. Math. Appl., Vol. 40. Cambridge Univ. Press, Cambridge, Eng.,
1992. MR 93c:05036. Zbl. 768.05024.

“Count” matroids (see N. White (1996a)) in §4.3; Schmidt’s (1979a) remark-
able generalization in §4.4. (GG: M, Bic, EC: Gen: Exp, Exr, Ref)

Klaus Simon
See T. Raschle.

M. Simonovits
See B. Bollobás, J.A. Bondy, and P. Erdős.

N.M. Singhi
See also S.B. Rao, D.K. Ray-Chaudhuri, and G.R. Vijayakumar.

N.M. Singhi and G.R. Vijayakumar
1992a Signed graphs with least eigenvalue < −2. European J. Combin. 13 (1992), 219–

220. MR 93e:05069. Zbl. 769.05065. (SG: A)

Jozef Širáň
See also D. Archdeacon.

1991a Characterization of signed graphs which are cellularly embeddable in no more than
one surface. Discrete Math. 94 (1991), 39–44. MR 92i:05086. Zbl. 742.05035.

A signed graph orientation-embeds in only one surface iff any two polygons
are vertex disjoint. (SG: T)

1991b Duke’s theorem does not extend to signed graph embeddings. Discrete Math. 94
(1991), 233–238. MR 92j:05065. Zbl. 742.05036.

Richard A. Duke (The genus, regional number, and Betti number of a graph.
Canad. J. Math. 18 (1966), 817–822. MR 33 #4917.) proved that the (ori-
entable) genus range of a graph forms a contiguous set of integers. Stahl
(1978a) proved the analog for nonorientable embeddings. Širáň shows this
need not be the case for the demigenus range of an unbalanced signed graph.
However, any gaps consist of a single integer each. The main examples with
gaps are vertex amalgamations of balanced and uniquely embeddable unbal-
anced signed graphs, but a 3-connected example is +W6 together with the
negative diameters of the rim. Question 1 (Širáň). Do all gaps occur at the
bottom of the demigenus range? [Question 2. Can one in some way derive
almost all signed graphs with gaps from balanced ones?] (SG: T)

Jozef Širáň and Martin Škoviera
††1991a Characterization of the maximum genus of a signed graph. J. Combin. Theory

Ser. B 52 (1991), 124–146. MR 92b:05033. Zbl. 742.05037.
The maximum demigenus dM (Σ) = the largest demigenus of a closed surface
in which Σ orientation embeds. Two formulas are proved for dM (Σ): one a
minimum and the other a maximum of readily computable numbers. Thus
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dM (Σ) has a “good” (polynomial) characterization. Along the way, several
results are proved about single-face embeddings. Problem (§11). Charac-
terize those edge-2-connected Σ such that Σ and all Σ\e have single-face
embeddings. [A complex and lovely paper.] (SG: T)

A. Skhrĕıver [A. Schrijver]
See A. Schrijver.

Martin Škoviera
See also R. Nedela and J. Širáň.

1983a Equivalence and regularity of coverings generated by voltage graphs. In: Miroslav
Fiedler, ed., Graphs and Other Combinatorial Topics (Proc. Third Czechoslovak
Sympos. on Graph Theory, Prague, 1982), pp. 269–272. Teubner-Texte Math., 59.
Teubner, Leipzig, 1983. MR 85e:05064. Zbl. 536.05019. (GG: T, Cov, Sw)

1986a A contribution to the theory of voltage graphs. Discrete Math. 61 (1986), 281–292.
MR 88a:05060. Zbl. 594.05029.

Automorphisms of covering projections of canonical covering graphs of gain
graphs. (GG: T, Cov, Aut, Sw)

1992a Random signed graphs with an application to topological graph theory. In: Alan
Frieze and Tomasz Luczak, eds., Random Graphs, Vol. 2 (Proc., Poznań, 1989),
Ch. 17, pp. 237–246. Wiley, New York, 1992. MR 93g:05126. Zbl. 817.05059.

The model: each edge is selected with probability p , positive with probability
s . Under mild hypotheses on p and s , Σ is almost surely unbalanced and
almost surely has a 1-face orientation embedding. (SG: Rand, E, T)

N.J.A. Sloane
See P.C. Fishburn, R.L. Graham, and C.L. Mallows.

J. Laurie Snell
See J. Berger and J.G. Kemeny.

Patrick Solé and Thomas Zaslavsky
1994a A coding approach to signed graphs. SIAM J. Discrete Math. 7 (1994), 544–553.

MR 95k:94041. Zbl. 811.05034.
Among other things, improves some results in Akiyama, Avis, Chvátal, and
Era (1981a). Thm. 1: For a loopless graph with c components, D(Γ) ≥
1
2m −

√
1
2 ln 2

√
m(n− c). Thm. 2: For a simple, bipartite graph, D(Γ) ≤

1
2 (m−

√
m). Conjecture. The best general asymptotic lower bound is D(Γ) ≥

1
2m − c1

√
mn + o(

√
mn) where c1 is some constant between

√
1
2 ln 2 and

1
2π . Question. What is c1 for, e.g., k -connected graphs? Thm. 4 gives
girth-based upper bounds on D(Γ). §5, “Embedded graphs”, has bounds
for several examples obtained by surface duality. All proofs are via covering
radius of the cutset code of Γ. (SG: Fr, T)

Louis Solomon
See P. Orlik.

Tadeusz Sozański
1976a Processus d’équilibration et sous-graphes équilibrés d’un graphe signé complet.

Math. Sci. Humaines, No. 55 (1976), 25–36, 83. MR 58 #27613.
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Σ denotes a signed Kn . The “level of balance” (“indice du niveau d’équi-
libre”) ρ(Σ) := maximum order of a balanced subgraph. [Complement of
the vertex deletion number.] Define distance d(Σ1,Σ2) := |E1+4E2+| . Say
Σ is p-clusterable if Σ+ consists of p disjoint cliques [its “clusters”]. Thm.
1 evaluates the frustration index of a p -clusterable Σ. Thm. 2 bounds l(Σ)
in terms of n and ρ(Σ). A negation set U for Σ “conserves” a balanced
induced subgraph if they are edge-disjoint; it is “(strongly) conservative” if
it conserves some (resp., every) maximum-order balanced induced subgraph.
Thm. 3: Every minimum negation set conserves every balanced induced
subgraph of order > 2

3n . Thm. 4: A minimum negation set can be ordered
so that, successively negating its edges one by one, ρ never decreases.

(SG: K: Fr, Cl)
1980a Enumeration of weak isomorphism classes of signed graphs. J. Graph Theory 4

(1980), 127–144. MR 81g:05070. Zbl. 434.05059.
“Weak isomorphism” = switching isomorphism. Principal results: The num-
ber of switching nonisomorphic signed Kn ’s. (Cf. Mallows and Sloane
(1975a).) The number that are switching isomorphic to their negations. The
number of nonisomorphic (not switching nonisomorphic!) balanced signings
of a given graph. (SG, K: Sw: E)

1982a Model rownowagi strukturalnej. Teoria grafow oznakowanych i jej zastosowania w
naukach spotecznych. [The structural balance model. The theory of signed graphs
and its applications in the social sciences.] (In Polish.) Ph.D. thesis, Jagellonian
Univ., Krakow, 1982. (SG, PsS: B, Fr, Cl, Aut, A, Ref)

Joel Spencer
See T.A. Brown.

Murali K. Srinivasan
1998a Boolean packings in Dowling geometries. European J. Combin. 19 (1998), 727–731.

Decomposes the Dowling lattice Qn(G) into Boolean algebras, indexed in
part by integer compositions, that are cover-preserving and centered above
the middle rank. (GG: M)

Saul Stahl
1978a Generalized embedding schemes. J. Graph Theory 2 (1978), 41–52. MR 58 #5318.

Zbl. 396.05013.
A generalized embedding scheme for a graph is identical to a rotation sys-
tem for a signing of the graph. Thm. 2: Signed rotation systems describe
all cellular embeddings of a graph. Thm. 4: Embeddings are homeomorphic
iff their signed rotation systems are switching equivalent. Thm. 5: An em-
bedding is orientable iff its signature is balanced. Compare Ringel (1977a).
Dictionary: λ is the signature. “λ-trivial” means balanced. (sg: T, Sw)

1978b The embeddings of a graph—a survey. J. Graph Theory 2 (1978), 275–298. MR
80a:05085. Zbl. 406.05027. (sg: T)

Richard P. Stanley
See also P. Doubilet and A. Postnikov.

1985a Reconstruction from vertex-switching. J. Combin. Theory Ser. B 38 (1985), 132–
138. MR 86f:05096. Zbl. 572.05046.
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From the 1-vertex switching deck (the multiset of isomorphism types of
signed graphs resulting by separately switching each vertex) of Σ = (Kn, σ),
Σ can be reconstructed, provided that 4 - n . The same for i -vertex switch-
ings, provided that the Krawtchouk polynomial Kn

i (x) has no even zeros
from 0 to n . When i = 1, the negative-subgraph degree sequence is always
reconstructible. All done in terms of Seidel (graph) switching of unsigned
simple graphs. [See Ellingham; Ellingham and Royle; Krasikov; Krasikov
and Roditty for further developments. Problem 1. Generalize to signings
of other highly symmetric graphs. Problem 2. Prove a similar theorem for
switching of a bidirected Kn .] (k: sw, TG)

1986a Enumerative Combinatorics, Vol. I. Wadsworth and Brooks/Cole, Monterey, Cal.,
1986. MR 87j:05003. Zbl. 608.05001.

Ch. 3, “Partially ordered sets”: Exercise 51, pp. 165 and 191, concerns the
Dowling lattices of a group and mentions Zaslavsky’s generalizations [signed
and biased graphs]. (GG: M, N: Exr, Exp)

1990a (As “R. Stenli”) Perechislitel’naya kombinatorika. “Mir”, Moscow, 1990. MR
91m:05002.

Russian translation of Stanley (1986). (GG: M, N: Exr, Exp)
1991a A zonotope associated with graphical degree sequences. In: Peter Gritzmann

and Bernd Sturmfels, eds., Applied Geometry and Discrete Mathematics: The
Victor Klee Festschrift, pp. 555–570. DIMACS Ser. Discrete Math. and Theoret.
Computer Sci., Vol. 4. American Mathematical Soc. and Assoc. for Computing
Machinery, Providence and Baltimore, 1991. MR 92k:52020. Zbl. 737.05057.

All-negative complete graphs (implicit in §3) and signed colorings (§4) are
used to find the number of ordered degree sequences of n -vertex graphs and
to study their convex hull. (SG: G, Col)

1996a Hyperplane arrangements, interval orders, and trees. Proc. Nat. Acad. Sci. USA
93 (1996), 2620–2625. MR 97i:52013. Zbl. 848.05005.

Deformed braid hyperplane arrangements, i.e., hyperplane representations
of Latb (Kn, ϕ) with gains ϕ(ij) = li ∈ Z where i < j . (Latb denotes the
geometric semilattice of balanced flats of the bias or lift matroid. Write ϕl
if all li = l .) In particular (§4), ϕ = ϕ1 . Also (§5), the “Shi” arrangement,
which represents Latb Φ where Φ = (Kn, ϕ0) ∪ (Kn, ϕ1).

(gg: G, M, N: Exp)

1997a Enumerative Combinatorics, Vol. I. Corrected [and enlarged] reprint. Cambridge
Stud. Adv. Math., Vol. 49. Cambridge University Press, Cambridge, Eng., 1997.
MR 98a:05001. Zbl. 970.29805.

Additional exercises and some updating. (GG: M, N: Exr, Exp)
1998a Hyperplane arrangements, parking functions and tree inversions. In: B.E. Sagan

and R. Stanley, eds., Mathematical Essays in Honor of Gian-Carlo Rota, Progress
in Math., Vol. 161, pp. 359–375. Birkhäuser, Boston, 1998. MR 99f:05006. Zbl.
980.39546. (gg: G, M, N: Exp)

Kenneth Steiglitz
See C.H. Papadimitriou.

R. Stenli [Richard P. Stanley]
See R.P. Stanley.
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Daniel L. Stern
1989a Spin glasses. Scientific American, July 1989, 52–59.

Informally describes frustration in spin glasses in terms of randomly ferro-
magnetic and antiferromagnetic interactions (see Toulouse (1977a)) and gives
some history and applications. (Phys:: sg: b, Rand: Exp)

B.M. Stewart
1966a Magic graphs. Canad. J. Math. 18 (1966), 1031–1059. MR 33 #5523. Zbl. 149,

214 (e: 149.21401). (ec: I)
Allen H. Stix

1974a An improved measure of structural balance. Human Relations 27 (1974), 439–455.
(SG: Fr)

J. Randolph Stonesifer
1975a Logarithmic concavity for a class of geometric lattices. J. Combin. Theory Ser. A

18 (1975), 216–218. MR 50 #9637. Zbl. 312.05019.
The second kind of Whitney numbers of a Dowling lattice are binomially
concave, hence strongly logarithmically concave, hence unimodal. [Famous
Problem (Rota). Generalize this.] (gg: M: N)

Bernd Sturmfels
See A. Björner.

J. Stutz
See F. Glover.

Benjamin Sudakov
See G. Gutin.

Janusz Szczypula
See P. Doreian.

E. Szemerédi
See B. Bollobás.

Z. Szigeti
See A.A. Ageev.

Irving Tallman
1967a The balance principle and normative discrepancy. Human Relations 20 (1967),

341–355. (PsS: ECol)
Arie Tamir

See also D. Hochbaum.
1976a On totally unimodular matrices. Networks 6 (1976), 373–382. MR 57 #12553.

Zbl. 356.15020. (SD: B)
Akihisa Tamura

See also Y.T. Ikebe and D. Nakamura.
1997a The generalized stable set problem for perfect bidirected graphs. J. Oper. Res.

Soc. Japan 40 (1997), 401–414. MR 99e:05063. Zbl. 894.90156.
The problem: maximize an integral weight function over the bidirected stable
set polytope (cf. Johnson and Padberg 1982a). §3 concerns the effect on per-
fection of deleting all incoming edges at a vertex. §4 reduces the “generalized
stable set problem” for bidirected graphs to the maximum weighted stable
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set problem for ordinary graphs, whence the problem for perfect bidirected
graphs is solvable in polynomial time. (sg: O:I, G, Sw, Alg)

20xxa Perfect (0,±1)-matrices and perfect bidirected graphs. Submitted.
(sg: O: G, Alg)

Percy H. Tannenbaum
See C.E. Osgood.

Èva Tardos and Kevin D. Wayne
1998a Simple generalized maximum flow algorithms. In: Robert E. Bixby, E. Andrew

Boyd, and Roger Z. Ŕıos-Mercado, eds., Integer Programming and Combinatorial
Optimization (6th Internat. IPCO Conf., Houston, 1998, Proc.), pp. 310–324.
Lecture Notes in Computer Sci., Vol. 1412. Springer, Berlin, 1998. Zbl. 911.90156.

Max. flow in a network with positive rational gains. Multiple sources and
sinks are allowed. “Relabeling” is switching the gains. Useful references to
previous work. (GN: Sw, Alg, Ref)

Michael Tarsi
See F. Jaeger.

D.E. Taylor
See also J.J. Seidel.

1977a Regular 2-graphs. Proc. Lond. Math. Soc. (3) 35 (1977), 257–274. MR 57 #16147.
Zbl. 362.05065.

Introducing two-graphs and regular two-graphs (defined by G. Higman, un-
published). [See Seidel (1976a) etc. for more.] A “two-graph” is the class
C3− of negative triangles of a signed complete graph (Kn, σ). (See §2. p.
258, where the group is Z2

∼= {+,−} and the definition is in terms of the
2-coboundary operator.) Two-graphs and switching classes of signed com-
plete graphs are equivalent concepts. (Stated in terms of Seidel switching in
§2, p. 260.) A two-graph is “regular” if every edge lies in the same number
of negative triangles. Thm.: C3− is regular iff A(Kn, σ) has at most two
eigenvalues. Various parameters of regular two-graphs are calculated.

(TG: A. G)
Herbert Taylor

See P. Erdős.
Howard F. Taylor

1970a Balance in Small Groups. Van Nostrand Reinhold, New York, 1970.
A thorough and pleasantly written survey of psychological theories of bal-
ance, including formalizations by signed graphs (Chs. 3 and 6), experimental
tests and critical evaluation of the formalisms, and so forth. Ch. 2: “Sub-
stantive models of balance”, takes the perspective of social psychology. §2.2:
“Varieties of balance theory”, reviews the theories of Heider (1946a) (the
source of Harary’s (1953a) invention of signed graphs), Osgood and Tannen-
baum (1955a), and others. §2.2e: “The Rosenberg-Abelson modifications”,
discusses their introduction of the “cost” of change of relations, which led
them (Abelson and Rosenberg 1958a) to propose the frustration index as a
measure of imbalance. (PsS, SG, WG: Exp, Ref)
Ch. 3: “Formal models of balance”, reviews various graph-theoretic mod-
els: signed and weighted signed, different ways to weigh imbalance, etc., the
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relationship to theories in social psychology being constantly kept in mind.
§3.1: “Graph theory and balance theory”, presents the basics of balance,
measures of degree of balance by polygons (Cartwright and Harary (1956a)),
polygons with strengths of edges (Morrissette (1958a)), local balance and N -
balance (Harary (1955a)), edge deletion and negation (Abelson and Rosen-
berg (1958a), Harary (1959b)), vertex elimination number (Harary (1959b)).
§3.2: “Evaluation of formalizations: strong points”, and §3.3: “Evaluation
of formalizations: weak points”, judged from the applied standpoint. §3.3a:
“Discrepancies between cycles or subsets of cycles”, suggests that differing
degrees of imbalance among certain different subsets of the vertices may
be significant [Is this reasonable?] and proposes measures, e.g., a variance
measure (p. 71), of this “discrepancy”. (SG, WG: B, Fr: Exp)
Ch. 6: “Issues involving formalization”, goes into more detail. §6.1: “Indices
of balance”, compares five indices, in particular Phillips’ (1967a) eigenvalue
index (also in Abelson (1967a)) with examples to show that the index differ-
entiates among different balanced signings of the same graph. §6.2: “Extra-
balance properties”, discusses Davis’s (1967a) clustering (§6.2b) and indices
of clustering (§6.2c). §6.3: “The problem of cycle length and non-local cy-
cles”. Are long polygons less important? Do polygons at a distance from an
actor (that is, a vertex) have less effect on the actor in balancing processes?

(SG: Fr, A: Exp)
Hidetaka Terasaka

See S. Kinoshita.
Morwen B. Thistlethwaite

1988a On the Kauffman polynomial of an adequate link. Invent. Math. 93 (1988), 285–
296. MR 89g:57009. Zbl. 645.57007.

A 1-variable Tutte-style polynomial ΓΣ of a sign-colored graph. Fix an edge
ordering. For each spanning tree T and edge e , let µT (e) = −A3τT (e)σ(e) if
e is active with respect to T , AτT (e)σ(e) if it is inactive, where τT (e) = +1
if e ∈ T , −1 if e /∈ T . Then ΓΣ(A) =

∑
T

∏
e∈T µT (e). [In the notation

of Zaslavsky (1992a), ΓΣ(A) = QΣ with aε = A−ε, bε = Aε for ε = ±1
and u = v = −(A2 + A−2).] §§3 and 4 show ΓΣ is independent of the
ordering. Other sections derive consequences for knot theory. [This marks
the invention of a Tutte-style polynomial of a colored, or parametrized or
weighted, graph or matroid, developed in Kauffman (1989a) and successors.]

(SGc: Knot: N)
A.D. Thomas

See F.W. Clarke.
Robin Thomas

See W. McCuaig and N. Robertson.
Carsten Thomassen

See also Paul Seymour.
1985a Even cycles in directed graphs. European J. Combin. 6 (1985), 85–89. MR

86i:05098. Zbl. 606.05039.
It is an NP-complete problem to decide whether a given signed digraph has a
positive but not all-positive cycle, even if there are only 2 negative arcs. This
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follows from Lemma 3 of Steven Fortune, John Hopcroft, and James Wyllie,
The directed subgraph homeomorphism problem (Theoret. Computer Sci. 10
(1980), 111–121. MR 81e:68079. Zbl. 419.05028.) by the simple argument
in the proof of Prop. 2.1 here.
To decide whether a specified arc of a digraph lies in an even cycle, or in an
odd cycle, are NP-complete problems (Prop. 2.1). To decide existence of an
even cycle [hence, by the negative subdivision trick, of a positive cycle in a
signed digraph] is difficult [but is solvable in polynomial time; see Robertson,
Seymour, and Thomas (20xxa)], although existence of an odd cycle [resp.,
of a negative cycle] is easy, by a trick here attributed to Edmonds (unpub-
lished). Prop. 2.2: Deciding existence of a positive cycle in a signed digraph
is polynomial-time solvable if |E−| is bounded. Thm. 3.2: If the outdegrees
of a digraph are all > log2 n , then every signing has a positive cycle, and
this bound is best possible; restricting to the all-negative signature, the lower
bound might (it’s not known) go down by a factor of up to 2, but certainly
(Thm. 3.1) a constant minimum on outdegree does not imply existence of an
even cycle. [See (1992a) for the effect of connectivity.] (SD, P: B, Alg)

1986a Sign-nonsingular matrices and even cycles in directed graphs. Linear Algebra Appl.
75 (1986), 27–41. MR 87k:05120. Zbl. 589.05050. Erratum, Linear Algebra Appl.
240 (1996), 238. (QM, sd: p: Sol, b, Alg)

1988a Paths, circuits and subdivisions. In: Lowell W. Beineke and Robin J. Wilson, eds.,
Selected Topics in Graph Theory 3, Ch. 5, pp. 97–131. Academic Press, London,
1988. MR 93h:05003 (book). Zbl. 659.05062.

§8: “Even directed circuits and sign-nonsingular matrices.”
(SD, QM: B, Sol: Exp)

§§8–10 treat even cycles in digraphs. (SD: B: Exp)
[General Problem. Generalize even-cycle and odd-cycle results to positive
and negative cycles in signed digraphs, the unsigned results corresponding
to all-negative signatures.]

1989a When the sign pattern of a square matrix determines uniquely the sign pattern of
its inverse. Linear Algebra Appl. 119 (1989), 27–34. MR 90f:05099. Zbl. 673.05067.

(QM, SD: Sol, A)

1990a Embeddings of graphs with no short noncontractible cycles. J. Combin. Theory
Ser. B 48 (1990), 155–177. MR 91b:05069. Zbl. 704.05011.

§5 describes the “fundamental cycle method”, a simple algorithm for a short-
est unbalanced polygon in a biased graph (Thm. 5.1). Thus the method finds
a shortest noncontractible polygon (Thm. 5.2). A noteworthy linear class:
the surface-separating (“Π-separating”) polygons (p. 166). Dictionary: “3-
path-condition” on a class F of polygons = property that F c is a linear
class. “Möbius cycle” = negative polygon in the signature induced by a
nonorientable embedding. (gg, sg: Alg, T)

1992a The even cycle problem for directed graphs. J. Amer. Math. Soc. 5 (1992), 217–
229. MR 93b:05064. Zbl. 760.05051.

A digraph that is strongly connected and has all in- and out-degrees ≥ 3
contains an even cycle. (sd: p: b)
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1993a The even cycle problem for planar digraphs. J. Algorithms 15 (1993), 61–75. MR
94d:05077. Zbl. 784.68045.

A polynomial-time algorithm for deciding the existence of an even cycle in a
planar digraph. (sd: p: b: Alg)

G.L. Thompson
See V. Balachandran.

R.L. Tobin
1975a Minimal complete matchings and negative cycles. Networks 5 (1975), 371–387.

MR 52 #16578. Zbl. 348.90151.
Bjarne Toft

See T.R. Jensen.
Ioan Tomescu

See also D.R. Popescu.
1973a Note sur une caracterisation des graphes dont le degré de deséquilibre est maximal.

Math. Sci. Humaines, No. 42 (1973), 37–40. MR 51 #3003. Zbl. 266.05115.
Independent proof of Petersdorf’s (1966a) Satz 1. Also, treats similarly a
variation on the frustration index. (SG: Fr)

1974a La réduction minimale d’un graphe à une réunion de cliques. Discrete Math. 10
(1974), 173–179. MR 51 #247. Zbl. 288.05127. (SG: B, Cl)

1976a Sur le nombre des cycles négatifs d’un graphe complet signé. Math. Sci. Humaines,
No. 53 (1976), 63–67. MR 56 #15493. Zbl. 327.05119.

The parity of the number of negative triangles = that of n|E−| . The number
of negative t -gons is even when n , t ≥ 4 [strengthened in Popescu (1991a),
(1996a)]. (SG: B)

1978a Problem 2. In: A. Hajnal and Vera T. Sós, eds., Combinatorics (Proc. Fifth
Hungarian Colloq., Keszthely, 1976), Vol. 2, p. 1217. Colloq. Math. Soc. János
Bolyai, 18. János Bolyai Math. Soc., Budapest, and North-Holland, Amsterdam,
1978. MR 80a:05002 (book). Zbl. 378.00007. (SG: B)

C.B. Tompkins
See I. Heller.

J. Topp and W. Ulatowski
1987a On functions which sum to zero on semicycles. Zastosowanie Mat. (Applicationes

Math.) 19 (1987), 611–617. MR 89i:05138. Zbl. 719.05044.
An additive real gain graph is balanced iff every polygon in a polygon basis
is balanced, iff the gains are induced by a vertex labelling [in effect, switch
to 0], iff every two paths with the same endpoints have the same gains.
A digraph is gradable (Harary, Norman, and Cartwright (1965a); also see
Marcu (1980a)) iff ϕ1 is balanced, where for each arc e , ϕ1(e) = 1 ∈ Z
(Thm. 3). The Windy Postman Problem (Thms. 4, 5). (GG, GD: B)

Aleksandar Torgašev
See also D.M. Cvetković.

1982a The spectrum of line graphs of some infinite graphs. Publ. Inst. Math. (Beograd)
(N.S.) 31 (45) (1982), 209–222. MR 85d:05175. Zbl. 526.05039.
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An infinite analog of Doob’s (1973a) characterization via the even-cycle ma-
troid of when a line graph has −2 as an eigenvalue. [Problem. Generalize to
line graphs of infinite signed graphs.] (p: A(LG))

1983a A note on infinite generalized line graphs. In: D. Cvetković et al., eds., Graph
Theory (Proc. Fourth Yugoslav Seminar, Novi Sad, 1983), pp. 291–297. Univ.
Novom Sadu, Inst. Mat., Novi Sad, 1984. MR 85i:05168. Zbl. 541.05042.

An infinite graph is a generalized line graph iff its least “limit” eigenvalue
≥ −2. [Problem. Generalize to line graphs of infinite signed graphs.]

(p: A(LG))
Gérard Toulouse

See also B. Derrida and J. Vannimenus.
1977a Theory of the frustration effect in spin glasses: I. Commun. Phys. 2 (1977), 115–

119. Reprinted in M. Mézard, G. Parisi, and M.A. Virasoro, Spin Glass Theory
and Beyond, pp. 99–103. World Scientific Lecture Notes in Physics, Vol. 9. World
Scientific, Singapore, 1987.

Introduces the notion of imbalance (“frustration”) of a signed graph to ac-
count for inherent disorder in an Ising model (here synonymous with a signed
graph, usually a lattice graph). (Positive and negative edges are called “fer-
romagnetic and antiferromagnetic bonds”.) Observes that switching the edge
signs from all positive (the model of D.D. Mattis, Phys. Lett. 56A (1976),
421–?) makes no essential difference. In a planar lattice [or any plane graph]
frustration of face boundaries (“plaquettes”) can be thought of as curvature,
i.e., failure of flatness. Proposes two kinds of asymptotic behavior of frus-
tration as a polygon encloses more plaquettes. The planar-duality approach
for finding the states with minimum frustration (i.e., switchings with fewest
negative edges); the number of such states is the “ground-state degeneracy”
and is important. Ideas are sketched; no proofs. (SG: Phys, Sw, B)

1979a Symmetry and topology concepts for spin glasses and other glasses. In: Non-
perturbative Aspects in Quantum Field Theory (Proc. Les Houches Winter Adv.
Study Inst., 1978). Physics Rep. 49, No. 2 (1979), 267–272. MR 82j:82063.

(Phys: SG: Exp)
Gérard Toulouse and Jean Vannimenus

1977a La frustration: un monde semé de contradictions. La Recherche No. 83, Vol. 8
(Nov., 1977), 980–981.

Popular exposition of the elements of frustration in relation to the Ising model
[evidently based on Toulouse (1977a)]. Briefly mentions the social psychology
application. [See also Stern (1989a).] (Phys: SG, B: Exp)(SG: PsS: Exp)

Lorenzo Traldi
1989a A dichromatic polynomial for weighted graphs and link polynomials. Proc. Amer.

Math. Soc. 106 (1989), 279–286. MR 90a:57013. Zbl. 713.57003.
Generalizing Kauffman’s (1989a) Tutte polynomial of a sign-colored graph,
Traldi’s “weighted dichromatic polynomial” Q(Γ; t, z) is the QΓ(1, w; t, z)
of Zaslavsky (1992b), in which the deletion-contraction parameters ae = 1
and be = w(e), the weight of e . Thm. 2 gives the Tutte-style spanning-
tree expansion. Thm. 4: Kauffman’s Tutte polynomial Q[Σ](A,B, d) =
d−1A|E+|B|E−|Q|Σ|(1, w; d, d) for connected Σ, with w(e) = (AB−1)σ(e) .
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[See Kauffman (1989a) for other generalizations. Traldi gives perhaps too
much credit to Fortuin and Kasteleyn (1972a).]
P. 284: Invariance under Reidemeister moves of type II constrains the weight-
ed dichromatic polynomial to, in essence, equal Kauffman’s. Thus no gen-
eralization is evident in connection with general link diagrams. There is an
interesting application to special link diagrams. (SGc: Gen: N, Knot)

Marián Trenkler
See S. Jezný.

Nenad Trinajstić
See also A. Graovac.

1983a Chemical Graph Theory. 2 vols. CRC Press, Boca Raton, Florida, 1983. MR
86g:92044.

Vol. I: Ch. 3, §VI: “ Möbius graphs.” Ch. 5, §VI: “Extension of Sachs for-
mula to Möbius systems.” §VII: “The characteristic polynomial of a Möbius
cycle.” Ch. 6, §VIII: “Eigenvalues of Möbius annulenes.”

(SG: Chem, A: Exp)

1992a Chemical Graph Theory, Second Ed. CRC Press, Boca Raton, Florida, 1992. MR
93g:92034.

Ch. 3, §V.B: “Möbius graphs.” Ch. 4, §I: “The adjacency matrix”: see pp.
42–43. Ch. 5: “The characteristic polynomial of a graph”, §II.B: “The exten-
sion of the Sachs formula to Möbius systems”; §III.D: “Möbius cycles”. Ch.
6, §VIII: “Eigenvalues of Möbius annulenes” (i.e., unbalanced polygons); §IX:
“A classification scheme for moncyclic systems” (i.e., characteristic polyno-
mials of polygons). (SG: A, Chem)
Ch. 7: “Topological resonance energy,” §V.C: “Möbius annulenes”; §V.G:
“Aromaticity in the lowest excited state of annulenes”. (Chem)

K. Truemper
See also Gerards et al. (1990a).

1976a An efficient scaling procedure for gain networks. Networks 6 (1976), 151–159. MR
56 #10882. Zbl. 331.90027. (gg: GN, sg: B, Sw)

1977a On max flows with gains and pure min-cost flows. SIAM J. Appl. Math. 32 (1977),
450–456. MR 55 #5197. Zbl. 352.90069. (GG, OG, GN, B)

1977b Unimodular matrices of flow problems with additional constraints. Networks 7
(1977), 343–358. MR 58 #20352. Zbl. 373.90023. (sg: I: B)

1978a Optimal flows in nonlinear gain networks. Networks 8 (1978), 17–36. MR 57
#5041. Zbl. 381.90039. (GN)

††1982a Alpha-balanced graphs and matrices and GF (3)-representability of matroids. J.
Combin. Theory Ser. B 32 (1982), 112–139. MR 83i:05025. Zbl. 478.05026.

A 0,±1-matrix is called “balanced” if it contains no submatrix that is the
incidence matrix of a negative polygon. More generally, α -balance of a 0,±1-
matrix corresponds to prescribing the signs of holes in a signed graph. Main
theorem characterizes the sets of holes (chordless polygons) in a graph that
can be the balanced holes in some signing. [A major result. See Conforti and
Kapoor (1998a) for a new proof and discussion of applications.] (sg: B, I)
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1992a Matroid Decomposition. Academic Press, San Diego, 1992. MR 93h:05046. Zbl.
760.05001.

§12.1: “Overview.” §12.2: “Characterization of alpha-balanced graphs,”
exposition of (1982a). (sg: B, Sw)

Marcello Truzzi
See F. Harary.

S.V. Tsaranov
See also F.C. Bussemaker, P.J. Cameron, and J.J. Seidel.

1992a On spectra of trees and related two-graphs. In: Jaroslav Nešetřil and Miroslav
Fiedler, eds., Fourth Czechoslovak Symposium on Combinatorics, Graphs and
Complexity (Prachatice, 1990), pp. 337–340. Ann. Discrete Math., Vol. 51. North-
Holland, Amsterdam, 1992. MR 93i:05004 (book). Zbl. 776.05077.

A two-graph whose points are the edges of a tree T and whose triples are
the nonseparating triples of edges of T (from Seidel and Tsaranov (1990a)
via Cameron (1994a)). An associated signed complete graph ΣT on vertex
set E(T ) is obtained by orienting T arbitrarily, then taking σT (ef) = + or
− depending on whether e and f are similarly or oppositely oriented in the
path of T that contains both. Reorienting edges corresponds to switching
ΣT . Thm.: Letting n = |V (T )| , the matrices 3In+A(ΣT ) and 2In+1−A(T )
have the same numbers of zero and negative eigenvalues. (TG: A, G)

1993a Trees, two-graphs, and related groups. In: D. Jungnickel and S.A. Vanstone,
eds., Coding Theory, Design Theory, Group Theory (Proc. Marshall Hall Conf.,
Burlington, Vt., 1990), pp. 275–281. Wiley, New York, 1993. MR 94j:05062.

New proof of theorem on the group (Seidel and Tsaranov 1990a) of the two-
graph (Tsaranov 1992a) of a tree. (TG: A, G)

Michael Tsatsomeros
See C.R. Johnson.

Thomas W. Tucker
See J.L. Gross.

Vanda Tulli
See A. Bellacicco.

Edward C. Turner
See R.Z. Goldstein.

Daniel Turźık
See S. Poljak.

W.T. Tutte
1981a On chain-groups and the factors of graphs. In: L. Lovász and Vera T. Sós, eds.,

Algebraic Methods in Graph Theory (Proc. Colloq., Szeged, 1978), Vol. 2, pp. 793–
818. Colloq. Math. Soc. János Bolyai, 25. János Bolyai Math. Soc., Budapest,
and North-Holland, Amsterdam, 1981. MR 83b:05104. Zbl. 473.05023.

(sg: EC, D)
Zsolt Tuza

See S. Poljak.
J.P. Uhry

See F. Barahona and I. Bieche.
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W lodzimierz Ulatowski
See also J. Topp.

1991a On Kirchhoff’s voltage law in Zn . Discussiones Math. 11 (1991), 35–50. MR
93g:05121. Zbl. 757.05058.

Examines injective, nowhere zero, balanced gains (called “graceful label-
lings”) from Zm+1 , m = |E| , on arbitrarily oriented polygons and variously
oriented paths. [Question. Does this work generalize to bidirected polygons
and paths?] (GD: b: Polygons, Paths)

N.B. Ul’janov [N.B. Ul’yanov]
See N.B. Ul’yanov.

N.B. Ul’yanov
See D.O. Logofet.

M.E. Van Valkenburg
See W. Mayeda.

Pauline van den Driessche
See J. Bélair, C. Jeffries, C.R. Johnson, and V. Klee.

Jean Vannimenus
See also B. Derrida and G. Toulouse.

J. Vannimenus, J.M. Maillard, and L. de Sèze
1979a Ground-state correlations in the two-dimensional Ising frustration model. J. Phys.

C: Solid State Phys. 12 (1979), 4523–4532. (Phys: SG: Fr)

J. Vannimenus and G. Toulouse
1977a Theory of the frustration effect: II. Ising spins on a square lattice. J. Phys. C:

Solid State Phys. 10 (1977), L537–L541. (SG: Phys: Fr)

Vijay V. Vazirani and Mihalis Yannakakis
1988a Pfaffian orientations, 0/1 permanents, and even cycles in directed graphs. In:

Timo Lepistö and Arto Salomaa, eds., Automata, Languages and Programming
(Proc. 15th Internat. Colloq., Tampere, Finland, 1988), pp. 667–681. Lecture
Notes in Computer Sci., Vol. 317. Springer-Verlag, Berlin, 1988. MR 90k:68078.
Zbl. 648.68060.

Slightly abridged version of (1989a). (SD: A, B: Alg)

Vijay V. Vazirani and Milhalis [Mihalis] Yannakakis
1989a Pfaffian orientations, 0–1 permanents, and even cycles in directed graphs. Discrete

Appl. Math. 25 (1989), 179–190. MR 91e:05080. Zbl. 696.68076.
“Evenness” of a digraph (i.e., every signing contains a positive cycle) is
polynomial-time equivalent to evaluability of a certain 0–1 permanent by
a determinant and to parts of the existence and recognition problems for
Pfaffian orientations of a graph. Briefly expounded in Brundage (1996a).]

(SD: A, B: Alg)

G.K. Vijayakumar
See G.R. Vijayakumar.

G.R. Vijayakumar
See also P.D. Chawathe, D.K. Ray-Chaudhuri, and N.M. Singhi.
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1984a (As “G.K. Vijayakumar”) A characterization of generalized line graphs and classi-
fication of graphs with eigenvalues at least 2 [misprint for −2]. J. Combin. Inform.
Syst. Sci. 9 (1984), 182–192. MR 89g:05055. Zbl. 629.05046. (sg: A, lg)

1987a Signed graphs represented by D∞ . European J. Combin. 8 (1987), 103–112. MR
88b:05111. Zbl. 678.05058. (SG: A, G, lg)

1992a Signed graphs represented by root system E8 . Combinatorial Math. and Appl.
(Proc., Calcutta, 1988). Sankhya Ser. A 54 (1992), 511–517. MR 94d:05072. Zbl.
882.05118. (SG: A, G)

1993a Algebraic equivalence of signed graphs with all eigenvalues ≥ −2. Ars Combin.
35 (1993), 173–191. MR 93m:05134. Zbl. 786.05059. (SG: A, G)

1994a Representation of signed graphs by root system E8 . Graphs Combin. 10 (1994),
383–388. MR 96a:05128. Zbl. 821.05040. (SG: G)

G.R. Vijayakumar and N.M. Singhi
1990a Some recent results on signed graphs with least eigenvalues ≥ −2. In: Dijen

Ray-Chaudhuri, ed., Coding Theory and Design Theory Part I: Coding Theory
(Proc. Workshop IMA Program Appl. Combin., Minneapolis, 1987–88), pp. 213–
218. IMA Vol. Math. Appl., Vol. 20. Springer-Verlag, New York, 1990. MR
91e:05069. Zbl. 711.05033. (SG: G, lg, A: Exp)

G.R. Vijayakumar (as “Vijaya Kumar”), S.B. Rao, and N.M. Singhi
1982a Graphs with eigenvalues at least −2. Linear Algebra Appl. 46 (1982), 27–42. MR

83m:05099. Zbl. 494.05044. (sg: A, G, lg)
K.S. Vijayan

See S.B. Rao.
Jacques Villain

1977a Spin glass with non-random interactions. J. Phys. C: Solid State Phys. 10, No.
10 (1977), 1717–1734. (SG: Phys, Fr, Sw)

1977b Two-level systems in a spin-glass model: I. General formalism and two-dimensional
model. J. Phys. C: Solid State Phys. 10 (1977), 4793–4803. (Phys: SG: Fr)

1978a Two-level systems in a spin-glass model: II. Three-dimensional model and effect
of a magnetic field. J. Phys. C: Solid State Phys. 11, No. 4 (1978), 745–752.

(Phys: SG: Fr)(GG: Phys, Sw, B)
Andrew Vince

1983a Combinatorial maps. J. Combin. Theory Ser. B 34 (1983), 1–21. MR 84i:05048.
Zbl. 505.05054.

See Theorem 6.1. (sg: b: T)
E. Vincent, J. Hammann, and M. Ocio

1992a Slow dynamics in spin glasses and other complex systems. In: D.H. Ryan, ed.,
Recent Progress in Random Magnets, pp. 207–236. World Scientific, Singapore,
1992.

Surveys experiments with spin glass materials, especially their aging behav-
ior. Interprets results as tending to support the Parisi-type model (see notes
on Mézard, Parisi, and Virasoro (1987a)). (Phys)

Miguel Angel Virasoro
See M. Mézard.
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Jože Vrabek
See T. Pisanski.

Kristina Vušković
See M. Conforti.

Donald K. Wagner
See also V. Chandru and C.R. Coullard.

††1985a Connectivity in bicircular matroids. J. Combin. Theory Ser. B 39 (1985), 308–324.
MR 87c:05041. Zbl. 584.05019.

Prop. 1 and Thm. 2 show that n -connectivity of the bicircular matroid B(Γ)
is equivalent to “n -biconnectivity” of Γ.
When do two 3-biconnected graphs have isomorphic bicircular matroids? §5
proves that 3-biconnected graphs with > 4 vertices have isomorphic bicir-
cular matroids iff one is obtained from the other by a sequence of operations
called “edge rolling” and “3-star rotation”. This is the bicircular analog
of Whitney’s polygon-matroid isomorphism theorem, but it is complicated.
[An important theorem, generalized to all bicircular matroids in Coullard,
del Greco, and Wagner (1991a). Major Research Problems. Generalize to
bias matroids of biased graphs. Find the analog for lift matroids.]

(Bic: Str)

1988a Equivalent factor matroids of graphs. Combinatorica 8 (1988), 373–377. MR
90d:05071. Zbl. 717.05022.

“Factor matroid” = even-cycle matroid G(−Γ). Decides when G(−Γ) ∼=
G(B) where B is a given bipartite, 4-connected graph. (EC: Str)

Bronislaw Wajnryb
See R. Aharoni.

Derek A. Waller
See also F.W. Clarke.

1976a Double covers of graphs. Bull. Austral. Math. Soc. 14 (1976), 233–248. MR 53
#10662. Zbl. 318.05113. (SG: Cov)

Egon Wanke
See also F. Höfting.

1993a Paths and cycles in finite periodic graphs. In: Andrzej M. Borzyszkowski and Ste-
fan Soko lowski, eds., Mathematical Foundations of Computer Science 1993 (Proc.,
18th Internat. Sympos., MFCS ’93, Gdańsk, 1993), pp. 751–760. MR 95c:05077.

Broadly resembles Höfting and Wanke (1994a) but omits those edges of Φ̃
that are affected by the modulus α . (GD(Cov): Alg)

20xxa Paths and cycles in finite periodic graphs. Submitted.
Full version of (1993a). (GD(Cov): Alg)

G.H. Wannier
1950a Antiferromagnetism. The triangular Ising net. Phys. Rev. (2) 79 (1950), 357–364.

MR 12, 576. Zbl. 38, 419 (e: 038.41904). (Phys: P: Fr)
Stanley Wasserman and Katherine Faust

1994a Social Network Analysis: Methods and Applications. Structural Anal. Soc. Sci., 8.
Cambridge Univ. Press, Cambridge, 1994. Zbl. 980.24676.
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§1.2: “Historical and theoretical foundations.” A brief summary of various
network methods in sociometry, signed graphs and digraphs among them.
§4.4: “Signed graphs and signed directed graphs.” Mathematical basics.
Ch. 6: “Structural balance and transitivity.” Application of balance of signed
(di)graphs and of ensuing notions like clusterability, historically evolving into
transitivity of unsigned digraphs. History and evaluation.

(PsS, SG, SD: B, Fr, Cl, Gen: Exp, Ref)
William C. Waterhouse

1977a Some errors in applied mathematics. Amer. Math. Monthly 84, No. 1 (January,
1977), 25–27. Zbl. 376.9001 (q.v.).

Criticizes Roberts and Brown (1975a, 1977a). See rebuttal in the Zbl. review.
John J. Watkins

See R.J. Wilson.
Kevin D. Wayne

See È. Tardos.
Jeffrey R. Weeks and Kenneth P. Bogart

1979a Consensus signed digraphs. SIAM J. Appl. Math. 36 (1979), 1–14. MR 81i:92026.
Zbl. 411.05042. (SD)

Gerry M. Weiner
See J.S. Maybee.

Volkmar Welker
1997a Colored partitions and a generalization of the braid arrangement. Electronic

J. Combin. 4 (1) (1997), Article R4, 12 pp. (electronic). MR 98b:57026. Zbl.
883.52010.

The arrangement is the affine part (that is, where x0 = 1) of the projective
representation of G(Φ), where Φ is the complex multiplicative gain graph
Φ = {1}Kn+1 ∪ {re0i : 1 ≤ i ≤ n and 2 ≤ r ≤ s} . Here the vertex set
is {0, 1, . . . , n} , s is any positive integer, and re0i (in the paper, e0i(r))
denotes an edge v0vi with gain r . The topics of interest are those related
to the complex complement. The study is based on the combinatorics of the
intersection semilattice [that is, the geometric semilattice Latb Φ of balanced
flats], including the Poincaré polynomial of the arrangement [equivalent to
the balanced chromatic polynomial of Φ]. (gg: M, G, N)

Albert L. Wells, Jnr.
See also P.J. Cameron and Y. Cheng.

1982a Regular generalized switching classes and related topics. D. Phil. thesis, Oxford
Univ., 1982. (SG: Sw, A, E, TG, G, Cov, Aut)

1984a Even signings, signed switching classes, and (−1, 1)-matrices. J. Combin. Theory
Ser. B 36 (1984), 194–212. MR 85i:05206. Zbl. 527.05007. (SG: Sw, E, Aut)

D.J.A. Welsh [Dominic Welsh]
See also L. Lovász and W. Schwaärzler.

1976a Matroid Theory. L.M.S. Monographs, Vol. 8. Academic Press, London, 1976. MR
55 #148. Zbl. 343.05002.

§11.4: “Partition matroids determined by finite groups”, sketches the most
basic parts of Dowling (1973b). (gg: M: Exp)
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1992a On the number of knots and links. In: G. Halász, L. Lovász, D. Miklós, and T.
Szönyi, eds., Sets, Graphs and Numbers (Proc., Budapest, 1991), pp. 713–718.
Colloq. Math. Soc. János Bolyai, Vol. 60. János Bolyai Math. Soc., Budapest, and
North-Holland, Amsterdam, 1992. MR 94f:57010. Zbl. 799.57001.

The signed graph of a link diagram is employed to get an upper bound.
(SGc: E)

1993a Complexity: Knots, Colourings and Counting. London Math. Soc. Lecture Note
Ser., 186. Cambridge Univ. Press, Cambridge, Eng., 1993. MR 94m:57027. Zbl.
799.68008.

Includes very brief treatments of some appearances of signed graphs.
§2.2, “Tait colourings”, defines the signed graph of a link diagram, mentioned
again in observation (2.3.1) on alternating links and Prop (5.2.16) on “states
models” (from Schwärzler and Welsh (1993a)). §5.6, “Thistlethwaite’s non-
triviality criterion”: the criterion depends on the signed graph.
§2.5, “The braid index and the Seifert index of a link”, defines the Seifert
graph, a signed graph based on splitting the link diagram. (SGc, Knot)
§5.7, “Link invariants and statistical mechanics”, defines a relatively simple
spin model for signed graphs, with an arbitrary finite number of possible spin
values. The partition function is related to link diagrams.
§4.2, “The Ising model”, introduces the basic concepts in mathematical
terms. §6.4, “The complexity of the Ising model”, “Computing ground states
of spin systems”, pp. 105–107, discusses finding a ground state of the Ising
model. This is described as the min-weight cut problem with weights the
negatives [this is an error] of the Ising bond interaction values: that is, the
weighted frustration index problem in the negative [erroneous] of the Ising
graph. It is the max-cut problem when the Ising graph is balanced (ferromag-
netic) [should be antibalanced (antiferromagnetic)]. For external magnetic
field, follows Barahona (1982a). (sg: Fr, Phys)
§3.6, “Ice models”, counts “ice configurations” (certain graph orientations)
via poise gains modulo 3, although the counting function is not gain-graphic.
(gg, N, Phys)
§4.4: “The Ashkin–Teller–Potts model”. This treatment of the Potts model
has a different Hamiltonian from that of Fischer and Hertz (1991a). [It does
not seem that Welsh intends to admit edge signs but if they are allowed
then the Hamiltonian (without edge weights) is −

∑
σ(eij)(δ(si, sj) − 1).

Up to halving and a constant term, this is Doreian and Mrvar’s (1996a)
clusterability measure P (π), with α = .5, of the vertex partition induced by
the state.] [Also cf. Fischer and Hertz (1991a).] (cl, Phys)

1993b The complexity of knots. In: John Gimbel, John W. Kennedy and Louis V.
Quintas, eds., Quo Vadis, Graph Theory?, pp. 159–171. Ann. Discrete Math., Vol.
55. North-Holland, Amsterdam, 1993. MR 94c:57021. Zbl. 801.68086.

Link diagrams ↔ dual pairs of sign-colored plane graphs: based on Yajima
and Kinoshita (1957a). Unsolved algorithmic problems about knots based on
link diagrams; in particular, triviality of diagrams is equivalent to Problem
4.2: A polynomial-time algorithm to decide whether the graphical Reide-
meister moves can convert a given signed plane graph to one with edges all
of one sign. (SGc: D, Knot: Alg, Exp)
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1993c Knots and braids: some algorithmic questions. In: Neil Robertson and Paul Sey-
mour, eds., Graph Structure Theory (Proc., Seattle, 1991), pp. 109–123. Contemp.
Math., Vol. 147. Amer. Math. Soc., Providence, R.I., 1993. MR 94g:57014. Zbl.
792.05058.

§1 presents the sign-colored graph of a link diagram and §5, “Reidemeister
graphs”, describes Schwärtzler and Welsh (1993a). §3 defines the sign-colored
Seifert graph. (SGc. Sc(M): N, Alg, Knot: Exp)

1997a Knots. In: Lowell W. Beineke and Robin J. Wilson, eds., Graph Connections:
Relationships between Graph Theory and other Areas of Mathematics, Ch. 12,
pp. 176–193. The Clarendon Press, Oxford, 1997. MR 99a:05001 (book). Zbl.
878.57001.

Mostly describes the signed graph of a link diagram and its relation to knot
theory, including knot properties deducible directly from the signed graph,
the Kauffman bracket and two-variable polynomials, etc. Similar to relevant
parts of (1993a). (SGc: Knot: N: Exp)

D. de Werra
See C. Benzaken.

Arthur T. White
1984a Graphs, Groups and Surfaces. Completely revised and enlarged edn. North Hol-

land Math. Stud., Vol. 8. North-Holland, Amsterdam, 1984. MR 86d:05047. Zbl.
551.05037.

Chapter 10: “Voltage graphs”. (GG: T, Cov)
1994a An introduction to random topological graph theory. Combinatorics, Probability

and Computing 3 (1994), 545–555. MR 95j:05083. Zbl. 815.05027.
Take a graph Γ with cyclomatic number k and randomly sign it so that each
edge is negative with probability p . The probability that (Γ, σ) is balanced
= 2−k if p = 1

2 [obvious] and ≤ [max(p, 1 − p)]k in general [not obvious]
(this has an interesting asymptotic consequence due to Gimbel, given in this
paper). (SG: Rand, B)

Neil L. White
See also A. Björner.

1986a A pruning theorem for linear count matroids. Congressus Numerantium 54 (1986),
259–264. MR 88c:05047. Zbl. 621.05009. (Bic: Gen)

Neil White and Walter Whiteley
1983a A class of matroids defined on graphs and hypergraphs by counting properties.

Unpublished manuscript, 1983.
See Whiteley (1996a) for an exposition and extension. (Bic: Gen)

Walter Whiteley
See also N. White.

1996a Some matroids from discrete applied geometry. In: Joseph E. Bonin, James G.
Oxley, and Brigitte Servatius, eds., Matroid Theory (Proc., Seattle, 1995), pp.
171–311. Contemp. Math., Vol. 197. Amer. Math. Soc., Providence, R.I., 1996.

Appendix: “Matroids from counts on graphs and hypergraphs”, which ex-
pounds and extends Loréa (1979a), Schmidt (1979a), and especially White
and Whiteley (1983a), describes matroids on the edge sets of graphs (and hy-
pergraphs) that generalize the bicircular matroid. The definition: given m ≥



the electronic journal of combinatorics #DS8 144

0 and k ∈ Z , S is independent iff ∅ ⊂ S′ ⊆ S implies |S′| ≤ m|V (S′)|+ k .
(Bic: Gen)(Ref)

Geoff Whittle
See also C. Semple.

1989a Dowling group geometries and the critical problem. J. Combin. Theory Ser. B 47
(1989), 80–92. MR 90g:51008. Zbl. 628.05018.

A Dowling-lattice version of Crapo and Rota’s critical problem is developed.
Some minimal matroids whose critical exponent is k (i.e., tangential k -
blocks) are given, one being G(±K◦n). (gg: M: N)

Robin J. Wilson and John J. Watkins
1990a Graphs: An Introductory Approach. A First Course in Discrete Mathematics.

Wiley, New York, 1990.
§3.2: “Social Sciences” (pp. 51–53) applies signed graphs. §5.1: “Signed
digraphs” (pp. 96–98) discusses positive and negative feedback (i.e., positive
and negative cycles) in applications. Based on Open University (1981a).

(SG, PsS, SD: Exp)
Shmuel Winograd

See R.M. Karp.
Wayland H. Winstead

See J.R. Burns.
H.S. Witsenhausen

See Y. Gordon.
C. Witzgall and C.T. Zahn, Jr.

1965a Modification of Edmonds’ maximum matching algorithm. J. Res. Nat. Bur. Stan-
dards (U.S.A.) Sect. B 69B (1965), 91–98. MR 32 #5548. Zbl. 141.21901. (p: o)

A. Wongseelashote
1976a An algebra for determining all path-values in a network with application to K -

shortest-paths problems. Networks 6 (1976), 307–334. MR 56 #14628. Zbl.
375.90030. (gg: Paths)

Takeshi Yajima and Shin’ichi Kinoshita
1957a On the graphs of knots. Osaka Math. J. 9 (1957), 155–163. MR 20 #4845. Zbl.

(e: 080.17002).
Examines the relationship between the two dual sign-colored graphs, Σ and
Σ′ , of a link diagram (Bankwitz 1930a), translating the Reidemeister moves
into graph operations and showing that they will convert Σ into Σ′ .

(SGc: Knot)
Jing-Ho Yan, Ko-Wei Lih, David Kuo, and Gerard J. Chang

1997a Signed degree sequences of signed graphs. J. Graph Theory 26 (1997), 111–117.
MR 98i:05160. Zbl. 980.04848.

Net degree sequences of signed simple graphs. Theorem 2 improves the
Havel–Hakimi-type theorem from Chartrand, Gavlas, Harary, and Schultz
(1992a) by determining the length parameter. Theorem 7 characterizes the
net degree sequences of signed trees. [There seems to be room to strengthen
the characterization and generalize to weighted degree sequences: see notes
on Chartrand et al.] (SGw: N)
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Mihalis Yannakakis
See Esther M. Arkin and V.V. Vazirani.

Milhalis Yannakakis [Mihalis Yannakakis]
See Mihalis Yannakakis.

Yeong-Nan Yeh
See I. Gutman and S.-Y. Lee.

Anders Yeo
See G. Gutin.

J.W.T. Youngs
1968a Remarks on the Heawood conjecture (nonorientable case). Bull. Amer. Math. Soc.

74 (1968), 347–353. MR 36 #3675. Zbl. 161.43303.
Introducing “cascades”: current graphs with bidirected edges. A “cascade”
is a bidirected graph, not all positive, that is provided with both a rotation
system (hence it is orientation embedded in a surface) and a current (which
is a special kind of bidirected flow). Dictionary: “broken” means a negative
edge. (sg: O: Appl, Flows)

1968b The nonorientable genus of Kn . Bull. Amer. Math. Soc. 74 (1968), 354–358. MR
36 #3676. Zbl. 161.43304.

“Cascades”: see Youngs (1968b). (sg: O: Appl)

Cheng-Ching Yu
See C.-C. Chang.

Raphael Yuster and Uri Zwick
1994a Finding even cycles even faster. In: Serge Abiteboul and Eli Shamir, eds., Au-

tomata, Languages and Programming (Proc. 21st Internat. Colloq., ICALP 94,
Jerusalem, 1994), pp. 532–543. Lect. Notes Computer Sci., Vol. 820. Springer-
Verlag, Berlin, 1994. MR 96b:68002 (book). Zbl. 844.00024 (book).

Abbreviated version of (1997a). (p: Cycles: Alg)

1997a Finding even cycles even faster. SIAM J. Discrete Math. 10 (1997), 209–222. MR
98d:05137. Zbl. 867.05065.

For fixed even k , a very fast algorithm for finding a k -gon. Also, one for
finding a shortest even polygon. [Question. Are these the all-negative cases
of similarly fast algorithms to find positive k -gons, or shortest positive poly-
gons, in signed graphs?] (p: Cycles: Alg)

C.T. Zahn, Jr.
See also C. Witzgall.

1973a Alternating Euler paths for packings and covers. Amer. Math. Monthly 80 (1973),
395–403. MR 51 #10137. Zbl. 274.05112. (p: o)

Robert B. Zajonc
1968a Cognitive theories in social psychology. In: Gardner Lindzey and Elliot Aronson,

eds., The Handbook of Social Psychology, Second Edition, Vol. 1, Ch. 5, pp. 320–
411. Addison-Wesley, Reading, Mass., 1968.

“Structural balance,” pp. 338–353. “The congruity principle,” pp. 353–359.
(PsS: SD, SG, B: Exp, Ref)
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Wenan Zang
1998a Coloring graphs with no odd-K4 . Discrete Math. 184 (1998), 205–212. MR

99e:05056.
An algorithm, based in part on Gerards (1994a), that, given an all-negative
signed graph, finds a subdivided −K4 subgraph or a 3-coloring of the un-
derlying graph. Question. Is there a generalization to all signed graphs?

(sg: p: Col, Alg, Ref)

Thomas Zaslavsky
See also C. Greene, P. Hanlon, and P. Solé.

1977a Biased graphs. Unpublished manuscript, 1977.
Being published, greatly expanded, in (1989a, 1991a, 1995b, 20xxg) and
more; as well as (but restricted to signed graphs) in (1982a, 1982b).

(GG: M)

1980a Voltage-graphic geometry and the forest lattice. In: Report on the XVth Denison-
O.S.U. Math. Conf. (Granville, Ohio, 1980), pp. 85–89. Dept. of Math., The Ohio
State Univ., Columbus, Ohio, 1980. (GG: M, Bic)

1981a The geometry of root systems and signed graphs. Amer. Math. Monthly 88 (1981),
88–105. MR 82g:05012. Zbl. 466.05058.

Signed graphs correspond to arrangements of hyperplanes in Rn of the forms
xi = xj , xi = −xj , and xi = 0. Consequently, one can compute the number
of regions of the arrangement from graph theory, esp. for arrangements cor-
responding to “sign-symmetric” graphs, i.e., having both or none of each pair
xi = ±xj . Simplified account of parts of (1982a, 1982b, 1982c), emphasizing
geometry. (SG: M, G, N)

1981b Characterizations of signed graphs. J. Graph Theory 5 (1981), 401–406. MR
83a:05122. Zbl. 471.05035.

Characterizes the sets of polygons that are the positive ones in some signing
of a graph. (SG: B)

1981c Is there a theory of signed graph embedding? In: Report on the XVIth Denison-
O.S.U. Math. Conf. (Granville, Ohio, 1981), pp. 79–82. Dept. of Math., The Ohio
State Univ., Columbus, Ohio, 1981. (SG: T, M)

††1982a Signed graphs. Discrete Appl. Math. 4 (1982), 47–74. MR 84e:05095a. Zbl.
476.05080. Erratum. Ibid. 5 (1983), 248. MR 84e:05095b. Zbl. 503.05060.

Basic results on the bias matroid G(Σ), the signed covering graph σ̃ , the
matrix-tree theorem [different from that of Murasugi (1989a)], and vector
representation [as multisubsets of root systems Bn∪Cn ]. Examples. Conjec-
tures about the interrelation between representability in characteristic 2 and
unique representability in characteristic 0 [since answered by Geoff Whittle
(A characterisation of the matroids representable over GF(3) and the ratio-
nals. J. Combin. Theory Ser. B 65 (1995), 222–261. MR 96m:05046. Zbl.
835.05015) as developed by Pagano (1998a, 20xxc)].

(SG, GG: M, B, Sw, Cov, I, G; EC, K)

††1982b Signed graph coloring. Discrete Math. 39 (1982), 215–228. MR 84h:05050a. Zbl.
487.05027.
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A “proper k -coloring” of Σ partitions V into a special “zero” part, possibly
void, that induces a stable subgraph, and up to k other parts (labelled from
a set of k colors), each of which induces an antibalanced subgraph. A “zero-
free proper k -coloring” is similar but without the “zero” part. [The sugges-
tion is that the signed analog of a stable vertex set is one that induces an
antibalanced subgraph. Problem. Use this insight to develop generalizations
of stable-set notions, such as cliques and perfection. Example. Let α(Σ),
the “antibalanced vertex set number”, be the largest size of an antibalance-
inducing vertex set. Then α(Γ) = α(+Γ ∪ −Kn .] One gets two related
chromatic polynomials. The chromatic polynomial, χΣ(2k + 1), counts all
proper k -colorings; it is essentially the characteristic polynomial of the bias
matroid. It can often be most easily computed via the zero-free chromatic
polynomial, χ∗Σ(2k), which counts proper zero-free colorings: see (1982c).

(SG, GG: M, Col, N, Cov, O, G)

1982c Chromatic invariants of signed graphs. Discrete Math. 42 (1982), 287–312. MR
84h:05050b. Zbl. 498.05030.

Continuation of (1982b). The fundamental balanced expansion formulas,
that express the chromatic polynomial in terms of the zero-free chromatic
polynomial. Many special cases, treated in great detail: antibalanced graphs,
signed graphs that contain +Kn or −Kn , signed Kn ’s (a.k.a. two-graphs),
etc. (SG, GG: M, N, Col, Cov, O, G; EC, K)

1982d Bicircular geometry and the lattice of forests of a graph. Quart. J. Math. Oxford
(2) 33 (1982), 493–511. MR 84h:05050c. Zbl. 519.05020. (GG: M, Bic, G, N)

1982e Voltage-graphic matroids. In: Adriano Barlotti, ed., Matroid Theory and Its Ap-
plications (Proc. Session of C.I.M.E., Varenna, Italy, 1980), pp. 417–423. Liguore
Editore, Naples, 1982. MR 87g:05003 (book). (GG: M, EC, Bic, N)

1984a How colorful the signed graph? Discrete Math. 52 (1984), 279–284. MR 86m:-
05045. Zbl. 554.05026.

The zero-free chromatic number, and in particular that of a complete signed
graph (possibly with parallel edges). (SG: Col)

1984b Multipartite togs (analogs of two-graphs) and regular bitogs. In: Proc. Fifteenth
Southeastern Conf. on Combinatorics, Graph Theory and Computing (Baton
Rouge, 1984), Vol. III. Congressus Numer. 45 (1984), 281–293. MR 86d:05109.
Zbl. 625.05044. (SG: TG: Gen: A, Sw)

1984c Line graphs of switching classes. In: Report of the XVIIIth O.S.U. Denison Maths
Conference (Granville, Ohio, 1984), pp. 2–4. Dept. of Math., Ohio State Univ.,
Columbus, Ohio, 1984.

The line graph of a switching class [Σ] of signed graphs is a switching class
of signed graphs; call it [L′(Σ)] . The reduced line graph L is formed from L′

by deleting parallel pairs of oppositely signed edges. Then A(L) = A(L′) =
2I −MMT , where M is the incidence matrix of Σ. Thm. 1: A(L) has all
eigenvalues ≤ 2. Examples: For an ordinary graph Γ, L(−Γ) = −L(Γ).
Taking −Γ and attaching any number of pendant negative digons to each
vertex yields (the negative of) Hoffman’s generalized line graph. Additional
results are claimed but there are no proofs. [See also 20xxb).] [This work is
intimately related to that of Vijayakumar et al., which was then unknown
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to the author, and to Cameron (1980a) and Cameron, Goethals, Seidel, and
Shult (1976a).] (SG: LG: Sw, A, I)

1987a The biased graphs whose matroids are binary. J. Combin. Theory Ser. B 42 (1987),
337–347. MR 88h:05082. Zbl. 667.05015.

Forbidden-minor and structural characterizations. The latter for signed
graphs is superseded by a result of Pagano (1998a). (GG: M)

1987b Balanced decompositions of a signed graph. J. Combin. Theory Ser. B 43 (1987),
1–13. MR 89c:05058. Zbl. 624.05056.

Decompose E(Σ) into the fewest balanced subsets (generalizing the bipar-
ticity of an unsigned graph), or balanced connected subsets. These minimum
numbers are δ0 and δ1 . Thm. 1: δ0 = dχ∗e + 1, where χ∗ is the zero-free
chromatic number of −Σ. Thm. 2: δ0 = δ1 if Σ is complete. Conjecture 1.
Σ partitions into δ0 balanced, connected, and spanning edge sets (whence
δ0 = δ1 ) if it has δ0 edge-disjoint spanning trees. [Solved and generalized
to basepointed matroids by D. Slilaty.] Conjecture 2 is a formula for δ1 in
terms of δ0 of subgraphs. [It has been thoroughly disproved by Slilaty.]

(SG: Fr)
1987c Vertices of localized imbalance in a biased graph. Proc. Amer. Math. Soc. 101

(1987), 199–204. MR 88f:05103. Zbl. 622.05054.
Such a vertex (also, a “balancing vertex”) is a vertex of an unbalanced graph
whose removal leaves a balanced graph. Some elementary results. (GG: Fr)

1988a Togs (generalizations of two-graphs). In: M.N. Gopalan and G.A. Patwardhan,
eds., Optimization, Design of Experiments and Graph Theory (Proc. Sympos.,
Bombay, 1986), pp. 314–334. Indian Inst. of Technology, Bombay, 1988. MR
90h:05112. Zbl. 689.05035.

An attempt to generalize two-graphs (here [alas?] called “unitogs”) in a way
similar to that of Cameron and Wells (1986a) although largely independent.
The notable new example is “Johnson togs”, based on the Johnson graph of
k -subsets of a set. “Hamming togs” are based on a Hamming graph (that is,
a Cartesian product of complete graphs) and generalize examples of Cameron
and Wells. Other examples are as in (1984b). (SG: TG: Gen)

1988b The demigenus of a signed graph. In: Report on the XXth Ohio State-Denison
Mathematics Conference (Granville, Ohio, 1988). Dept. of Math., Ohio State
Univ., Columbus, Ohio, 1988. (SG: T, M)

1989a Biased graphs. I. Bias, balance, and gains. J. Combin. Theory Ser. B 47 (1989),
32–52. MR 90k:05138. Zbl. 714.05057.

Fundamental concepts and lemmas of biased graphs. Bias from gains; switch-
ing of gains; characterization of balance [for which see also Harary, Lind-
strom, and Zetterstrom (1982a)]. (GG: B, Sw)

1990a Biased graphs whose matroids are special binary matroids. Graphs Combin. 6
(1990), 77–93. MR 91f:05097. Zbl. 786.05020. (GG: M)

††1991a Biased graphs. II. The three matroids. J. Combin. Theory Ser. B 51 (1991),
46–72. MR 91m:05056. Zbl. 763.05096.

Basic theory of the bias, lift, and complete lift matroids. Several questions
and conjectures. (GG: M)



the electronic journal of combinatorics #DS8 149

1991b Orientation of signed graphs. European J. Combin. 12 (1991), 361–375. MR
93a:05065. Zbl. 761.05095.

Oriented signed graph = bidirected graph. The oriented matroid of an ori-
ented signed graph. A “cycle” in a bidirected graph is a bias circuit (a
balanced polygon, or a handcuff with both circles negative) oriented to have
no source or sink. Cycles in Σ are compared with those in its signed (i.e.,
derived) covering graph Σ̃. The correspondences among acyclic orientations
of Σ and regions of the hyperplane arrangements of Σ and Σ̃, and dually
the faces of the acyclotope of Σ. Thm. 4.1: the net degree vector d(τ) of an
orientation τ belongs to the face of the acyclotope that is determined by the
union of all cycles. Cor. 5.3 (easy): a finite bidirected graph has a source or
sink. (SG: O, M, Cov, G)(SGw: N)

1992a Orientation embedding of signed graphs. J. Graph Theory 16 (1992), 399–422.
MR 93i:05056. Zbl. 778.05033.

Positive polygons preserve orientation, negative ones reverse it. The mini-
mal embedding surface of a one-point amalgamation of signed graphs. The
formula is almost additive. (SG: T)

1992b Strong Tutte functions of matroids and graphs. Trans. Amer. Math. Soc. 334
(1992), 317–347. MR 93a:05047. Zbl. 781.05012.

Suppose that a function of matroids with labelled points is defined that
is multiplicative on direct sums and satisfies a Tutte-Grothendieck recur-
rence with coefficients (the “parameters”) that depend on the element being
deleted and contracted, but not on the particular minor from which it is
deleted and contracted: specifically, F (M) = aeF (M \ e) + beF (M/e) if
e is not a loop or coloop in M . Thm. 2.1 completely characterizes such
“strong Tutte functions” for each possible choice of parameters: there is
one general type, defined by a rank generating polynomial RM (a, b;u, v)
(the “parametrized rank generating polynomial”) involving the parameters
a = (ae), b = (be) and the variables u, v , and there are a few special types
that exist only for degenerate parameters. All have a Tutte-style basis ex-
pansion; indeed, a function has such an expansion iff it is a strong Tutte
function (Thms. 7.1, 7.2). The Tutte expansion is a polynomial within each
type. If the points are colored and the parameters of a point depend only
on the color, one has a multicolored matroid generalization of Kauffman’s
(1989a) Tutte polynomial of a sign-colored graph. Kauffman’s particular
choices of parameters are shown to be related to matroid and color duality.
For a graph the “parametrized dichromatic polynomial” QΓ = uβ0(Γ)RG(Γ) ,
where G = graphic matroid and β0 = number of connected components.
A “portable strong Tutte function” of graphs is multiplicative on disjoint
unions, satisfies the parametrized Tutte-Grothendieck recurrence, and has
value independent of the vertex set. Thm. 10.1: Such a function either equals
QΓ or is one of two degenerate exceptions. Prop. 11.1: Kauffman’s (1989a)
polynomial of a sign-colored graph equals RG(|Σ|),σ(a, b; d, d) for connected
Σ, where a+ = b− = B and a− = b+ = A . [Cf. Traldi 1989a).]
[This paper differs from other generalizations of Kauffman’s polynomial, by
Przytycka and Przytycki (1988a) and Traldi (1989a) (and partially antici-
pated by Fortuin and Kasteleyn (1972a)), who also develop the parametrized
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dichromatic polynomial of a graph, principally in that it characterizes all
strong Tutte functions; also in generalizing to matroids and in having little
to say about knots. Schwärzler and Welsh (1993a) generalize to signed ma-
troids (and characterize their strong Tutte functions) but not to arbitrary
colors.] (Sc(M), SGc: Gen: N, D, Knot)

1993a The projective-planar signed graphs. Discrete Math. 113 (1993), 223–247. MR
94d:05047. Zbl. 779.05018.

Characterized by six forbidden minors or eight forbidden topological sub-
graphs, all small. A close analog of Kuratowski’s theorem; the proof even
has much of the spirit of the Dirac-Schuster proof of the latter, and all but
one of the forbidden graphs are simply derived from the Kuratowski graphs.
[Paul Seymour showed me an alternative proof from Kuratowski’s theorem
that explains this; but it uses sophisticated results, as yet unpublished, of
Robertson, Seymour, and Shih.] (SG: T)
[Related: “projective outer-planarity” (POP): embeddable in the projective
plane with all vertices on a common face. I have found most of the 40 or
so forbidden topological subgraphs for POP of signed graphs (finding the
rest will be routine); the proof is long and tedious and will probably not be
published. Problem. Find a reasonable proof.] (SG: T)

1994a Frame matroids and biased graphs. European J. Combin. 15 (1994), 303–307. MR
95a:05021. Zbl. 797.05027.

A simple matroidal characterization of the bias matroids of biased graphs.
(GG: M)

1995a The signed chromatic number of the projective plane and Klein bottle and antipo-
dal graph coloring. J. Combin. Theory Ser. B 63 (1995), 136–145. MR 95j:05099.
Zbl. 822.05028.

Introducing the signed Heawood problem: what is the largest signed, or zero-
free signed, chromatic number of any signed graph that orientation embeds
in the sphere with h crosscaps? Solved for h = 1, 2. (SG: T, Col)

††1995b Biased graphs. III. Chromatic and dichromatic invariants. J. Combin. Theory
Ser. B 64 (1995), 17–88. MR 96g:05139. Zbl. 950.25778.

Polynomials of gain and biased graphs: the fundamental object is a four-
variable polynomial, the “polychromial” (“polychromatic polynomial”), that
specializes to the chromatic, dichromatic, and Whitney-number polynomials.
The polynomials come in two flavors: unrestricted and balanced, depending
on the edge sets that appear in their defining sums. (They can be defined in
the even greater abstraction of “two-ideal graphs”, which clarifies the most
basic properties.)
§4: “Gain-graph coloring”. In Φ = (Γ, ϕ,G), a “zero-free k -coloring” is a
mapping f : V → [k]×G ; it is “proper” if, when e:vw is a link or loop and
f(v) = (i, g), f(w) = (i, h), then h 6= gϕ(e; v, w). A “k -coloring” is similar
but the color set is enlarged by inclusion of a color 0; propriety requires the
additional restriction that f(v) and f(w) are not both 0 (and f(v) 6= 0 if
v supports a half edge). In particular, a “group-coloring” of Φ is a zero-free
1-coloring (ignoring the irrelevant numerical part of the color). A “partial
group-coloring” is a group-coloring of an induced subgraph [which can only
be proper if the uncolored vertices form a stable set]. The unrestricted
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and balanced chromatic polynomials count, respectively, unrestricted and
zero-free proper k -colorings; the two Whitney-number polynomials count all
colorings, proper and improper, by their improper edge sets.
§5: “The matroid connection”. The various polynomials are, in essence,
bias matroid invariants and closely related to corresponding lift matroid and
extended lift matroid invariants.
Almost infinitely many identities, some of them (esp., the balanced expansion
formulas in §6) essential. Innumerable examples worked in detail. [The first
half, to the middle of §6, is fundamental. The rest is more or less ornamental.
Most of the results are, intentionally, generalizations of properties of ordinary
graphs.] (GG: N, M, Col)

1996a The order upper bound on parity embedding of a graph. J. Combin. Theory Ser.
B 68 (1996), 149–160. MR 98f:05055. Zbl. 856.05030.

The smallest surface that holds Kn with loops, if odd polygons reverse ori-
entation, even ones preserve it (this is parity embedding). That is, the
demigenus d(−K◦n). (P: T)

1997a Is there a matroid theory of signed graph embedding? Ars Combinatoria 45 (1997),
129–141. MR 97m:05084. (SG: M, T)

1997b The largest parity demigenus of a simple graph. J. Combin. Theory Ser. B 70
(1997), 325–345. MR 99e:05043. Zbl. 970.37744.

Like (1996a), but without loops. Conjecture 1. The minimal surface for
parity embedding Kn is sufficient for orientation embedding of any signed
Kn . Conjectures 3–4. The minimal surfaces of ±K◦n and ±Kn are the
smallest permitted by the lower bound obtained from Euler’s polyhedral
formula. (P: K: T)

1998a Signed analogs of bipartite graphs. Discrete Math. 179 (1998), 205–216. Zbl.
980.06737

Basically, they are the antibalanced and bipartite signed graphs; but the
exact description depends on the characterization one chooses for biparticity:
whether it is evenness of polygons, closed walks, face boundaries in surface
embeddings, etc. Characterization by chromatic number leads to a slightly
more different list of analogs. (SG: Str, T)

1998b A mathematical bibliography of signed and gain graphs and allied areas. Electronic
J. Combin., Dynamic Surveys in Combinatorics (1998), No. DS8. Zbl. 898.05001.

Complete and annotated—or as nearly so as I can make it. In preparation
in perpetuum. Hurry, hurry, write an article!

(SG, O, GG, GN, SD, VS, TG, PsS, . . . )
Published edns.: Edn. 6a (Edition 6, Revision a), 1998 July 20 (iv + 124
pp.).

1998c Glossary of signed and gain graphs and allied areas. Electronic J. Combin., Dy-
namic Surveys in Combinatorics (1998), No. DS9. Zbl. 898.05002.

A complete (or so it is intended) terminological dictionary of signed, gain,
and biased graphs and related topics; including necessary special terminology
from ordinary graph theory and mathematical interpretations of the special
terminology of applications.

(SG, O, GG, GN, SD, VS, TG, . . . , Chem, Phys, PsS, Appl)



the electronic journal of combinatorics #DS8 152

Published edns.: 1998 July 21 (25 pp.). Second edn. 1998 September 18 (41
pp.).

1997p Avoiding the identity. Problem 10606, Amer. Math. Monthly 104, No. 7 (Aug.–
Sept., 1997), 664. Solution by Stephen M. Gagola, ibid. 106 (6) (June-July 1999),
590-591.

[The solution implies that (∗) f0(m) ≤ d2m−1(m− 1)!
√
ee, where f0(m) =

the smallest r such that every group of order ≥ r is a possible gain group for
every contrabalanced gain graph of cyclomatic number equal to m . Problem
1. Find a good upper bound on f0 . ((∗) is probably weak.) Problem 2. Find
a good lower bound. Problem 3. Estimate f0) asymptotically.] (“Avoiding
the identity” concerns not f0 but a larger function f corresponding to a
simplified question.) (GG)

20xxa The largest demigenus of a bipartite signed graph. Submitted.
The smallest surface for orientation embedding of ±Kr,s . (SG: T)

20xxb Line graphs of signed graphs and digraphs. In preparation. (See: Abstract 768-
05-3, Line graphs of digraphs. Notices Amer. Math. Soc. 26, No. 5 (August, 1979),
A-448.)

Line graphs of signed graphs are, fundamentally, (bidirected) line graphs of
bidirected graphs. Then the line graph of a signed graph is a polar graph,
i.e., a switching class of bidirected graphs; the line graph of a polar graph is
a signed graph; and the line graph of a sign-biased graph, i.e., of a switching
class of signed graphs, is a sign-biased graph. In particular, the line graph of
an antibalanced switching class is an antibalanced switching class. (Partly
for this reason, ordinary graphs should usually be regarded as antibalanced,
i.e., all negative, in line graph theory.) Since a digraph is an oriented all-
positive signed graph, its line graph is a bidirected graph whose positive
part is the Harary-Norman line digraph. Among the line graphs of signed
graphs, some reduce by cancellation of parallel but oppositely signed edges
to all-negative graphs; these are precisely Hoffman’s generalized line graph
of ordinary graphs, a fact which explains their line-graph-like behavior. [At-
tempts at a completely descriptive line graph of a digraph were Muracchini
and Ghirlanda (1965a) and Hemminger and Klerlein (1979a). The geometry
of line graphs and signed graphs has been developed by Vijayakumar et al.
See also (1984c).] (SG: LG: O, I, A(LG). Sw)

20xxc Perpendicular dissections of space. In preparation. (GG: M, G)
20xxd Geometric lattices of structured partitions: I. Gain-graphic matroids and group-

valued partitions. Manuscript, 1985 et seq. (GG: M, N, col)
20xxe Geometric lattices of structured partitions: II. Lattices of group-valued partitions

based on graphs and sets. Manuscript, 1985 et seq. (GG: M, N, col)

††20xxf Biased graphs. IV. Geometrical realizations. J. Combin. Theory Ser. B. (to ap-
pear). (GG: M, G, N)

20xxg Universal and topological gains for biased graphs. In preparation. (GG: T)

20xxh Supersolvable frame-matroid and graphic-lift lattices. European J. Combin. (to
appear).

Supersolvable biased-graph matroids, characterized by a form of simplicial
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vertex ordering (that is, reverse perfect vertex elimination scheme)—but with
a few exceptions (it’s combinatorics!). Later sections treat examples. §4:
“Near-Dowling and dowling lift lattices”. §5: “Group expansions and bi-
ased expansions”. §6: “An extension of Edelman and Reiner’s theorem” to
general gain groups (see Edelman and Reiner (1994a)). §7: “Composed par-
titions and circular n -permutation polynomials”: the lattice of k -composed
partial partitions and the meet subsemilattice of k -composed partitions. §8:
“Bicircular matroids”. (GG, SG: M, G)

20xxi Big flats in a box. In preparation.
The naive approach to characteristic polynomials via lattice point counting
(in characteristic 0) and Möbius inversion (as in Blass and Sagan (1998a))
can only work when one expects it to. [This is a theorem!]

(GG: G, M, N, col)

Morris Zelditch, Jr.
See J. Berger.

Bohdan Zelinka
See also R.L. Hemminger.

1973a Polare und polarisierte Graphen. In: XVIII. Internat. Wiss. Kolloqu. (Ilmenau,
1973), Vol. 2, Vortragsreihe “Theorie der Graphen und Netzwerke”, pp. 27–28.
Technische Hochschule, Ilmenau, 1973. Zbl. 272.05102.

See (1976a). [This appears to be a very brief abstract of a lecture.]
(sg: O, sw)

1973b Quasigroups and factorisation of complete digraphs. Mat. Časopis 23 (1973), 333–
341. MR 50 #12799. Zbl. 271.20039.

Establishes correspondences between quasigroups, algebraic loops, and
groups on one hand, and 1-factored complete digraphs on the other, and be-
tween automorphisms of the latter and autotopies of the former. (GG: Aut)

1974a Polar graphs and railway traffic. Aplikace Mat. 19 (1974), 169–176. MR 49
#12066. Zbl. 283.05116.

See (1976a) for definitions. Railway tracks and switches modeled by edges
and vertices of a polar graph. Forming its derived graph (see (1976d)),
thence a digraph obtained therefrom by splitting vertices into two copies
and adjusting arcs, the time for a train to go from one segment to another
is found by a shortest path calculation in the digraph. A similar method is
used to solve the problem for several trains. (sg: O, sw: LG: Appl)

1976a Isomorphisms of polar and polarized graphs. Czechoslovak Math. J. 26 (101)
(1976), 339–351. MR 58 #16429. Zbl. 341.05121.

Basic definitions (Źıtek (1972a)): “Polarized graph” B = bidirected graph
(with no negative loops and no parallel edges sharing the same bidirection).
“Polar graph” P ∼= switching class of bidirected graphs (that is, we forget
which direction at a vertex is in and which is out—here called “north” and
“south” poles—but we remember that they are different).
Thms. 1–6. Elementary results about automorphisms, including finding the
automorphism groups of the “complete polarized” and polar graphs. (The
“complete polarized graph” has every possible bidirected link and positive
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loop, without repetition.) Thm. 7: With small exceptions, any (ordinary)
graph can be made polar as, say, P so that AutP is trivial.
Thms. 8–10. Analogs of Whitney’s theorem that the line graph almost always
determines the graph. The “pole graph” B∗ of B or [B] : Split each vertex
into an “in” copy and an “out” copy and connect the edges appropriately.
[Generalizes splitting a digraph into a bipartite graph. It appears to be
a “twisted” signed double covering graph.] Thm. 8. The pole graph is
determined, with two exceptions, by the edge relation e ∼1 f if both enter or
both leave a common vertex. (A trivial consequence of Whitney’s theorem.)
Thm. 9. A polar graph [B] with enough edges going in and out at each
vertex is determined by the edge relation e ∼2 f if one enters and the
other exits a common vertex. (Examples show that too few edges going
in and out leave [B] undetermined.) Thm. 10. Knowing ∼1 , ∼2 , and
which edges are parallel with the same sign, and if no component of the
simplified underlying graph of B is one of twelve forbidden graphs, then [B]
is determined. [Problem 1. Improve Thm. 10 to a complete characterization
of the bidirected graphs that are reconstructible from their line graphs (which
are to be taken as bidirected; see Zaslavsky (1984c, 20xxb)). In connection
with this, see results on characterizing line graphs of bidirected (or signed)
graphs by Vijayakumar (1987a). Problem 2. It would be interesting to
improve Thm. 9.] (sg: O, sw: Aut, lg)

1976b Analoga of Menger’s theorem for polar and polarized graphs. Czechoslovak Math.
J. 26 (101) (1976), 352–360. MR 58 #16430. Zbl. 341.05122.

See (1976a) for basic definitions. Here is the framework of the 8 theorems.
Given a bidirected or polar graph, B or P , vertices a and b , and a type X
of walk, let sX [s′X ] = the fewest vertices [edges] whose deletion eliminates
all (a, b) walks of type X , and let dX [d′X ] = maximum number of suitably
pairwise internally vertex-disjoint [or, suitably pairwise edge-disjoint] walks
of type X from a to b . [My notation.] By “suitably” I mean that a common
internal vertex or edge is allowed in P (but not in B ) if it is used oppositely
by the two walks using it. (See the paper for details.) Thms. 1–41 (there are
two Theorems 4) concern all-positive and all-introverted walks in a bidirected
(“polarized”) graph, and are simply the vertex and edge Menger theorems
applied to the positive and introverted subgraphs. Thms. 42 –7 concern polar
graphs and have the form sX ≤ dX ≤ 2sX [s′X ≤ d′X ≤ 2s′X ], which is best
possible. Thms. 42 –5 concern type “heteropolar” (equivalently, directed
walks in a bidirected graph). The proofs depend on Menger’s theorems in
the double covering graph of the polar graph. [Since this has 2 vertices for
each 1 in the polar graph, the range of dX [d′X ] is explained.] Thms. 6–7
concern type “homopolar” (i.e., antidirected walks). The proofs employ the
pole graph (see (1976a)). (sg: O, sw: Paths)

1976c Eulerian polar graphs. Czechoslovak Math. J. 26 (101) (1976), 361–364. MR 58
#21869. Zbl. 341.05123.

See (1976a) for basic definitions. An Eulerian trail in a bidirected graph is
a directed trail containing every edge. [Equivalently, a heteropolar trail that
contains all the edges in the corresponding polar graph.] It is closed if the
endpoints coincide and the trail enters at one end and departs at the other.
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The fewest directed trails needed to cover a connected bidirected graph is 1
2

the total of the absolute differences between in-degrees and out-degrees at
all vertices, or 1 if in-degree = out-degree everywhere. (sg: O, sw: Paths)

1976d Self-derived polar graphs. Czechoslovak Math. J. 26 (101) (1976), 365–370. MR
58 #16431. Zbl. 341.05124.

See (1976a) for basic definitions. The “derived graph” of a bidirected graph
[this is equivalent to the author’s terminology] is essentially the positive
part of the bidirected line graph. The theorem can be restated, somewhat
simplified: A finite connected bidirected graph B is isomorphic to its derived
graph iff B is balanced and contains exactly one polygon. (sg: O, sw: LG)

1976e Groups and polar graphs. Časopis Pěst. Mat. 101 (1976), 2–6. MR 58 #21790.
Zbl. 319.05118.

See (1976a) for basic definitions. A polar graph PG(G, A) of a group and
a subset A is defined. [It is the Cayley digraph.] In bidirected language: a
(bi)directed graph is “homogeneous” if it has automorphisms that are transi-
tive on vertices, both preserving and reversing the orientations of edges, and
that induce an arbitrary permutation of the incoming edges at any given
vertex, and similarly for outgoing edges. It is shown that the Cayley digraph
PG(G, A), where G is a group and A is a set of generators, is homogeneous if
A is both arbitrarily permutable and invertible by Aut G . [Bidirection—i.e.,
the polarity—seems to play no part here.] (sg: O, sw: Aut)

1982a On double covers of graphs. Math. Slovaca 32 (1982), 49–54. MR 83b:05072. Zbl.
483.05057.

Is a simple graph Γ a double cover of some signing of a simple graph? An
elementary answer in terms of involutions of Γ. Further: if there are two
such involutions α0, α1 that commute, then Γ/αi has involution induced by
α1−i , so is a double cover of Γ/〈α0, α1〉 , which is not necessarily simple. [No
properties of particular interest for signed covering are treated.] (sg: Cov)

1983a Double covers and logics of graphs. Czechoslovak Math. J. 33 (108) (1983), 354–
360. MR 85k:05098a. Zbl. 537.05070.

The double covers here are those of all-negative simple graphs (hence are
bipartite; denote them by B(Γ). Some properties of these double covers are
proved, then connections with a certain lattice (the “logic”) of a graph.

(p: Cov: Aut)

1983b Double covers and logics of graphs II. Math. Slovaca 33 (1983), 329–334. MR
85k:05098b. Zbl. 524.05058.

The second half of (1983a). (p: Cov: Aut)

1988a A remark on signed posets and signed graphs. Czechoslovak Math. J. 38 (113)
(1988), 673–676. MR 90g:05157. Zbl. 679.05067 (q.v.).

Harary and Sagan (1983a) asked: which signed graphs have the form S(P )
for some poset P ? Zelinka gives a rather complicated answer for all-negative
signed graphs, which has interesting corollaries. For instance, Cor. 3: If S(P )
is all negative, and P has 0̂ or 1̂ , then S(P ) is a tree. (SG, S)

Hans-Olov Zetterström
See Harary, Lindstrom, and Zetterström (1982a).



the electronic journal of combinatorics #DS8 156

G.M. Ziegler
See A. Björner and L. Lovász.

Ping Zhang
1997a The characteristic polynomials of subarrangements of Coxeter arrangements. Dis-

crete Math. 177 (1997), 245–248. MR 98i:52016. Zbl. 980.06614.
Blass and Sagan’s (1998a) geometrical form of signed-graph coloring is used
to calculate (I) characteristic polynomials of several versions of k -equal sub-
space arrangements (these are the main results) and (II) [also in Zhang
(20xxa)] the chromatic polynomials (in geometrical guise) of ordinary graphs
extending Kn by one vertex, signed graphs extending ±K◦n by one vertex,
and ±Kn with any number of negative loops adjoined. (sg: N, G, col)

20xxa The characteristic polynomials of interpolations between Coxeter arrangements.
Submitted.

Uses signed-graph coloring (in geometrical guise) to evaluate the chromatic
polynomials (in geometrical guise) of all signed graphs interpolating between
(1) +Kn and +Kn+1 [i.e., ordinary graphs extending a complete graph by
one vertex]; (2) ±K◦n−1 and ±K◦n ; (3) ±Kn and ±K◦n [known already by
several methods, including this one]; (4a) ±Kn−1 and ±Kn−1 ∪+Kn ; (4b)
±Kn−1∪+Kn and ±Kn ; and certain signed graphs interpolating (by adding
negative edges one vertex at a time, or working down and removing them
one vertex at a time) between (5) +Kn and ±K◦n ; (6) +Kn and ±Kn . In
cases (1)–(3) the chromatic polynomial depends only on how many edges are
added [which is obvious from the coloring procedure]. (sg: N, col, G)

Xiankun Zhang
See H.-J. Lai.

F. Źıtek
1972a Polarisované grafy. [Polarized graphs.] Lecture at the Czechoslovak Conference

on Graph Theory, Štǐŕın, May, 1972.
For definitions see Zelinka (1976a). For work on these objects see many
papers of Zelinka. (sg: O, sw)

Uri Zwick
See R. Yuster.

Ondřej Zýka
See J. Kratochv́il.


