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[I]t should be borne in mind that incompleteness is a necessary concomitant of
every collection of whatever kind. Much less can completeness be expected in a first
collection, made by a single individual, in his leisure hours, and in a field which is
already boundless and is yet expanding day by day.

—Robert Edouard Moritz, preface to Memorabilia Mathematica: The Philomath’s
Quotation Book, 1914.

Preface

A signed graph is a graph whose edges are labeled by signs. This is a bibliography of
signed graphs and related mathematics.

Several kinds of labelled graph have been called “signed” yet are mathematically very
different. I distinguish four types:

• Group-signed graphs: the edge labels are elements of a 2-element group and are
multiplied around a circle (or along any walk). Among the natural generalizations
are larger groups and vertex signs.

• Sign-colored graphs, in which the edges are labelled from a two-element set that is
acted upon by the sign group: − interchanges labels, + leaves them unchanged.
This is the kind of “signed graph” found in knot theory. The natural generalization
is to more colors and more general groups—or no group.

• Weighted graphs, in which the edge labels are the elements +1 and −1 of the integers
or another additive domain. Weights behave like numbers, not signs; thus I regard
work on weighted graphs as outside the scope of the bibliography—except (to some
extent) when the author calls the weights “signs”.

• Labelled graphs where the labels have no structure or properties but are called
“signs” for any or no reason.

Each of these categories has its own theory or theories, generally very different from the
others, so in a logical sense the topic of this bibliography is an accident of terminology.
However, narrow logic here leads us astray, for the study of true signed graphs, which
arise in numerous areas of pure and applied mathematics, forms the great majority of the
literature. Thus I regard as fundamental for the bibliography the notions of balance of
a circle (sign product equals +, the sign group identity) and the vertex-edge incidence
matrix (whose column for a negative edge has two +1’s or two −1’s, for a positive edge one
+1 and one −1, the rest being zero); this has led me to include work on gain graphs (where
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the edge labels are taken from any group) and “consistency” in vertex-signed graphs, and
generalizable work on two-graphs (the set of unbalanced triangles of a signed complete
graph) and on even and odd circles and paths in graphs and digraphs.

Nevertheless, it was not always easy to decide what belongs. I have employed the
following principles:

Only works with mathematical content are entered, except for a few representative
purely applied papers and surveys. I do try to include:

• •Any (mathematical) work in which signed graphs are mentioned by name or signs
are put on the edges of graphs, regardless of whether it makes essential use of signs.
(However, due to lack of time and in order to maintain “balance” in the bibliography,
I have included only a limited selection of items concerning binary clutters and
postman theory, two-graphs, signed digraphs in qualitative matrix theory, and knot
theory. For clutters, see Cornuéjols (2001a); for postman theory, A. Frank (1996a).
For two-graphs, see any of the review articles by Seidel. For qualitative matrix
theory, see e.g. Maybee and Quirk (1969a) and Brualdi and Shader (1995a). For
knot theory there are uncountable books and surveys.)

• •Any work in which the notion of balance of a circle plays a role. Example: gain
graphs. (Exception: purely topological papers concerning ordinary graph embed-
ding.)

• •Any work in which ideas of signed graph theory are anticipated, or generalized, or
transferred to other domains. Examples: vertex-signed graphs; signed posets and
matroids.

• •Any mathematical structure that is an example, however disguised, of a signed
or gain graph or generalization, and is treated in a way that seems in the spirit
of signed graph theory. Examples: even-cycle and bicircular matroids; bidirected
graphs; binary clutters (which are equivalent to signed binary matroids); some of
the literature on two-graphs and double covering graphs.

• •And some works that have suggested ideas of value for signed graph theory or that
have promise of doing so in the future.

As for applications, besides works with appropriate mathematical content I include a
few (not very carefully) selected representatives of less mathematical papers and surveys,
either for their historical importance (e.g., Heider (1946a)) or as entrances to the applied
literature (e.g., Taylor (1970a) and Wasserman and Faust (1993a) for psychosociology and
Trinajstic (1983a) for chemistry). Particular difficulty is presented by spin glass theory in
statistical physics—that is, Ising models and generalizations. Here one usually averages
random signs and weights over a probability distribution; the problems and methods are
rarely graph-theoretic, the topic is very specialized and hard to annotate properly, but
it clearly is related to signed (and gain) graphs and suggests some interesting lines of
graph-theoretic research. See Mézard, Parisi, and Virasoro (1987a) and citations in its
annotation.

Plainly, judgment is required to apply these criteria. I have employed mine freely,
taking account of suggestions from my colleagues. Still I know that the bibliography is
far from complete, due to the quantity and even more the enormous range and dispersion
of work in the relevant areas. I will continue to add both new and old works to future
editions and I heartily welcome further suggestions.

There are certainly many errors, some of them egregious. For these I hand over
responsibility to Sloth, Pride, Ambition, Envy, and Confusion. (Corrections, however,
will be gratefully accepted by me.) And as Diedrich Knickerbocker says:
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Should any reader find matter of offense in this [bibliography], I should heartily
grieve, though I would on no acount question his penetration by telling him he was
mistaken, his good nature by telling him he was captious, or his pure conscience by
telling him he was startled at a shadow. Surely when so ingenious in finding offense
where none was intended, it were a thousand pities he should not be suffered to
enjoy the benefit of his discovery.

Bibliographical Data. Authors’ names are given usually in only one form, even
should the name appear in different (but recognizably similar) forms on different pub-
lications. Journal abbreviations follow the style of Mathematical Reviews (MR) with
minor ‘improvements’. Reviews and abstracts are cited from MR and its electronic form
MathSciNet, from Zentralblatt für Mathematik (Zbl) and its electronic version (For early
volumes, “Zbl VVV, PPP” denotes printed volume and page; the electronic item number
is “(e VVV.PPPNN)”.), and occasionally from Chemical Abstracts (CA) or Computing
Reviews (CR). A review marked (q.v.) has significance, possibly an insight, a criticism,
or a viewpoint orthogonal to mine.

Some—not all—of the most fundamental works are marked with a ††; some almost as
fundamental have a †. This is a personal selection.

Annotations. I try to describe the relevant content in a consistent terminology and
notation, in the language of signed graphs despite occasional clumsiness (hoping that this
will suggest generalizations), and sometimes with my [bracketed] editorial comments. I
sometimes try also to explain idiosyncratic terminology, in order to make it easier to read
the original item. Several of the annotations incorporate open problems (of widely varying
degrees of importance and difficulty).

I use these standard symbols:

Γ is a graph (V,E) of order n = |V |, undirected, possibly allowing loops and
multiple edges. It is normally finite unless otherwise indicated.

Σ is a signed graph (V,E, σ) of order n. |Σ| is its underlying graph. E+, E−
are the sets of positive and negative edges and Σ+, Σ− are the corresponding
spanning subgraphs (unsigned).

[Σ] is the switching class of Σ.
A( ) is the adjacency matrix.
H( ) is the incidence matrix.
K( ) is the Kirchoff or Laplacian matrix, H( )H( )T.
λ1 is the largest eigenvalue of a matrix.
Φ is a gain graph (V,E, ϕ). ‖Φ‖ is its underlying graph.

[Φ] is the switching class of Φ.
∼ means that two signed or gain graphs are switching equivalent (with the same

underlying graph).
' means that two signed or gain graphs are switching isomorphic (with isomorphic

underlying graphs).
∼= denotes isomorphism.
〈Σ〉 is the biased graph of Σ.
〈Φ〉 is the biased graph of Φ.

Ω is a biased graph. ‖Ω‖ is its underlying graph.
l( ) is the frustration index (line index of imbalance).
l0( ) is the frustration number (vertex frustration number, vertex elimination num-

ber).
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G( ) is the frame (bias) matroid of a signed, gain, or biased graph.
L( ), L0( ) are the lift and extended lift matroids.

Λ( ) is a line graph. Λ(Γ) is that of a graph. For a signed or gain graph, ΛBC is that
of Behzad and Chartrand (1969a); Λ× is that of M. Acharya (2009a), Λ is that
of Zaslavsky (1979a, 1984c, 2010b, 20xxa).

Some standard terminology—much more will be found in the Glossary (Zaslavsky
(1998c)):

polygon, circle: The graph of a simple closed path, or its edge set.
cycle: In a digraph, a coherently directed circle, i.e., “dicycle”. More generally:

in an oriented signed, gain, or biased graph, a matroid circuit (usually,
of the frame matroid) oriented to have no source or sink.

Acknowledgement. I cannot name all the people who have contributed advice and
criticism, but many of the annotations have benefited from suggestions by the authors or
others and a number of items have been brought to my notice by helpful correspondents.
I am very grateful to you all. Thanks also to the people who maintain the invaluable MR
and Zbl indices (and a special thank-you for creating our own MSC classification: 05C22).
However, I insist on my total responsibility for the final form of all entries, including such
things as my restatement of results in signed or gain graphic language and, of course, all
the praise and criticism (but not errors; see above) that they contain.

Subject Classification Codes

A code in lower case means the topic appears implicitly but not explicitly. A suffix
w on Sgnd, SG, SD, VS denotes signs used as weights, i.e., treated as the numbers
+1 and −1, added, and (usually) the sum compared to 0. A suffix c on SG, SD, VS
denotes signs used as colors (often written as the numbers +1 and −1), usually permuted
by the sign group. In a string of codes a colon precedes subtopics. A code may be refined
through being suffixed by a parenthesized code, as Sgnd(M) denoting signed matroids
(while Sgnd: M would indicate matroids of signed objects; thus Sgnd(M): M means
matroids of signed matroids).

Adj Adjacency matrix, Kirchhoff or Laplacian matrix; eigenvalues.
Alg Algorithms.

Algeb Algebraic structures upon signed, gain, or biased graphs or digraphs.
Appl Applications other than (Chem), (Phys), (Biol), (PsS) (partial coverage).
Aut Automorphisms, symmetries, group actions.
Bal Balance (mathematical), cobalance.
Bic Bicircular matroids.

Biol Applications to biology (partial coverage).
Chem Applications to chemistry (partial coverage).

Clu Clusterability.
Col Vertex coloring.
Cov Covering graphs, double coverings.

D Duality (graphs, matroids, or matrices).
Enum Enumeration of types of signed graphs, etc.

EC Even-cycle matroids.
ECol Edge coloring.
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Exp Expository.
Exr Interesting exercises (in an expository work).

Fr Frustration (imbalance); esp. frustration index (line index of imbalance).
Geom Connections with geometry, including linear programming, toric varieties, com-

plex complement, etc.
GD Digraphs with gains (or voltages).
Gen Generalization.
GG Gain graphs, voltage graphs, biased graphs; includes Dowling lattices.
GN Generalized or gain networks. (Multiplicative real gains.)
GH Hypergraphs with gains.

Incid Incidence matrix.
KG Signed complete graphs.

Knot Connections with knot theory (sparse coverage if signs are purely notational).
LG Line graphs.
M Matroids and geometric lattices, chain-groups (not signed matroids).

MtrdF Matroidal families.
Invar Numerical and algebraic invariants of signed, gain, biased graphs: polynomials,

degree sequences, number of bases, etc.
Ori Orientations, bidirected graphs.
OG Ordered gains.
Par All-negative or antibalanced signed graphs; parity-biased graphs.
par Also, problems on even or odd length of paths or circles (partial coverage).

Phys Applications in physics (partial coverage).
PsS Psychological, sociological, and anthropological applications (partial coverage).
QM Qualitative (sign) matrices: sign patterns, sign stability, sign solvability, etc.:

graphical methods.
Rand Random signs or gains, signed or gain graphs.

Ref Many references.
Sgnd Signed objects other than graphs and hypergraphs: mathematical properties.

SD Signed digraphs: mathematical properties.
SG Signed graphs: mathematical properties.
SH Signed hypergraphs: mathematical properties.
SM Signed matroids.

QSol Sign solvability, sign nonsingularity (partial coverage).
QSta Sign stability (partial coverage).

Str Structure theory.
Sw Switching of signs or gains.

Top Topology applied to graphs; surface embeddings. (Not applications to topol-
ogy.)

TG Two-graphs, graph (Seidel) switching (partial coverage).
VS Vertex-signed graphs (“marked graphs”); signed vertices and edges.

WD Weighted digraphs.
WG Weighted graphs.

Xtreml Extremal problems.
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A Mathematical Bibliography of
Signed and Gain Graphs and Allied Areas

Takuro Abe
2009a The stability of the family of B2-type arrangements. Commun. Algebra 37

(2009), no. 4, 1193–1215. MR 2510979 (2010d:32027). Zbl 1194.32014.
The arrangements are affino-signed-graphic arrangements.

(sg, gg: Geom)

Takuro Abe, Koji Nuida, and Yasuhide Numata
2009a An edge-signed generalization of chordal graphs, free multiplicities on braid

arrangements, and their characterizations. In: Christian Krattenthaler, Volker
Strehl, and Manuel Kauers, eds., 21st International Conference on Formal
Power Series and Algebraic Combinatorics (FPSAC 2009) (Hagenburg, Aus-
tria), pp. 1–12. Discrete Math. Theor. Computer Sci., Nancy, France, 2009.
MR 2520381 (2010k:32039). (SG: Str, Geom)

2009b Signed-eliminable graphs and free multiplicities on the braid arrangement. J.
London Math. Soc. (2) 80 (2009), no. 1, 121–134. MR 2520381 (2010k:32039).
Zbl 1177.32017. (SG: Str, Geom)

Peter Abell
See also H. Deng, B. Kujawski, and M. Ludwig.

Peter Abell and Robin Jenkins
1967a Perception of the structural balance of part of the international system of na-

tions. J. Peace Res. 4 (1967), no. 1, 76–82. (PsS)(SG: Bal: Exp)

Peter Abell and Mark Ludwig
2009a Structural balance: A dynamic perspective. J. Math. Sociology 33 (2009), no.

2, 129–155. Zbl 1169.91434.
Dynamics of signed graphs in a space of sign probabilities and tolerance

of imbalance. There are three discernibly different domains of dynamical
behavior. [Continued in Deng and Abell (2010a) and Kujawski, Ludwig,
and Abell (20xxa).] [Annot. 10 Sept, 9 Dec 2009.]

(SG, PsS: Bal, Fr: Alg)

Robert P. Abelson
See also M.J. Rosenberg.

1967a Mathematical models in social psychology. In: Leonard Berkowitz, ed., Ad-
vances in Experimental Social Psychology, Vol. 3, pp. 1–54. Academic Press,
New York, 1967.

§ II: “Mathematical models of social structure.” Part B: “The balance
principle.” Reviews basic notions of balance and clusterability in signed
(di)graphs and measures of degree of balance or clustering. Notes that
signed Kn is balanced iff I +A = vvT, v = ±1-vector. Proposes: degree
of balance = λ1/n, where λ1 = largest eigenvalue of I + A(Σ) and n =
order of the (di)graph. [Cf. Phillips (1967a).] Part C, 3: “Clusterability
revisited.” (SG, SD: Bal, Clu, Fr, Adj)

R.P. Abelson, E. Aronson, W.J. McGuire, T.M. Newcomb, M.J. Rosenberg,
and P.H. Tannenbaum, eds.

1968a Theories of Cognitive Consistency: A Sourcebook. Rand-McNally, Chicago, Ill.,
1968.
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Robert P. Abelson and Milton J. Rosenberg
†1958a Symbolic psycho-logic: a model of attitudinal cognition. Behavioral Sci. 3

(1958), 1–13.
R(Σ) They introduce a modified adjacency matrix R, called the “structure

matrix” [I call it the Abelson–Rosenberg adjacency matrix], with entries
o, p, n, a for, respectively, nonadjacency [0 in the usual adjacency ma-
trix A], positive and negative adjacency [+1, −1 in A] and simultaneous
positive and negative adjacency [0 or indeterminate in A]. They define
an algebra (i.e., associative, commutative, and distributive addition and
multiplication) of these symbols (p. 8): o acts as 0, p acts as 1, pn = n,
n2 = p, a = p + n, x + x = x and ax = a for x 6= 0. In the algebra
one can decide balance of Σ via the permanent of I + R: Σ is balanced
if per(I + R) = p and unbalanced if per(I + R) = a. (The “straight-
forward but space-consuming” proof is omitted. They state that the
permanent cannot equal n or o [but that is an error].) [See Harary, Nor-
man, and Cartwright (1965a) for more on this matrix, and Zaslavsky
(2010b), Thm. 2.1, for a matrix with more precise counting properties.]
They introduce switching in terms of the Hadamard product of R with a
“passive T -matrix” [oversimplifying, that is a matrix obtained by switch-
ing the square all-p’s matrix; the actual definition involves operators s
and c and is more interesting]. Thm. 11: Switching preserves balance.
They propose (p. 12) “complexity” [= frustration index l(Σ)] as a mea-

sure of imbalance. [Cf. Harary (1959b).] Thm. 12: Switching preserves
frustration index. Thm. 14: max l(Σ), taken over all signed graphs Σ
of order n, equals b(n − 1)2/4c. (Proof omitted. [Proved by Petersdorf
(1966a) and Tomescu (1973a) for signed Kn’s and hence for all signed
simple graphs of order n.]) (PsS)(SG: Adj, Bal, sw, Fr)

Marien Abreu
M. Abreu, M.J. Funk, D. Labbate, and V. Napolitano

20xxa On the ubiquity and utility of cyclic schemes. Submitted. arXiv:1111.3265.
(GG: Cov)

Nair Maria Maia de Abreu
See also M.A.A. de Freitas, L.S. de Lima, and C.S. Oliveira.

Nair Abreu, Domingos M. Cardoso, Ivan Gutman, Enide A. Martins, and
Maŕıa Robbiano

2011a Bounds for the signless Laplacian energy. Linear Algebra Appl. 435 (2011), no.
10, 2365–2374. MR 2811121 (2012f:05164). Zbl 1222.05143. (Par: Adj)

B. Devadas Acharya [Belmannu Devadas Acharya]
See also M.K. Gill and S.B. Rao.

1973a On the product of p-balanced and l-balanced graphs. Graph Theory Newsletter
2 (Jan., 1973), no. 3, Results Announced No. 1. (SG, VS: Bal)

1979a New directions in the mathematical theory of balance in cognitive organizations.
MRI Tech. Rep. No. HCS/DST/409/76/BDA (Dec., 1979). Mehta Research
Institute of Math. and Math. Physics, Allahabad, 1979.

(SG, SD: Bal, Adj, Ref)(PsS: Exp, Ref)

1979b A programme logic for listing of sigraphs, their characteristic polynomials, and
their spectra. Graph Theory Newsletter 9 (1979), no. 2, 1.

Abstract of a plan for computation. (SG: Adj: Alg)
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1980a Spectral criterion for cycle balance in networks. J. Graph Theory 4 (1980),
1–11. MR 81e:05097(q.v.). Zbl 445.05066.

A signed simple graph Σ is balanced iff A(Σ) has the same spectrum as

A(|Σ|). A signed simple digraph (~Γ, σ) is cycle balanced (every directed

cycle is positive) iff A(~Γ, σ) has the same spectrum as A(~Γ). [These
are most interesting as criteria for cospectrality, since balance is easy to
determine, although not cycle balance.]

Proposed measure of imbalance: the proportion of corresponding coef-
ficients where the characteristic polynomials p(A(Σ);λ) and p(A(|Σ|);λ)
differ. [See Gill (1981b).] [Annot. Rev. 4 Apr 2012.]

(SD, SG: Bal, Adj)

1980b An extension of the concept of clique graphs and the problem of K-convergence
to signed graphs. Nat. Acad. Sci. Letters (India) 3 (1980), 239–242. Zbl
491.05052.

(SG: LG, Clique graph)

1980c Applications of sigraphs in behavioural sciences. M.R.I. Tech. Rep. No. DST/-
HCS/409/79 (June, 1980). Mehta Research Institute of Math. and Math.
Physics, Allahabad, 1979.

[Annotation is very incomplete.] Let Σ1 ∨ Σ2 be the join of under-
lying graphs, with edge signs {±1} as in Σ1 ∪ Σ2 and with σ(v1v2) :=
max(µ1(v1), µ2(v2)), where µ(v) :=

∏
vw∈E σ(vw). [Annot. 20 July

2009.] (SG)

1981a On characterizing graphs switching equivalent to acyclic graphs. Indian J. Pure
Appl. Math. 12 (1981), 1187-1191. MR 82k:05089. Zbl 476.05069.

Begins an attack on the problem of characterizing by forbidden induced
subgraphs the simple graphs that switch to forests. Among them are K5

and Cn, n ≥ 7. Problem. Find any others that may exist. [Solved by
Hage and Harju (2004a). Forests that switch to forests were character-
ized by Hage and Harju (1998a).] (TG: Sw)

1982a Connected graphs switching equivalent to their iterated line graphs. Discrete
Math. 41 (1982), 115–122. MR 84b:05078. Zbl 497.05052. (LG, TG)

1982b Even edge colorings of a graph: II. A lower bound for maximum even edge-
coloring index. Nat. Acad. Sci. Letters (India) 5 (1982), no. 3, 97–99.

(bal: Gen)

1983a Even edge colorings of a graph. J. Combin. Theory Ser. B 35 (1983), 78–79.
MR 85a:05034. Zbl 505.05032, (515.05030).

Find the fewest colors to color the edges so that in each circle the num-
ber of edges of some color is even. [Possibly, inspired by §2 of Acharya
and Acharya (1983a).] (bal: Gen)

1983b A characterization of consistent marked graphs. Nat. Acad. Sci. Letters (India)
6 (1983), no. 12, 433–440. MR 884837. Zbl 552.05052.

Converts a vertex-signed graph (Γ, µ) into a signed graph Σ such that
(Γ, µ) is consistent (as in Beineke and Harary 1978b) iff every circle in Σ
is all negative or has an even number of all-negative components. [See
Joglekar, Shah, and Diwan (2010a) for the definitive result on consis-
tency.] (VS, SG: bal)
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1984a Some further properties of consistent marked graphs. Indian J. Pure Appl.
Math. 15 (1984), 837–842. MR 86a:05101. Zbl 552.05053.

Notably: nicely characterizes consistent vertex-signed graphs in which
the subgraph induced by negative vertices is connected. [Subsumed by
S.B. Rao (1984a).] (VS: bal)

1984b Combinatorial aspects of a measure of rank correlation due to Kendall and
its relation to social preference theory. In: B.D. Acharya, ed., Proceedings of
the National Symposium on Mathematical Modelling (Allahabad, 1982). M.R.I.
Lecture Notes in Appl. Math., 1. Mehta Research Institute of Math. and Math.
Physics, Allahabad, India, 1984.

Includes an exposition of Sampathkumar and Nanjundaswamy (1973a).
(SG: KG: Exp)

1985a Signed Graphs With Applications in Behavioural Sciences. M.R.I. Lect. Notes
Appl. Math., No. 3. Mehta Research Institute of Math. and Math. Physics,
Allahabad, 1985. (SG: PsS)

1986a An extension of Katai-Iwai procedure to derive balancing and minimum bal-
ancing sets of a social system. Indian J. Pure Appl. Math. 17 (1986), 875–882.
MR 87k:92037. Zbl 612.92019.

Expounds the procedure of Katai and Iwai (1978a). Proposes a gener-
alization to those Σ that have a certain kind of circle basis. Construct
a “dual” graph whose vertex set is a circle basis supplemented by the
sum of basic circles. A “dual” vertex has sign as in Σ. Let T = set of
negative “dual” vertices. A T -join in the “dual”, if one exists, yields a
negation set for Σ. [A minimum T -join need not yield a minimum nega-
tion set. Indeed the procedure is unlikely to yield a minimum negation
set (hence the frustration index l(Σ)) for all signed graphs, since it can
be performed in polynomial time while l(Σ) is NP-complete. Questions.
To which signed graphs is the procedure applicable? For which ones does
a minimum T -join yield a minimum negation set? Do the latter include
all those that forbid an interesting subdivision or minor (cf. Gerards and
Schrijver (1986a), Gerards (1988a, 1989a))?] (SG: Fr: Alg)

2009a Role of cognitive balance in some notions of graph labelings: Influence of Frank
Harary, Fritz Heider, Gustav Kirchhoff and Leonhard Euler. Bull. Allahabad
Math. Soc. 24 (2009), no. 2, 391–413. MR 2597634 (no rev). Zbl 1221.05278.

(SG, SD: Bal, sw)

2010a Signed intersection graphs. J. Discrete Math. Sci. Cryptography 13 (2010), no.
6, 553–569. MR 2791608 (2011m:05129).

Signed hypergraph: hypergraph H = (X,E) with σH : E → {+,−}).
Canonical marking µσH (x) :=

∏
e3x σH(e) (x ∈ X). Intersection edge

sign σΩ(ef) :=
∏

x∈e∩f µσH (x). The signed intersection graph Ω(H, σ) is
the intersection graph of H with signature σΩ. Main example: Maximal-
clique hypergraph K(Ξ) of a signed graph Ξ with X = {maximal cliques
of |Ξ|}, signature σK(Q) :=

∏
v∈Q µσ(Q) for a max clique Q. Which

signed graphs are Ω(K(Ξ))? Thm. 3.3: Σ is a maxclique signed graph
iff it has an edge clique cover with the Helly property, whose members
induce homogeneously signed subgraphs, an even number of which are
all-negative.

On orbits of the operator K: Thm. 5.1: Km(Σ) = Kn(Σ) iff Km(|Σ|) =
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Kn(|Σ|), ∃ m < n. However (§7), m = 0 (Σ is “K-periodic) may hold
for |Σ| but not Σ. Problem 7.2. Characterize K-periodic signed graphs.
[Annot. 28 Aug 2010.] (SH, SG: lg)
§8, “Signed line graphs”: Taking edges instead of max cliques defines

a line graph Λ(•(Σ) with signature σ•(ef) := µσ(e ∩ f) (due to M.
Acharya). [Annot. 28 Aug 2010.] (SG: LG)

2010a Mathematical chemistry: Basic issues. In: Graph Theory Applied to Chemistry
(Proc. Nat. Workshop, Pala, Kerala, India, 2010), Ch. 2.2, pp. 26–46.

§2.2.9, “Newer vistas”: Signed hypergraphs, signed semigraphs. [An-
not. 31 Aug 2010.] (SG: Gen, SH: Exp)

2011a On notions generalizing combinatorial graphs, with emphasis on linear sym-
metric dihypergraphs. Bull. Allahabad Math. Soc. 26 (2011), no. 2, 229–258.

Many generalizations of graphs and digraphs. Mainly historical and
expository. [Annot. 31 Jan 2012.]

(SG, SD, Gen: Exp, Ref)(SG, SD, Gen)

20xxa Set-valuations of a signed digraph. Int. Workshop on Set-Valuations, Signed
Graphs, Geometry and Their Appl. (IWSSG-2011, Mananthavady, Kerala,
2011). J. Combin. Inform. Syst. Sci., to appear. (SD, SG)

20xxb Domination and absorbance in signed graphs and digraphs I. Foundations. Sub-
mitted. (SG, SD)

20xxc Minus domination in a signed graph. Int. Workshop on Set-Valuations, Signed
Graphs, Geometry and Their Appl. (IWSSG-2011, Mananthavady, Kerala,
2011). J. Combin. Inform. Syst. Sci., to appear. (SG)

B. Devadas Acharya and Mukti Acharya [M.K. Gill]
1983a A graph theoretical model for the analysis of intergroup stability in a social

system. Manuscript, 1983.
The first half (most of §1) was improved and published as (1986a).
The second half (§§2–3) appears to be unpublished. Given; a graph

Γ, a vertex signing µ, and a covering F of E(Γ) by cliques of size ≤ 3.
Define a signed graph S by; V (S) = F and QQ′ ∈ E(S) when at
least half the elements of Q or Q′ lie in Q ∩ Q′; sign QQ′ negative iff
there exist vertices v ∈ Q\Q′, and w ∈ Q′\Q such that µ(v) 6= µ(w).
Suppose there is no edge QQ′ in which |Q| = 3, |Q′| = 2, and the
two members of Q\Q′ have differing sign. [This seems a very restrictive
supposition.] Main result (Thm. 7): S is balanced. The definitions,
but not the theorem, are generalized to multiple vertex signs µ, general
clique covers, and clique adjacency rules that differ slightly from that of
the theorem. (GG, VS, SG: Bal)

1986a New algebraic models of social systems. Indian J. Pure Appl. Math. 17 (1986),
150–168. MR 87h:92087. Zbl 591.92029.

Four criteria for balance in an arbitrary gain graph. [See also Harary,
Lindstrom, and Zetterstrom (1982a).] (GG: Bal, sw)

Belmannu Devadas Acharya, Mukti Acharya, and Deepa Sinha
2008a Cycle-compatible signed line graphs. Indian J. Math. 50 (2008), no. 2, 407–414.

MR 2517744 (2010h:05142). Zbl 1170.05032.
Characterizes when ΛBC(Σ) (Behzad and Chartrand 1969a) with vertex



the electronic journal of combinatorics #DS8 6

signs σ is harmonious. Dictionary: “cycle compatible” = harmonious
(the product of all edge and vertex signs on each circle is positive).
[Annot. 14 Oct 2009.] (SG, VS: LG: Bal)

2009a Characterization of a signed graph whose signed line graph is S-consistent.
Bull. Malaysian Math. Sci. Soc. (2) 32 (2009), no. 3, 335–341. MR 2562172
(2010m:05135). Zbl 1176.05032.

Let Σ be a signed simple graph. Thm. 2.1: The line graph Λ(|Σ|), with
vertex signs σ, is consistent (as in Beineke and Harary 1978b) iff Σ is
balanced and, in Σ, a vertex of degree ≥ 4 has only positive edges, while
a trivalent vertex v with negative edges has two such edges, which lie in
every circle on v. [Cor.: Let Σ be 2-connected. (Λ(|Σ|), σ) is consistent
iff Σ is balanced and every negative edge has endpoints of degree ≤ 2.
Problem. Find a structural characterization, by means of which all such
Σ can be constructed. Ear decomposition and Tutte’s 3-decomposition
should be the key.] [Annot. 2 Oct 2009.] (SG, VS: LG: Bal)

B.D. Acharya, M.K. Gill, and G.A. Patwardhan
1984a Quasicospectral graphs and digraphs. In: B.D. Acharya, ed., Proceedings of the

National Symposium on Mathematical Modelling (Allahabad, 1982), pp. 133–
144. M.R.I. Lect. Notes Appl. Math., No. 1. Mehta Research Institute of Math.
and Math. Physics, Allahabad, 1984. MR 86c:05087. Zbl 556.05048.

Continues M. Acharya (1981a). A signed graph, or digraph, is “cycle-
balanced” if every circle, or every cycle, is positive. Graphs, or di-
graphs, are “quasicospectral” if they have cospectral signings, “strictly
quasicospectral” if they are quasicospectral but not cospectral, “strongly
cospectral” if they are cospectral and have cospectral cycle-unbalanced
signings. There exist arbitrarily large sets of strictly quasicospectral di-
graphs, which moreover can be assumed strongly connected, weakly but
not strongly connected, etc. There exist pairs of unbalanced, strictly
quasicospectral graphs; existence of larger sets is unsolved. There ex-
ist arbitrarily large sets of nonisomorphic, strongly cospectral connected
graphs; also, of weakly connected digraphs, which moreover can be taken
to be strongly connected, unilaterally connected, etc. Proofs, based on
ideas of A.J. Schwenk, are sketched.

(SD, SG: Adj)

Belmannu Devadas Acharya and Shalini Joshi
2003a On the complement of an ambisidigraph. [Abstract.] Proc. R.C. Bose Cente-

nary Sympos. Discrete Math. Appl. (Kolkata, 2002). Electron. Notes Discrete
Math. 15 (2003), 5. MR 2159023. Zbl 1184.05100.

The complement of a signed digraph D without loops or multiple signed
arcs (a loopless, simply signed digraph, or “ambisidigraph”) is defined
in the obvious way. Observation: If D or Dc contains a directed cycle of
length 2k + 1, then one of them contains a positive such cycle. (SD)

2005a Mathematical modelling in social psychology–social networks. Everyman’s Sci-
ence 40 (2005), no. 2, 124–128.

Popular exposition including ambisidigraphs (cf. (2003a)). [Annot. 7
Apr 2012.] (SD: Exp)

B.D. Acharya, S. Joshi, and S.B. Rao
20xxa A Ramsey theorem for strongly connected ambisidigraphs. Submitted.

Sequel to Acharya and Joshi (2003a). For which loopless, simply signed
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digraphs D do both D and Dc contain no positive 3-cycle? Thm.: If
strongly connected, D has order < 6. An attempt to use this to describe
all loopless, simply signed digraphs that contain no positive 3-cycle.

(SD: Str)

Mukti Acharya [Mukhtiar Kaur Gill]
See also B.D. Acharya, M.K. Gill, and S.B. Rao.

1988a Switching invariant three-path signed graphs. In: M.N. Gopalan and G.A. Pat-
wardhan, eds., Optimization, Design of Experiments and Graph Theory (Proc.
Sympos. in Honour of Prof. M.N. Vartak, Bombay, 1986), pp. 342–345. Indian
Inst. of Technology, Bombay, 1988. MR 90b:05102. Zbl 744.05054.

See Gill and Patwardhan (1986a) for the k-path signed graph of Σ.
The equation Σ ' D3(Σ) is solved. [Annot. 29 Apr 2009.] (SG, Sw)

2009a ×-line signed graphs. Int. Conf. Recent Developments Combin. Graph Theory
(Krishnankoil, Tamil Nadu, India, 2007). J. Combin. Math. Combin. Comput.
69 (2009), 103–111. MR 2517311 (no rev). Zbl 1195.05031.

Λ×(Σ) Λ×(Σ) := (Λ(|Σ|), σ×) where σ×(ef) := σ(e)σ(f). (Contrast with
Behzad–Chartrand (1969a) and Zaslavsky (2010b, 20xxa, 20xxb) line
graphs.) [The definition originated in Gill (1982a). Publication of this
article was delayed by many years.] [Annot. Rev 20 Dec 2010.]

(SG: LG)

2010a Square-sum graphs: Some new perspectives. In: International Conference on
Recent Trends in Graph Theory and Combinatorics (ICRTBC-2010) (Cochin,
2010) [Summaries], pp. 114–119. Dept. of Mathematics, Cochin Univ. of Sci-
ence and Technology, 2010.

P. 119: Summary of k-square-sum signed graphs, where k edges classes
are square-sum with the same vertex labels. k = 2 is signed graphs.
[Annot. 30 Aug 2010.] (SGc)

20xxa Quasicospectrality of graphs and digraphs: A creative review. Int. Workshop
on Set-Valuations, Signed Graphs, Geometry and Their Appl. (IWSSG-2011,
Mananthavady, Kerala, 2011). J. Combin. Inform. Syst. Sci., to appear.

Graphs or digraphs are quasicospectral if they have cospectral signa-
tures (signatures with the same adjacency spectrum). Properties and
examples of quasicospectral graphs and digraphs that are not cospec-
tral. Definitions and results from B.D. Acharya, Gill, and Patwardhan
(1984a) (q.v.) et al., as well as new results. [Annot. 4 Apr 2012.]

(SG, SD: Adj: Exp)(SG, SD: Adj)

20xxb Signed discrete structures. Submitted. (SG, SH)

Mukti Acharya and Tarkeshwar Singh
2003a Graceful signed graphs: III, The case of signed cycles in which the negative

sections form a maximum matching. Graph Theory Notes N.Y. 45 (2003), 11–
15. MR 2040207 (no rev).

See (2004a). Here the graph is a circle and the second color class is a
maximum matching. (SGc)

2003b Skolem graceful signed graphs. Proc. R.C. Bose Centenary Sympos. Discrete
Math. Appl. (Kolkata, 2002). Electron. Notes Discrete Math. 15 (2003), 10–11.
MR 2159025 (no rev). Zbl 1184.05108.

Announcement of (2010a). (SGc: Exp)
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2004a Graceful signed graphs. Czechoslovak Math. J. 54(129) (2004), no. 2, 291–302.
MR 2005a:05193. Zbl 1080.05529.

[Generalizing the definition in the article: Given: a graph with r-
colored edges; integers k, d > 0. Required: a (k, d)-graceful labelling,
i.e., an injection λ : V → {0, 1, . . . , k + (|E| − 1)d} so that, if f(vw) :=
|λ(v)−λ(w)|, then f restricted to each color class is injective with range
k, k + d, . . ..]

The article concerns the case r = 2 with “results of our preliminary
investigation”. Conjecture. Every 2-colored circle of length ≥ 3 is (k, d)-
graceful. (SGc)

2004b Graceful signed graphs V. The case of union of signed cycles of the length
three with one vertex in common. Int. J. Management Syst. 20 (2004), no. 3,
245–254.

Σ is a signed windmill with k > 1 blades. Only rim edges may be
negative. Thm.: Σ is graceful =⇒ k ≡ 0 mod 4 and |E−| is even, or
k ≡ 1 mod 4, or k ≡ 2 mod 4 and |E−| is odd. Thm.: If k ≡ 0, 1 mod 4
and all rim edges are negative, then Σ is graceful. Thm.: If k ≡ 2 mod 4
and all rim edges but one are negative, then Σ is graceful. See also Singh
(2009a). [Annot. 21 July 2010.] (SGc)

2004c A characterization of signed graphs whose negation is switching equivalent to
its iterated line sigraphs. In: R.J. Wilson, R. Balakrishnan and G. Sethuraman,
eds., Proceedings of the Conference of Graph Theory and Applications (CGTA-
2001), pp. 15–24. Narosa Publishing House, New Delhi, 2004. (SG: Sw, LG)

2005a Graceful signed graphs: II. The case of signed cycles with connected negative
sections. Czechoslovak Math. J. 55(130) (2005), no. 1, 25–40. MR 2005m:05192.
Zbl 1081.05097.

Proof of the conjecture of (2004a) for a circle of length 6≡ 1 (mod 4)
where the negative edge set is connected. (SGc)

2009a Skolem graceful signed stars. J. Combin. Math. Combin. Comput. 69 (2009),
113–124. MR 2517312 (2010e:05257). Zbl 1195.05065. (SGc)

2010a Skolem graceful signed graphs. Utilitas Math. 82 (2010), 97–109. MR 2663369
(2011h:05218). Zbl 1232.05198.

From Singh (2003a), Ch. III. See Acharya and Singh (2003b), Singh
(2008a). “Skolem gracefulness” is the (0, 1)-gracefulness of (2004a).
Thm.: A signed k-edge matching is Skolem graceful iff k ≡ 0 (mod 4)
and |E−| is even, or k ≡ 2 (mod 4) and |E−| is odd, or k ≡ 1 (mod 4).
Curiously complementary to the theorem of Singh (20xxa). [Annot. 20
July 2009.] (SGc)

20xxb Embedding of signed graphs in graceful signed graphs. Ars Combin., to appear.
See (2004a). Every signed graph whose vertices have distinct non-

negative integral labels is an induced subgraph of a signed graph with
(1, 1)-graceful labels. (SGc)

20xxc Characterization of sigraphs whose negations are switching equivalent to their
iterated line sigraphs. Submitted.

The signed simple graphs Σ (which necessarily are signed circles) such
that −Σ is switching isomorphic to any of its iterated Behzad–Chartrand
(1969a) line graphs. [Annot. 20 July 2009.] (SG: Sw, LG)
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20xxd Construction of certain infinite families of graceful sigraphs from a given grace-
ful sigraph. Submitted.

Let ∨ denote the join of graphs or (defined in B.D. Acharya (1980c))
signed graphs. Thms.: If Σ is gracefully numbered, so are Σ ∪·Kc

t and(
Σ∪· Kc

|E|−|V |+1

)
∨Kc

t . All (K2∨Kc
r , σ) are gracefully numbered. [Annot.

20 July 2009.] (SGc)

20xxe Graceful sigraphs: V. The case of union of signed cycles of length three with
one vertex in common. Submitted. (SGc)

Mukti Acharya and Deepa Sinha
2002a A characterization of signed graphs that are switching equivalent to their jump

signed graphs. Graph Theory Notes N.Y. 43 (2002), 7–8. MR 1960487 (no rev).
(SG: LG)

2003a A characterization of sigraphs whose line sigraphs and jump sigraphs are switch-
ing equivalent. Graph Theory Notes N.Y. 44 (2003), 30–34. MR 2002894.

(SG: LG)

2003b A characterization of line sigraphs. Proc. R.C. Bose Centenary Sympos. Dis-
crete Math. Appl. (Kolkata, 2002). Electron. Notes Discrete Math. 15 (2003),
12. MR 2159026 (no rev).

Abstract of (2005a). (SG: LG)

2005a Characterizations of line sigraphs. Nat. Acad. Sci. Letters (India) 28 (2005),
no. 1-2, 31–34. MR 2127289 (no rev).

Thm.: A signed simple graph Σ is the Behzad–Chartrand (1969a) line
graph of a signed graph iff the underlying graph is a line graph and Σ is
“sign compatible” (Sinha 2005a). [Annot. 27 Apr 2009, 12 Oct 2010.]

(SG: LG)

2006a Common-edge sigraphs. AKCE Int. J. Graphs Combin. 3 (2006), no. 2, 115–
130. MR 2285459 (2007k:05083). Zbl 1119.05053.

The common-edge signed graph CE(Σ) is the second line graph L2(|Σ|)
with signs σCE{ef, fg} = σ(f). Characterized in whole or part: When
this is balanced (rarely), or isomorphic to Σ (rarely), or switching iso-
morphic to the Behzad–Chartrand (1969a) line graph ΛBC(Σ) (rarely),
or switching equivalent to Λ2

BC(Σ). There are notions of consistency
and compatibility of CE(Σ) with respect to a vertex signature of Σ, that
seem ill defined. (SG: LG: Gen)

Gbemisola Adejumo, P. Robert Duimering, and Zhehui Zhong
2008a A balance theory approach to group problem solving. Social Networks 30

(2008), 83–99. (PsS, SG: Fr)

L. Adler and S. Cosares
1991a A strongly polynomial algorithm for a special class of linear programs. Opera-

tions Res. 39 (1991), 955–960. MR 92k:90042. Zbl 749.90048.
The class is that of the transshipment problem with gains. Along the

way, a time bound on the uncapacitated, demands-only flows-with-gains
problem. (GN: Incid(D), Alg)

S.N. Afriat
1963a The system of inequalities ars > Xr − Xs. Proc. Cambridge Philos. Soc. 59

(1963), 125–133. MR 25 #5071. Zbl 118, 149 (e: 118.14901).
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See also Roy (1959a). (GG: OG, Sw, bal)

1974a On sum-symmetric matrices. Linear Algebra Appl. 8 (1974), 129–140. MR 48
#11163. Zbl 281.15017. (GG: Sw, bal)

Amit Agarwal
See Harary, Lim, Agarwal, and Wunsch.

A.A. Ageev, A.V. Kostochka, and Z. Szigeti
1995a A characterization of Seymour graphs. In: Egon Balas and Jens Clausen, eds.,

Integer Programming and Combinatorial Optimization (4th Int. IPCO Conf.,
Copenhagen, 1995, Proc.), pp. 364–372. Lecture Notes in Computer Sci., Vol.
920. Springer, Berlin, 1995. MR 96h:05157.

A Seymour graph satisfies with equality a general inequality between
T -join size and T -cut packing. Thm.: A graph is not a Seymour graph iff
it has a conservative ±1-weighting such that there are two circles with
total weight 0 whose union is an antibalanced subdivision of −Kn or
−Pr3 (the triangular prism). (SGw: Str, Bal, Par)

1997a A characterization of Seymour graphs. J. Graph Theory 24 (1997), 357–364.
MR 97m:05217. Zbl 970.24507.

Virtually identical to (1995a). (SGw: Str, Bal, Par)

J.K. Aggarwal
See M. Malek-Zavarei.

Ron Aharoni, Rachel Manber, and Bronislaw Wajnryb
1990a Special parity of perfect matchings in bipartite graphs. Discrete Math. 79

(1990), 221–228. MR 91b:05140. Zbl 744.05036.
When do all perfect matchings in a signed bipartite graph have the

same sign product? Solved. (sg: bal, Alg)(qm: QSol)

R. Aharoni, R. Meshulam, and B. Wajnryb
1995a Group weighted matchings in bipartite graphs. J. Algebraic Combin. 4 (1995),

165–171. MR 96a:05111. Zbl 950.25380.
Given an edge weighting w : E → K where K is a finite abelian group.

Main topic: perfect matchingsM such that
∑

e∈M w(e) = 0 [I’ll call them
0-weight matchings]. (Also, in §2, = c where c is a constant.) Generalizes
and extends Aharoni, Manber, and Wajnryb (1990a). [Continued by
Kahn and Meshulam (1998a).] (GGw)

Prop. 4.1 concerns vertex-disjoint circles whose total sign product is +
in certain signed digraphs. (SD)

Amnon Aharony
1978a Low-temperature phase diagram and critical properties of a dilute spin glass.

J. Phys. C 11 (1978), L457–L463.
Physics of a random signed subgraph of Γ: p, q, r = probabilities of +,
−, or no edge. r = 0 is a randomly signed Γ. p = 0 is a random sub-
graph −Γ1. Edges may have weights but the signs are most significant
(pp. L461–2). Bipartite graphs (“simple systems, with two sublattices”)
give easier results; e.g., switching exchanges p and q, and transforms
all-negative to all-positive. Analysis by the replica method: replicate
the graph randomly n times. For temperature T → 0: The case p = q
has special properties. The limit r → 0 gives all-positive (ferromagnetic)
behavior because “only [constant states ζ : V → {+1,−1}] contribute to
the partition function.” T > 0: Special cases for equal weights, similarly
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to Houtappel (1950b), Newell (1950a). The replica method’s limitations
include failure at T → 0 when the signed subgraph is unbalanced (“frus-
trated”) (p. L463). [An interesting study. Problem. Interpret the replica
method and results in terms of random signed graphs.] [Annot. 21 Jun
2012.] (Phys, SG, WG: Rand, Fr, sw)

Luis von Ahn
2008a Science of the Web: 15-396. Networks II: Structural Balance. Course slides.

http://www.scienceoftheweb.org. Dept. of Computer Science, Carnegie
Mellon University.

Triangle (“triad”) balance and balance. (SG: Bal: Exp)

Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin
1993a Network Flows: Theory, Algorithms, and Applications. Prentice Hall, Engle-

wood Cliffs, N.J., 1993. MR 94e:90035.
§12.6: “Nonbipartite cardinality matching problem”. Nicely expounds

theory of blossoms and flowers (Edmonds (1965a), etc.). Historical notes
and references at end of chapter. (par: ori, Alg: Exp, Ref)
§5.5: “Detecting negative cycles”; §12.7, subsection “Shortest paths

in directed networks”. Weighted arcs with negative weights allowed.
Techniques for detecting negative cycles and, if none exist, finding a
shortest path. (WD: OG, Alg: Exp)

Ch. 16: “Generalized flows”. §15.5: “Good augmented forests and lin-
ear programming bases”, Thm. 15.8, makes clear the connection between
flows with gains and the bias matroid of the underlying gain graph. Some
terminology: “breakeven cycle” = balanced circle; “good augmented for-
est” = basis of the bias matroid, assuming the gain graph is connected
and unbalanced. (GN: M(Bases), Alg: Exp, Ref)

Martin Aigner
1979a Combinatorial Theory. Grundl. math. Wiss., Vol. 234. Springer-Verlag, Berlin,

1979. Reprint: Classics in Mathematics. Springer-Verlag, Berlin, 1997. MR
80h:05002. Zbl 415.05001, 858.05001 (reprint).

In § VII.1, pp. 333–334 and Exerc. 13–15 treat the Dowling lattices of
GF(q)× and higher-weight analogs. (GG, GG(Gen): M: Invar, Str)

M. Aı̆gner [Martin Aigner]
1982a Kombinatornaya teoriya. “Mir”, Moscow, 1982. MR 84b:05002.

Russian translation of (1979a). Transl. V.V. Ermakov and V.N. Lyamin.
Ed. and preface by G.P. Gavrilov. (GG, GG(Gen): M: Invar, Str)

Nir Ailon, Moses Charikar, and Alantha Newman
2005a Aggregating inconsistent information: Ranking and clustering. In: STOC’05:

Proceedings of the 37th Annual ACM Symposium on the Theory of Computing
(Boston, 2005), pp. 684–693. Assoc. for Computing Machinery, New York,
2005. MR 2181673. Zbl 1192.90252.

Conference version of (2008a). (SG: WG: Clu: Alg)

2008a Aggregating inconsistent information: ranking and clustering. J. ACM 55
(2008), no. 5, Art. 23, 27 pp. MR 2456548 (2009k:68280).

(SG: WG: Clu: Alg)

S. Akbari, A. Daemi, O. Hatami, A. Javanmard, and A. Mehrabian
20xxa Nowhere-zero unoriented flows in hamiltonian graphs. Submitted.

http://www.scienceoftheweb.org
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Every signed Hamiltonian graph without a coloop has a nowhere-zero
12-flow: an improved result towards Bouchet’s (1983a) conjecture. The
proofs are for unoriented flows on a graph (i.e., flows on an all-negative
signed graph, which are equivalent to signed-graph flows). Better results
if there is a negative Hamilton circle C. Thm. 3.2: An 8-flow if Cc is
connected. Thm. 3.3: A 6-flow if Cc is unbalanced. (SG: Flows, ori)

Saieed Akbari, Ebrahim Ghorbani, Jack [Jacobus] H. Koolen, and Mohammad
Reza Oboudi

2010a A relation between the Laplacian and signless Laplacian eigenvalues of a graph.
J. Algebraic Combin. 32 (2010), no. 3, 459–464. MR 2721061 (2011i:05125).

The sign-corrected coefficients of the characteristic polynomial ofK(−Γ)
dominate those of K(+Γ). [Problem. Prove they dominate those of
K(Γ, σ) for any sigma.] [Problem. Generalize to all signatures of Γ.]
[Annot. 22 Nov 2010.] (Par: Adj, Incid)

2010b On sum of powers of the Laplacian and signless Laplacian eigenvalues of graphs.
Electronic J. Combin. 17 (2010), Article R115, 8 pp. MR 2679569 (2011j:05189).
Zbl 1218.05086.

(sg: Par: Adj)

S. Akbari, E. Ghorbani, and M.R. Oboudi
2009a A conjecture on square roots of Laplacian and signless Laplacian eigenvalues of

graphs. Unpublished manuscript. arXiv:0905.2118
Conjecture. The sum s of singular values is larger for H(−Γ) than

for H(+Γ). Dictionary: “incidence matrix” = the unoriented incidence
matrix H(−Γ); “directed incidence matrix” = oriented incidence ma-
trix H(+Γ). [Problem. Generalize to other signatures of Γ? E.g., is
maxσ s(Γ, σ) = s(−Γ)?] [Annot. 8 Oct 2010.] (Par: Adj, Incid)

J. Akiyama, D. Avis, V. Chvátal, and H. Era
††1981a Balancing signed graphs. Discrete Appl. Math. 3 (1981), 227–233. MR 83k:05059.

Zbl 468.05066.
Bounds for D(Γ), the largest frustration index l(Γ, σ) over all signings

of a fixed graph Γ (not necessarily simple) of order n and size m = |E|.
Main Thm.: 1

2
m−
√
mn ≤ D(Γ) ≤ 1

2
m. Thm. 4: D(Kt,t) ≤ 1

2
t2− c0t

3/2,
where c0 can be taken = π/480. Probabilistic methods are used. Thus,
Thm. 2: Given Γ, Prob(l(Γ, σ) > 1

2
m −

√
mn) ≥ 1 − (2

e
)n. Moreover,

let nb(Σ) be the largest order of a balanced subgraph of Σ. Thm. 5:

Prob(nb(Kn, σ) ≥ k) ≤
(
n
k

)
/2(k2). (The problem of evaluating n−nb was

raised by Harary; see (1959b).) Finally, Thm. 1: If Σ has vertex-disjoint
balanced induced subgraphs with m′ edges, then l(Σ) ≤ 1

2
(m − m′).

[See Poljak and Turźık (1982a) for an upper bound on D(Γ), Solé and
Zaslavsky (1994a) for lower and (bipartite) upper bounds; Brown and
Spencer (1971a), Gordon and Witsenhausen (1972a) for D(Kt,t); Harary,
Lindström, and Zetterström (1982a) for a result similar to Thm. 1.]

(SG: Fr, Rand)

M.J. Alava, P.M. Duxbury, C.F. Moukarzel, and H. Rieger
2001a Exact combinatorial algorithms: Ground states of disordered systems. In: C.

Domb and J.L. Lebowitz, eds., Phase Transitions and Critical Phenomena, Vol.
18. Academic Press, San Diego, 2001.
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§7.1, “Random Ising magnets”, (iv), “Frustrated magnets and spin
glasses”, introduces §7.4, “Ising spin glasses and Euclidean matching”.
§7.4.1, “Introduction and overview”: Frustration index, in terms of
Hamiltonian H(s) := −

∑
Jijsisj where, mainly, Jij = ±1 randomly

(random signed graphs). Frustrated (negative) plaquettes (girth circles)
in a lattice. §7.4.2, “Mapping to optimization problems”: (i) “Map-
ping to a matching problem”: Planar solution by dual matching as
in Katai and Iwai (1978a) [not cited], Bieche, Maynard, Rammal, and
Uhry (1980a), Barahona (1982b), et al.(ii) “Mapping to a cut problem”:
Equivalence to max cut. §7.4.3, “Ground-state calculation in two dimen-
sions”: Behavior of ground state (fewest frustrated edges) as function of
negative-edge density. Remarks on external magnetic field, cubic grid
graphs. [Annot. 29 Aug 2012.] (Phys: SG: Fr: Rand: Exp, Ref)

Şahin Albayrak
See J. Kunegis.

S. Alexander and P. Pincus
1980a Phase transitions of some fully frustrated models. J. Phys. A: Math. Gen. 13

(1980), no. 1, 263–273.
Certain all-negative signed graphs where every edge is in a triangle:

d = 2-dimensional triangular lattice and d ≥ 3-dimensional face-centered
cubic lattice. Phase phenomena depend on the parity of d. Odd d implies
interesting infinities of switchings with minimum |E−|. [Annot. 12 Aug
2012.] (Par: Phys)

Artiom Alhazov, Ion Petre, and Vladimir Rogojin
2009a The parallel complexity of signed graphs: Decidability results and an improved

algorithm. Theor. Comput. Sci. 410 (2009), no. 24–25, 2308–2315. MR 2522435
(2011a:68045). Zbl 1167.68022. (SG: Alg)

Noga Alon
1996a Bipartite subgraphs. Combinatorica 16 (1996), no. 3, 301–311.

Lower bound on the largest bipartite subgraph of a simple graph with
m edges. [I.e., upper bound on l(−Γ). Problem. Generalize to l(Σ).]
[Annot. 8 Mar 2011, 19 May 2012.] (sg: par: Fr)

Noga Alon and Yoshimi Egawa
1985a Even edge colorings of a graph. J. Combin. Theory Ser. B 38 (1985), no. 1,

93–94. MR 782628 (86f:05059). Zbl 556.05026.
Proves and improves a conjecture of B.D. Acharya (1983a). Thm.: The

minimum number of colors for an even edge coloring = minimum number
of colors so each color class is bipartite = dlog2 χ(Γ)e. (bal: Gen)

Noga Alon, Gregory Gutin, Eun Jung Kim, Stefan Szeider, and Anders Yeo
2010a Solving MAX-r-SAT above a tight lower bound. In: Moses Charikar, ed.,

Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2010, Austin, Tex.), pp. 511–517. Soc. for Industrial and
Appl. Math., Philadelphia, and Assoc. for Computing Machinery, New York,
2010. MR 2809695 (2012h:68266).

Extended abstract of (2011a). (SG: Alg)

2011a Solving MAX-r-SAT above a tight lower bound. Algorithmica 61 (2011), no.
3, 638–655. MR 2824999 (2012g:68101). Zbl 1242.68118. arXiv:0907.4573.

(SG: Alg)
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Susan S. D’Amato
See S.S. D’Amato (under D).

M. Amram, R. Shwartz, and M. Teicher
2010a Coxeter covers of the classical Coxeter groups. Int. J. Algebra Comput. 20

(2010), no. 8, 1041–1062. MR 2747415 (2012c:20104). arXiv:0803.3010.
The structure of a quotient of a generalized Coxeter group depends on

the presence of loops in the associated signed graph. [Annot. 17 Dec
2011.] (SG)

Xinhui An
See J.F. Wang.

Milica And́elić, Carlos M. da Fonseca, Slobodan K. Simić, and Dejan V. Tošić

2012a Connected graphs of fixed order and size with maximal Q-index: Some spectral
bounds. Discrete Appl. Math. 160 (2012), no. 4-5, 448–459.

Bounds on λ1(K(−Γ)) where Γ is a nested split graph. (Cf. Cvetković,
Rowlinson, and Simić (2007b), which shows nested split graphs maximize
λ1(K(−Γ)).) [Annot. 2 Feb 2012.] (sg: par: Adj)

2012b Some further bounds for the Q-index of nested split graphs. J. Math. Sci. 182
(2012), no. 2, 193–199. (sg: par: Adj)

Milica And́elić and Slobodan K. Simić
2010a Some notes on the threshold graphs. Discrete Math. 310 (2010), no. 17-18,

2241–2248. MR 2659175 (2011h:05145). Zbl 1220.05035. (sg: par: Adj)

Kazutoshi Ando and Satoru Fujishige
1996a On structures of bisubmodular polyhedra. Math. Programming 74 (1996), 293–

317. MR 97g:90102. Zbl 855.68107. (sg: Ori)

Kazutoshi Ando, Satoru Fujishige, and Takeshi Naitoh
1997a Balanced bisubmodular systems and bidirected flows. J. Operations Res. Soc.

Japan 40 (1997), 437–447. MR 98k:05073. Zbl 970.61830.
A balanced bisubmodular system corresponds to a bidirected graph that

is balanced. The “flows” are arbitrary capacity-constrained functions,
not satisfying conservation at a vertex. (sg: Ori, Bal)

Kazutoshi Ando, Satoru Fujishige, and Toshio Nemoto
1996a Decomposition of a bidirected graph into strongly connected components and

its signed poset structure. Discrete Appl. Math. 68 (1996), 237–248. MR
97c:05096. Zbl 960.53208. (sg: Ori)

1996b The minimum-weight ideal problem for signed posets. J. Operations Res. Soc.
Japan 39 (1996), 558-565. MR 98j:90084. Zbl 874.90188. (sg: Ori)

Thomas Andreae
1978a Matroidal families of finite connected nonhomeomorphic graphs exist. J. Graph

Theory 2 (1978), 149–153. MR 80a:05160. Zbl 401.05070.
Partially anticipates the “count” matroids of graphs (see Whiteley

(1996a)). (Bic, EC: Gen)

David Angeli, Patrick De Leenheer, and Eduardo Sontag
2010a Graph-theoretic characterizations of monotonicity of chemical networks in re-

action coordinates. J. Math. Biology 61 (2010), no. 4, 581–616. MR 2672536
(2011d:92054). Zbl 1204.92038.
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Dictionary: “J-graph” = a signed graph of a Jacobian matrix. “Species-
reaction graph” (“SR-graph”) = bipartite signed graph Σ := (VS, VR, E, σ);
“reaction graph” (“R-graph”) = −Σ2:VR; “species graph” (“S-graph”)
= −Σ2:VS [where Σ2 is the distance-2 signed graph: V (Σ2) := VR ∪ VS,
TiTj ∈ Eε(Σ2) ⇐⇒ ∃ path TiUkTj with σ(TiUkTj) = ε]. Dictionary:
“Simple loop” ≈ circle; “positive-loop property” = balance. In a bipar-
tite signed graph, “e-loop, o-loop” = circle with (−1)|C|/2σ(C) = + or −.
Prop. 4.5: Σ2:VR is antibalanced iff all circles in Σ are e-loops and max
deg(Σ:VS) ≤ 2. Thm. 1 (oversimplified): A certain differential system is
monotone iff Σ2:VR is antibalanced (the R-graph is balanced). [Annot.
19 Feb 2010.] (SG: Bal, sw, Geom, Chem)

[A bipartite multiplicative gain graph Φ := (VS, VR, E, ϕ) may be de-
fined by ϕ(SiRj) :=(a value from the stoichiometry matrix Γ). Circle
C is “unitary” if (−1)|C|/2ϕ(C) = +1.] Φ is implicated in the proof of
geometrical Lemma 6.1. [Annot. 19 Feb 2010.] (gg: Bal, Geom)

J.C. Angles d’Auriac and R. Maynard
1984a On the random antiphase state of the ±J spin glass model in two dimensions.

Solid State Commun. 49 (1984), no. 8, 785–790.
Signed square lattice graph: frustration index and ground states (mini-

mum |E−| of switched Σ) via matching [cf. Katai and Iwai (1978a), Bara-
hona (1981a, 1982a)]. Observed: natural clusters with relatively fixed
spins (vertex signs) when the density of negative edges is in (0.1, 0.2).
[Annot. 18 Aug 2012.] (Phys, SG: Fr: Alg)

T. Antal, P.L. Krapivsky, and S. Redner
††2005a Dynamics of social balance on networks. Phys. Rev. E 72 (2005), 036121. MR

2179924 (2006e:91124).
Models for the evolution of a signed Kn towards balance, with conclu-

sions about the probable long-term behavior. A “state” of the graph is a
signature. The unit of time t is |E| =

(
n
2

)
steps of the process. The den-

sity of edges is ρ := |E+|/
(
n
2

)
. The number of triangles with k negative

edges (type k) is Nk; their density is nk := Nk/
(
n
3

)
. The average density

of type k triangles on a positive edge is n+
k = (3− k)Nk/(n− 2)|E+| =

(3− k)nk/(3n0 + 2n1 + n2). Similarly, n−k = knk/(3n0 + 2n1 + n2).
“Local triad dynamics”: At each step a random triangle T is chosen.

If it is all negative, a random edge in T is chosen and negated. If it
has one negative edge, a random edge in T is chosen and negated with
probability p if it is negative and 1 − p if positive. If it is balanced
there is no change. The process is repeated ad infinitum. Finite [i.e.,
fixed] n: For p > 1/2 the graph reaches all-positivity (“paradise”) in
time C log t and for p = 1/2 in time C/

√
2t. For p < 1/2 the graph

reaches a balanced state which is not all positive, in superexponential
time. (Time is in the units described.) “Infinite” n [i.e., n → ∞]: For
p < 1/2 the density of negative edges approaches the stationary value
(1 +

√
(3(1− 2p))−1. For p > 1/2 the network approaches all-positivity.

Thus, at p = 1/2 there is a phase transition. Differential equations arise
in the densities, with coefficients π+, π− where πε := the probability
that, in one step, the sign change is from ε to −ε; thus π+ = (1− p)n1
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and π− = pn1 + n3. A stationary state has π+ = π−. For infinite n
the stationary states are in § III.B and temporal evolution of ρ = ρ(t) is
treated in § III.C. Finite n is in § III.D.

“Constrained triad dynamics”: An edge is chosen randomly and is
negated with probability 1 if the number of positive triangles increases,
0 if the number decreases, and 1/2 if the number remains the same. This
corresponds to an Ising model with Hamiltonian −

∑
σiσjσk, summed

over all edge triples that form a triangle. This model approaches bal-
ance in time C log t with high probability if n is large. The other al-
ternatives are to reach an unbalanced absorbing state, where every edge
is more positive than negative triangles (a “jammed state”), or a tra-
jectory where every edge is in equally many triangles of each sign (a
“blinker”). Blinkers were not observed in the simulations. The prob-
ability of a jammed state decreases quickly as n → ∞. The “final”
state, if balanced, has Harary bipartition V = V1 ∪·V2. For ρ(0) . .4,
|V1|/|V2|approx1. As ρ(0) → β ≈ .65, |V1|/|V2| → ∞, i.e., one set be-
comes dominant. When ρ(0) > β, V1 = V and all edges are positive.
(§ IV.B.) A jammed state can occur only when n = 9 or n ≥ 11 (§ IV.C),
e.g., certain 3-cluster states as in Davis (1967a). The number of jammed
signatures > 3n � 2n−1 = number of balanced ones, notwithstanding
that the probable long-term state is balanced (§ IV.C). [See Marvel,
Strogatz, and Kleinberg (2009a), Abell and Ludwig (2009a), Kujawski,
Ludwig, and Abell (20xxa), Deng and Abell (2010a).]

Proposed research: Allow type 3 triangles (i.e., clustering). Allow
incomplete graphs.

Dictionary: “network” = complete graph. [Annot. 27 Apr 2009.]
(SG: KG: Bal)

2006a Social balance on networks: the dynamics of friendship and enmity. Physica D
224 (2006), no. 1-2, 130–136. MR 2301516 (2007k:91210). Zbl 1130.91041.

Similar to (2005a). [Annot. 27 Apr 2009.] (SG: KG: Bal)

St. Antohe and E. Olaru
1981a Singned graphs homomorphism [sic]. [Signed graph homomorphisms.] Bul.

Univ. Galati Fasc. II Mat. Fiz. Mec. Teoret. 4 (1981), 35–43. MR 83m:05057.
A “congruence” is an equivalence relation R on V (Σ) such that no

negative edge is within an equivalence class. The quotient Σ/R has
the obvious simple underlying graph and signs σ̄(x̄ȳ) = σ(xy) [which is
ambiguous]. A signed-graph homomorphism is a function f : V1 → V2

that is a sign-preserving homomorphism of underlying graphs. [This is
inconsistent, since the sign of edge f(x)f(y) can be ill defined. The
defect might perhaps be remedied by allowing multiple edges with dif-
ferent signs or by passing entirely to multigraphs.] The canonical map
Σ→ Σ/R is such a homomorphism. Composition of homomorphisms is
well defined and associative; hence one has a category Graphsign. The
categorial product is

∏
i∈I Σi := Cartesian product of the |Σi| with the

component-wise signature σ((. . . , ui, . . . )(. . . , vi, . . . )) := σi(uivi). Some
further elementary properties of signed-graph homomorphisms and con-
gruences are proved. [The paper is hard to interpret due to mathematical
ambiguity and grammatical and typographical errors.] (SG)
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Katsuaki Aoki
See M. Iri.

Mustapha Aouchiche and Pierre Hansen
2010a A survey of automated conjectures in spectral graph theory. Linear Algebra

Appl. 432 (2010), 2293–2322. MR 2599861 (2011b:05139).
Computer-generated conjectures. §4, “Signless Laplacian”: Several

computer-generated conjectures about eigenvalues of K(−Γ); some are
proved (mainly in Cvetković, Rowlinson, and Simić (2007b)) or dis-
proved; some are difficult. [Question. How many generalize to all Σ,
with or without proofs?] [Annot. 22 Jan 2012.] (Par: Adj)

20xxa A survey of Nordhaus–Gaddum type relations. Discrete Appl. Math., in press.
§6, “Spectral invariants”: §6.3, “The eigenvalues of the signless Lapla-

cian matrix”: Nordhaus–Gaddum-type relations imply theorems from
Gutman, Kiani, Mirzakhah, and Zhou (2009a) about the eigenvalues,
singular values, incidence energy of K(−Γ). Conjecture 6.19, gener-
ated by a computer—cf. (2010a): λ1(K(−Γ)) + λ1(K(−Γc)) ≤ 3n − 4;
λ1(K(−Γ)) · λ1(K(−Γc)) ≤ 2n(n− 2); = iff Γ is a star. [Annot. 22 Jan
2012.] (Par: Adj)

Mustapha Aouchiche, Pierre Hansen, and Claire Lucas
2011a On the extremal values of the second largest Q-eigenvalue. Linear Algebra Appl.

435 (2011), no. 10, 2591–2606. MR 2811141 (2012h:05184). Zbl 1222.05146.
(Par: Adj)

Gautam Appa
See also L. Pitsoulis.

Gautam Appa and Balázs Kotnyek
2004a Rational and integral k-regular matrices. Discrete Math. 275 (2004), 1–15. MR

2004m:05005. Zbl 1043.15011.
2-regular matrices include binet matrices (2006a). A key property of

k-regular matrices is that solutions of integral equations are 1/k-integral.
(sg: Incid: Ori)

2006a A bidirected generalization of network matrices. Networks 47 (2006), no. 4,
185–198. MR 2008a:05157. Zbl 1097.05025.

Binet matrices are the network matrices of bidirected (or signed)
graphs. Basic theory of binet matrices, generalizing that of network
matrices, notably half-integrality theorems. [For a slight simplification
see Bolker and Zaslavsky (2006a).] (sg: Incid: Ori)

Gautam Appa, Balázs Kotnyek, Konstantinos Papalamprou, and Leonidas
Pitsoulis

2007a Optimization with binet matrices. Operations Res. Letters 35 (2007), 345–352.
MR 2008a:90052. Zbl 1169.90407. (Ori: Incid(Gen), m)

Julio Aracena
See also M. Montalva.

2008a Maximum number of fixed points in regulatory Boolean networks. Bull. Math.
Biol. 70 (2008), no. 5, 1398–1409. MR 2421503 (2009d:05088). Zbl 1144.92323.

A regulatory Boolean network N is built on a signed digraph D. Thm.
6: If all (directed) cycles are positive then N has at least 2 fixed points.
Thm. 9: N has at most 2p fixed points, where p := minimum number
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of vertices that cover all positive cycles [unusually, not negative cycles!],
and this is best possible. [Annot. 9 July 2009.]

(SD: Fr: Gen, Appl(Biol))

Julio Aracena, Jacques Demongeot, and Eric Goles
2004a Positive and negative circuits in discrete neural networks. IEEE Trans. Neural

Networks 15 (2004), no. 1, 77–83.
Existence and upper bound on the number of fixed points of a “dis-

crete neural network” N , which consists of a real n × n matrix W , the
associated signed digraph D of order n, and a real vector b. A state
is x ∈ {−1,+1}n. A transition is x 7→ f(x) := sgn+(Wx − b) where
sgn+(t) := sgn(t) except sgn+(0) := +1. Assume: D is connected; no
component of f is constant, hence a cycle exists. Lemma 1: A cycle is
positive iff it has a satisfied state. Thm. 1: If all cycles are positive, f
has a fixed point. Thm. 2: If all cycles are negative, f has no fixed point.
Thm. 3: #{fixed points} ≤ 2p where p := min(size of vertex cover of
positive cycles), and this is sharp. Dictionary: “positive feedback vertex
set” = vertex cover of positive cycles = vertex set that covers all positive
cycles; “circuit” = (directed) cycle; 1 = sgn+. [Annot. 20 July 2009.]

(SD: Bal, Fr: Gen)

Julio Aracena, Mauricio González, Alejandro Zuñiga, Marco A. Mendez, and
Verónica Cambiazo

2006a Regulatory network for cell shape changes during Drosophila ventral furrow
formation. J. Theoretical Biol. 239 (2006), 49–62. MR 2224512.

Figs. 2, 3 show particular proposed genetic regulatory networks based
on signed digraphs. §3.2 describes how the mathematical model of Ara-
cena et al. (2002a, 2004a) applies to the situation of this paper. [Annot.
20 July 2009.] (SD: Appl(Biol))

Julián Aráoz, William H. Cunningham, Jack Edmonds, and Jan Green-Krótki

1983a Reductions to 1-matching polyhedra. Proc. Sympos. on the Matching Problem:
Theory, Algorithms, and Applications (Gaithersburg, Md., 1981). Networks 13
(1983), 455–473. MR 85d:90059. Zbl 525.90068.

The “minimum-cost capacitated b-matching problem in a bidirected
graph B” is to minimize

∑
e cexe subject to 0 ≤ x ≤ u ∈ {0, 1, . . . ,∞}E

and H(B)x = b ∈ ZV . The paper proves, by reduction to the ordinary
perfect matching problem, Edmonds and Johnson’s (1970a) description
of the convex hull of feasible solutions. Dictionary: “lobe” = half edge.

(sg: Ori: Incid, Alg, Geom)

Dan Archdeacon
1992a The medial graph and voltage-current duality. Discrete Math. 104 (1992), no.

2, 111–141. MR 1172842 (93i:05051). Zbl 757.05045.
The medial graph of Γ ⊂ S, a graph embedded in a surface, is a

4-regular graph M ⊂ S that encodes Γ and its surface dual. Gains
(“voltages”) on Γ transfer to gains (“voltages”) on M . [Question. Does
this suggest a gain-graphic, surface-embedding theory of 4-regular gain
graphs?] [Annot. 16 Jan 2012.] (GG, Top)

1995a Problems in topological graph theory. Manuscript, 1995. http://www.emba.
uvm.edu/~archdeac/papers/papers.html

http://www.emba.uvm.edu/~archdeac/papers/papers.html
http://www.emba.uvm.edu/~archdeac/papers/papers.html


the electronic journal of combinatorics #DS8 19

A compilation from various sources and contributors, updated every so
often. “The genus sequence of a signed graph”, p. 10: A conjecture due
to Širáň (?) on the demigenus range (here called “spectrum” [though
unrelated to matrices]) for orientation embedding of Σ, namely, that the
answer to Question 1 under Širáň (1991b) is affirmative. (SG: Top)

1996a Topological graph theory: a survey. Surveys in Graph Theory (Proc., San Fran-
cisco, 1995). Congressus Numer. 115 (1996), 5–54. Updated version: (2/98)
http://www.emba.uvm.edu/~archdeac/papers/papers.html
MR 98g:05044. Zbl 897.05026.

§2.5 describes orientation embedding (called “signed embedding” [al-
though there are other kinds of signed embedding]) and switching (called
“sequence of local switches of sense”) of signed graphs with rotation sys-
tems. §5.5, “Signed embeddings”, briefly mentions Širáň (1991b), Širáň
and Škoviera (1991a), and Zaslavsky (1993a, 1996a). (SG: Top: Exp)

2005a Variations on a theme of Kuratowski. Discrete Math. 302 (2005), 22–31. MR
2179233 (2006g:05055). Zbl 1076.05027.

Mentions [and conflates] the theorems of Zaslavsky (1993a). [Annot.
20 June 2011.] (Top: SG: Exp)

Dan Archdeacon and Marisa Debowsky
2005a A characterization of projective-planar signed graphs. Discrete Math. 290

(2005), no. 2–3, 109–332. MR 2123383 (2005j:05041). Zbl 1060.05039.

Similar to Archdeacon and Širáň (1998a) but for the projective plane.
(SG, Sw: Top)

Dan Archdeacon and Jozef Širáň
1998a Characterizing planarity using theta graphs. J. Graph Theory 27 (1998), 17–20.

MR 98j:05055. Zbl 887.05016.
A “claw” consists of a vertex and three incident half edges. Let C be

the set of claws in Γ and T the set of theta subgraphs. Fix a rotation
of each claw. Call t ∈ T an “edge” with endpoints c, c′ if t contains
c and c′; sign it + or − according as t can or cannot be embedded in
the plane so the rotations of its trivalent vertices equal the ones chosen
for c and c′. This defines, independently (up to switching) of the choice
of rotations, the “signed triple graph” T±(Γ). Theorem: Γ is planar iff
T±(Γ) is balanced. (SG, Sw: Top)

Alex Arenas
See S. Gómez.

Srinivasa R. Arikati and Uri N. Peled
1993a A linear algorithm for the group path problem on chordal graphs. Discrete

Appl. Math. 44 (1993), 185–190. MR 94h:68084. Zbl 779.68067.
Given a graph with edges weighted from a group. The weight of a

path is the product of its edge weights in order (not inverted, as with
gains). Problem: to determined whether between two given vertices
there is a chordless path of given weight. This is NP-complete in general
but for chordal graphs there is a fast algorithm (linear in (|E| + |V |) ·
(group order)). [Question. What if the edges have gains rather than
weights?] (WG: par(Gen): Alg)

http://www.emba.uvm.edu/~archdeac/papers/papers.html
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1996a A polynomial algorithm for the parity path problem on perfectly orientable
graphs. Discrete Appl. Math. 65 (1996), 5–20. MR 96m:05120. Zbl 854.68069.

Problem: Does a given graph contain an induced path of specified
parity between two prescribed vertices? A polynomial-time algorithm
for certain graphs. (no. Bienstock (1991a).) [Problem. Generalize to
paths of specified sign in a signed graph.] (par: Alg)(Ref)

Esther M. Arkin and Christos H. Papadimitriou
1985a On negative cycles in mixed graphs. Operations Res. Letters 4 (1985), 113–116.

MR 821170 (87h:68061). Zbl 585.05017. (WG: OG)

1986a On the complexity of circulations. J. Algorithms 7 (1986), 134–145. MR 834086
(88a:68033). Zbl 603.68039. (sg: Flows)

E.M. Arkin, C.H. Papadimitriou, and M. Yannakakis
1991a Modularity of cycles and paths in graphs. J. Assoc. Comput. Mach. 38 (1991),

255–274. MR 92h:68068. Zbl 799.68146.
Modular poise gains in digraphs (gain +1 on each oriented edge).

(gg: Bal)

Ali Reza Ashrafi
See Z. Yarahmadi.

Christos A. Athanasiadis
†1996a Characteristic polynomials of subspace arrangements and finite fields. Adv.

Math. 122 (1996), 193–233. MR 97k:52012. Zbl 872.52006.
Treats the canonical lift representations (as affine hyperplane arrange-

ments) of various gain graphs and signed gain graphs with additive gain
group Z+. The article is largely a series of (sometimes brilliant) calcu-
lations of chromatic polynomials (mutatis mutandis, the characteristic
polynomials of the representing arrangements) modulo a large integer
q using gain graph coloring, though disguised as applications of Crapo–
Rota’s Critical Theorem. The fundamental principle is that, if q is larger
than the largest gain of a circle, then Z+ can be replaced as gain group
by Z+

q without changing the chromatic polynomial (a consequence of
Zaslavsky (1995b), Thm. 4.2)—and the analog for signed gain graphs,
whose theory needs to be developed. A non-graphical result of the gen-
eral method is a unified proof (Thm. 2.4) of the theorem of Blass and
Sagan (1998a).

§3: “The Shi arrangements”: these represent Latb{0, 1} ~Kn and signed-

graph analogs. §4: “The Linial arrangement”: this represents Latb{1} ~Kn.
§5: “Other interesting hyperplane arrangements”, treats: the arrange-
ment representing LatbAKn where A = {−m, . . . ,m − 1,m} [which is
the semilattice of m-composed partitions; see Zaslavsky (2002a), Ex.
10.5, also Edelman and Reiner (1996a)], and several generalizations, in-
cluding to arbitrary sign-symmetric gain sets L and to Weyl analogs;
also, an antibalanced analog of the An Shi arrangement (Thm. 5.4); and
more. Most impressive result: Thm. 5.2: Let A be a finite set of integers
such that 0 /∈ A = −A and let A0 = A ∪ {0}. For Φ = A0Kn and large
integral λ, χ∗Φ(λ)/λ is the coefficient of xλ−n in (1−x)−1−fA(x)/x where
fA is the ordinary generating function for A. From this χ∗AKn(λ)/λ is
derived.
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[The signed affinographic arrangements represent a kind of signed gain
graph whose exact nature has not yet been penetrated by gain graph
theory.] (sg, gg: Geom, M, Invar)

1997a A class of labeled posets and the Shi arrangement of hyperplanes. J. Combin.
Theory Ser. A 80 (1997), 158–162. MR 98d:05008. Zbl 970.66662.

The arrangement represents Latb{0, 1} ~Kn. (gg: Geom, M, Invar)

1998a On free deformations of the braid arrangement. European J. Combin. 19 (1998),
7–18. MR 99d:52008. Zbl 898.52008.

The arrangements considered are the subarrangements of the projec-
tivized Shi arrangements of type An−1 that contain An−1. Thms. 4.1
and 4.2 characterize those that are free or supersolvable. The extended
Shi arrangements, representing L0([1−a, a] ~Kn) where a ≥ 1, and a mild
generalization, are of use in the proof. (gg: Geom, M, Invar)

1998b On noncrossing and nonnesting partitions for classical reflection groups. Elec-
tronic J. Combin. 5 (1998), Research Paper R42, 16 pp. MR 1644234 (99i:05204).
Zbl 898.05004.

§5, “Nonnesting partitions of fixed type”, has calculations like those in
(1996a) for affinographic arrangements representing additional types of
gain graphs [of a kind that is not yet fully understood].

(gg: Geom, m, Invar)

1999a Extended Linial hyperplane arrangements for root systems and a conjecture
of Postnikov and Stanley. J. Algebraic Combin. 10 (1999), 207–225. MR
2000i:52039. Zbl 948.52012. (gg: Geom, m, Invar)

1999b Piles of cubes, monotone path polytopes, and hyperplane arrangements. Dis-
crete Comput. Geom. 21 (1999), no. 1, 117–130. MR 99j:52015. Zbl 979.52002.

The proof of Proposition 4.2 is essentially gain-graphic.
(gg: m: Geom: Invar)

2000a Deformations of Coxeter hyperplane arrangements and their characteristic poly-
nomials. In: Michael Falk and Hiroaki Terao, eds., Arrangements—Tokyo,
1998, pp. 1–26. Adv. Studies Pure Math., 27. Kinokuniya, for the Mathemat-
ical Soc. of Japan, Tokyo, 2000. MR 1796891 (2001i:52035). Zbl 976.32016.

(gg: Geom, m, Invar)

2004a Generalized Catalan numbers, Weyl groups and arrangements of hyperplanes.
Bull. London Math. Soc. 36 (2004), 294–302. MR 2005b:52055. Zbl 1068.20038.

(gg: Geom: Gen: Invar)

2004b On a refinement of the generalized Catalan numbers for Weyl groups. Trans.
Amer. Math. Soc. 357 (2004), no. 1, 179–196. MR 2005h:20091. Zbl 1079.20057.

(gg: Geom: Gen: Invar)

Christos A. Athanasiadis and Svante Linusson
1999a A simple bijection for the regions of the Shi arrangement of hyperplanes. Dis-

crete Math. 204 (1999), 27–39. MR 2000f:52031. Zbl 959.52019. (gg: Geom)

David Avis
See J. Akiyama.

F. Ayoobi, G.R. Omidi, and B. Tayfeh-Rezaie
2011a A note on graphs whose signless Laplacian has three distinct eigenvalues. Linear

Multilinear Algebra 59 (2011), no. 6, 701–706. MR 2801363 (2012i:05158). Zbl
1223.05169. (Par: Adj)
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L. Babai and P.J. Cameron
2000a Automorphisms and enumeration of switching classes of tournaments. Elec-

tronic J. Combin. 7 (2000), Research Paper R38, 25 pp. MR 1773295 (2001h:-
05048). Zbl 956.05050.

Tournaments are treated as nowhere-zero GF(3)+-gain graphs based
on Kn; “switching” is by negation in GF(3)+. (gg: Sw, Aut, Enum)

Maxim A. Babenko
2006a Acyclic bidirected and skew-symmetric graphs: algorithms and structure. In:

Dima Grigoriev, John Harrison and Edward A. Hirsch, eds., Computer Science—
Theory and Applications (Proc. 1st Int. Symp. Computer Sci. in Russia, CSR
2006, St. Petersburg, 2006), pp. 23–34. Lecture Notes in Comput. Sci., 3967.
Springer, Berlin, 2006. MR 2260979 (2007f:05165). Zbl 1185.05133.

“Skew-symmetric graph” = double covering digraph of a bidirected −Γ.
“Weak acyclicity”: No positive dicycle. “Strong acyclicity”: No positive
closed diwalk. Algorithm to test for weak acyclicity. Construction of
weakly acyclic graphs from strongly acyclic ones. [Annot. 9 Sept 2010.]

(sg: Ori: Str, Cov, Alg)

2006b On flows in simple bidirected and skew-symmetric networks. (In Russian.)
Problemy Peredachi Informatsii 42 (2006), no. 4, 104–120. English trans. Probl.
Inf. Transm. 42 (2006), no. 4, 356–370. MR 2278815 (2008i:90013).

O(mn2/3) algorithm for integral max flow (improving on Gabow 1983a),
showing that max flow takes no longer on a bidirected graph than on
a digraph. The time bound follows from an upper bound on the max
flow value. Also, an acyclic flow of value v is zero on all but O(nv1/2)
arcs. The technique involves transferring the flow to the double covering
digraph. [Annot. 9 Sept 2010.] (sg: Ori: Flows, Alg, Cov)

2007a On an application of the structural theory of acyclic skew-symmetric digraphs.
(In Russian.) Vestnik Moskov. Univ. Ser. I Mat. Mekh. (2007), no. 2, 65–66,
80. English trans. Moscow Univ. Math. Bull. 62 (2007), no. 2, 85–86. MR
2357046 (2008i:05146). Zbl 1164.05056.

The double covering graph of suitably oriented −Γ [matching edges are
introverted; nonmatching edges are extraverted] yields a proof that, if Γ
has a unique perfect matching M , then M contains an isthmus. [Annot.
9 Sept 2010.] (par: Ori)

Maxim A. Babenko and Alexander V. Karzanov
2007a Free multiflows in bidirected and skew-symmetric graphs. Discrete Appl. Math.

155 (2007), 1715–1730. MR 2348356 (2008j:90102). Zbl 1152.90574.
Optimization of integral odd-vertex flows on a bidirected graph, without

or with capacities. [Annot. 9 Sept 2010.] (sg: Ori: Flows: Alg)

2009a Minimum mean cycle problem in bidirected and skew-symmetric graphs. Dis-
crete Optimization 6 (2009), no. 1, 92–97. MR 2483322 (2010a:05105). Zbl
1161.05327.

Minimizing the average weight in a cycle, or a closed trail, of an edge-
weighted bidirected graph, in time O(n2 min{n2,m log n}). [Annot. 9
Sept 2010.] (sg: Ori: Alg)

Constantin P. Bachas
1984a Computer-intractibility of the frustration model of a spin glass. J. Phys. A 17

(1984), L709–L712. MR 85j:82043.
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The frustration index decision problem on signed (3-dimensional) cu-
bic lattice graphs is NP-complete. [Proof is incomplete; completed and
improved by Green (1987a). Better result in Barahona (1982a).]

(SG: Fr: Alg)

G. David Bailey
20xxa Inductively factored signed-graphic arrangements of hyperplanes. Submitted

and under revision.
Continues Edelman and Reiner (1994a). (SG: Geom, M)

V. Balachandran
1976a An integer generalized transportation model for optimal job assignment in com-

puter networks. Operations Res. 24 (1976), 742–759. MR 55 #12068. Zbl
356.90028. (GN: M(bases))

V. Balachandran and G.L. Thompson
1975a An operator theory of parametric programming for the generalized transporta-

tion problem: I. Basic theory. II. Rim, cost and bound operators. III. Weight
operators. IV. Global operators. Naval Res. Logistics Quart. 22 (1975), 79–100,
101–125, 297–315, 317–339. MR 52 ##2595, 2596, 2597, 2598. Zbl 331.90048,
90049, 90050, 90051. (GN: M)

R. Balakrishnan and K. Ranganathan
2000a A Textbook of Graph Theory. Springer, New York, 2000. MR 2000j:05001. Zbl

938.05001.
§10.6, “Application to social psychology”: Short introduction to bal-

ance in signed graphs. §10.7: Exercises on balance. (SG: Bal: Exp)

R. Balakrishnan and N. Sudharsanam
1982a Cycle-vanishing edge valuations of a graph. Indian J. Pure Appl. Math. 13

(1982), no. 3, 313–316. MR 657670 (84d:05145). Zbl 485.05057.
f : E(Γ)→ R is “cycle-vanishing” if f(C) :=

∑
e∈C f(e) = 0 for every

circle. Thm. 3: f is cycle-vanishing iff f(S) = 0 for every series class of
non-isthmus edges. Thm. 4: dim{cycle-vanishing f} = |E| − number of
series classes of non-isthmus edges. Thm. 5: Connected Γ is 3-connected
iff only f = 0 is cycle vanishing. [Specialized to a sign-weighted graph
Σ, “cycle-vanishing” means |E+(C)| = |E−(C)| for every circle. Thm. 3:
σ is cycle-vanishing iff every series class of non-isthmus edges has evenly
many edges, half positive and half negative. Etc. no. Vijayakumar
(2011a).] [Annot. 16 Oct 2011.] (sgw: Gen)

Egon Balas
1966a The dual method for the generalized transportation problem. Management

Sci. 12 (1966), no. 7 (March, 1966), 555–568. MR 32 #7232. Zbl 142, 166 (e:
142.16601). (GN: M(bases))

1981a Integer and fractional matchings. In: P. Hansen, ed., Studies on Graphs and
Discrete Programming, pp. 1–13. North-Holland Math. Stud., 59. Ann. Dis-
crete Math., 11. North-Holland, Amsterdam, 1981. MR 84h:90084.

Linear (thus “fractional”, meaning half-integral) vs. integral program-
ming solutions to maximum matching. The difference of their maxima =
1
2
(max number of matching-separable vertex-disjoint odd circles). Also

noted (p. 12): (max) fractional matchings in Γ correspond to (max)
matchings in the double covering graph of −Γ. [Question. Does this
lead to a definition of maximum matchings in signed graphs?]
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(par, ori: Incid, Geom, Alg, cov)

E. Balas and P.L. Ivanescu [P.L. Hammer]
1965a On the generalized transportation problem. Management Sci. 11 (1965), no. 1

(Sept., 1964), 188–202. MR 30 #4599. Zbl 133, 425 (e: 133.42505).
(GN: M, Bal)

K. Balasubramanian
1988a Computer generation of characteristic polynomials of edge-weighted graphs,

heterographs, and directed graphs. J. Computational Chem. 9 (1988), 204–
211.

Here a “signed graph” means, in effect, an acyclically oriented graph
D along with the antisymmetric adjacency matrix A±(D) = A(+D ∪
−D−1), D−1 being the converse digraph. [That is, A±(D) = A(D) −
A(D)T. The “signed graphs” are just acyclic digraphs with an anti-
symmetric adjacency matrix and, correspondingly, what we may call
the ‘antisymmetric characteristic polynomial’.] Proposes an algorithm
for the polynomial. Observes in some examples a relationship between
the characteristic polynomial of Γ and the antisymmetric characteristic
polynomial of an acyclic orientation.

(SD, wg: Adj: Invar: Alg, Chem)

1991a Comments on the characteristic polynomial of a graph. J. Computational
Chem. 12 (1991), 248–253. MR 92b:92057.

Argues (heuristically) that a certain algorithm is superior to another,
in particular for the antisymmetric polynomial defined in (1988a).

(SD: Adj: Invar: Alg)

1992a Characteristic polynomials of fullerene cages. Chem. Phys. Letters 198 (1992),
577–586.

Computed for graphs of six different cages of three different orders, in
both ordinary and “signed” (see (1988a)) versions. Observes a property
of the “signed graph” polynomials [which is due to antisymmetry, as
explained by P.W. Fowler (Comment on “Characteristic polynomials of
fullerene cages”. Chem. Phys. Letters 203 (1993), 611–612)].

(SD: Adj: Invar: Chem)

1994a Are there signed cospectral graphs? J. Chem. Information Computer Sci. 34
(1994), 1103–1104.

The “signed graphs” are as in (1988a). Simplified contents: It is
shown by example that the antisymmetric characteristic polynomials of
two nonisomorphic acyclic orientations of a graph (see (1988a)) may be
equal or unequal. [Much smaller examples are provided by P.W. Fowler,
Comment on “Characteristic polynomials of fullerene cages”. Chem.
Phys. Letters 203 (1993), 611–612).] [Question. Are there examples for
which the underlying (di)graphs are nonisomorphic?] [For cospectral-
ity of other kinds of signed graphs, see Acharya, Gill, and Patwardhan
(1984a) (signed Kn’s).] (SD: Adj: Invar)

R. Balian, J.M. Drouffe, and C. Itzykson
1974a Gauge fields on a lattice. I. General model. Phys. Rev. D 10 (1974), no. 10,

3376-3395.
Gain group SO(n) on a toroidal lattice graph (§ C, “Local invariance,

gauge field, and minimal coupling), where SO(1) = {+1,−1} (developed
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in (1975a)). [Annot. 12 Aug 2012.] (SG: Phys)

1975a Gauge fields on a lattice. II. Gauge-invariant Ising model. Phys. Rev. D 11
(1975), no. 8, 2098–2103.

Dictionary: “Ising model” = signed hypercubical lattice, “gauge invari-
ance” = switching invariance, “plaquette” = quadrilateral. The parti-
tion function depends on p+−p− where pε = # plaquettes with sign ε and
sometimes also |E+|−|E−|. [Annot. 12 Aug 2012.] (SG: Phys, Sw, Fr)

M.L. Balinski
1970a On recent developments in integer programming. Proceedings of the Prince-

ton Symposium on Mathematical Programming (Princeton Univ., 1967), pp.
267–302. Princeton Univ. Press, Princeton, N.J., 1970. MR 55 #9957. Zbl
222.90036.

Pp. 277–278 discuss integer programming problems on bidirected graphs
in terms of the incidence matrix. (ori: incid: par, Alg, Ref)

Murad Banaji
See also N. Radde.

2010a Graph-theoretic conditions for injectivity of functions on rectangular domains.
J. Math. Anal. Appl. 370 (2010), 302–311. MR 2651147 (2011f:26012). Zbl
1227.26006. (SD)

Murad Banaji and Gheorghe Craciun
2009a Graph-theoretic approaches to injectivity and multiple equilibria in systems of

interacting elements. Comm. Math. Sci. 7 (2009), no. 4, 867–900. MR 2604624
(2011i:05126). Zbl 1195.05038. (SG, Chem)

2010a Graph-theoretic criteria for injectivity and unique equilibria in general chem-
ical reaction systems. Adv. Appl. Math. 44 (2010), 168–184. MR 2576846
(2010m:80010). Zbl 1228.05204.

Generalization of (2009a) to more general systems. [Annot. 26 Oct
2011.] (SG, Chem)

20xxa Graph theoretic approaches to injectivity in chemical reaction systems. Sub-
mitted. (SG, Chem)

Murad Banaji and Carrie Rutherford
2011a P -matrices and signed digraphs. Discrete Math. 311 (2011), no. 4, 295–301.

Zbl 1222.05080. (SD: QM)

Jørgen Bang-Jensen and Gregory Gutin
1997a Alternating cycles and paths in edge-coloured multigraphs: A survey. Discrete

Math. 165/166 (1997), 39–60. MR 98d:05080. Zbl 876.05057.
A rich source for problems on bidirected graphs. An edge 2-coloration of

a graph becomes an all-negative bidirection by taking one color class to
consist of introverted edges and the other to consist of extroverted edges.
An alternating path becomes a coherent path; an alternating circle be-
comes a coherent circle. [General Problem. Generalize to bidirected
graphs the results on edge 2-colored graphs mentioned in this paper.
(See esp. §5.) Question. To what digraph properties do they special-
ize by taking the underlying signed graph to be all positive?] [See e.g.
Bánkfalvi and Bánkfalvi (1968a) (q.v.), Bang-Jensen and Gutin (1998a),
Das and Rao (1983a), Grossman and Häggqvist (1983a), Mahadev and
Peled (1995a), Saad (1996a).] (par: ori: Paths, Circles)
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1998a Alternating cycles and trails in 2-edge-colored complete multigraphs. Discrete
Math. 188 (1998), 61–72. MR 99g:05072. Zbl 956.05040.

The longest coherent trail, having degrees bounded by a specified degree
vector, in a bidirected all-negative complete multigraph that satisfies
an extra hypothesis. Generalization of Das and Rao (1983a) and Saad
(1996a), thus ultimately of Thm. 1 of Bánkfalvi and Bánkfalvi (1968a)
(q.v.). Also, a polynomial-time algorithm. (par: ori: Paths, Alg)

M. Bánkfalvi and Zs. Bánkfalvi
1968a Alternating Hamiltonian circuit in two-coloured complete graphs. In: P. Erdős

and G. Katona, eds., Theory of Graphs (Proc. Colloq., Tihany, 1966), pp.
11–18. Academic Press, New York, 1968. MR 38 #2052. Zbl 159, 542 (e:
159.54202).

Let B be a bidirected −K2n which has a coherent 2-factor. (“Coherent”
means that, at each vertex in the 2-factor, one edge is directed inward
and the other outward.) Thm. 1: B has a coherent Hamiltonian circle
iff, for every k ∈ {2, 3, . . . , n − 2}, sk > k2, where sk := the sum of
the k smallest indegrees and the k smallest outdegrees. Thm. 2: The
number of k’s for which sk = k2 equals the smallest number p of circles
in any coherent 2-factor of B. Moreover, the p values of k for which
equality holds imply a partition of V into p vertex sets, each inducing
Bi consisting of a bipartite [i.e., balanced] subgraph with a coherent
Hamiltonian circle and in one color class only introverted edges, while in
the other only extroverted edges. [Problem. Generalize these remarkable
results to an arbitrary bidirected complete graph. The all-negative case
will be these theorems; the all-positive case will give the smallest number
of cycles in a covering by vertex-disjoint cycles of a tournament that has
any such covering.] [See Bang-Jensen and Gutin (1997a) for further
developments on alternating walks.] (par: ori: Circles)

Zs. Bánkfalvi
See M. Bánkfalvi.

C. Bankwitz
1930a Über die Torsionszahlen der alternierenden Knotes. Math. Ann. 103 (1930),

145–161.
Introduces the sign-colored graph of a link diagram. [Further work by

numerous writers, e.g., S. Kinoshita et al. and esp. Kauffman (1989a)
and successors.] (Knot: SGc)

Nikhil Bansal, Avrim Blum, and Shuchi Chawla
2002a Correlation clustering. In: Proc. 43rd Ann. IEEE Sympos. Foundations of

Computer Science (FOCS ’02), pp. 238–247. Zbl 1089.68085.
Preliminary version of (2004a). (SG: KG: Clu: Alg)

2004a Correlation clustering. Theoretical Advances in Data Clustering. Machine
Learning 56 (2004), no. 1–3, 89–113. Zbl 1089.68085.

Clusterability index Q [minimum number of inconsistent edges; see
Doreian and Mrvar (1996a) for notation] in signed complete graphs is
NP-hard. Polynomial-time algorithms for approximate optimal cluster-
ing: up to a constant factor from Q (§3); probably within 1 − ε of
|E| − Q for any ε (i.e., maximizing consistent edges within 1 − ε) (§4).
§3: A 2-clustering within 3Q2 (Thm. 2). A clustering within cQ where
c ≈ 20000 (Thm. 13). §4: A clustering within εn2 of |E| −Q with high
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probability but slow in terms of 1/ε (Thm. 15). Asymptotically faster
in terms of 1/ε (Thm. 22). The 1 − ε factor results from the fact that
|E| − Q =

(
n
2

)
− Q > 1

2

(
n
2

)
[so is not strong]. §6: “Random noise”. §7:

“Extensions”, considers edge weights in [−1, 1] (thus allowing incom-
plete graphs). Thm. 23: An unweighted approximation algorithm will
also approximate this case, assuming “linear cost”: e costs (1−w(e))/2
if within a cluster and (1 + w(e))/2 if between clusters. Thm. 24: The
problem for clustering that minimizes the total weight of + edges out-
side clusters and − edges within clusters (“minimizing disagreements”)
is APX-hard. [Improved in Charikar, Guruswami, and Wirth (2003a,
205a), Swamy (2004a). Generalized in Demaine et al. (2006a).] [An-
not. 22 Sept 2009.] (SG: KG: Clu: Alg)

R.B. Bapat
2010a Graphs and Matrices. Hindustan Book Agency, New Delhi, and Springer, Lon-

don, 2010.
§2.6, “0− 1 Incidence matrix”. The rank and related properties of the

the unoriented incidence matrix. [Cf. van Nuffelen (1973a).] [Annot.
25 Aug 2011.] (sg: Par: Incid: Exp)

Ravindra B. Bapat, Jerrold W. Grossman, and Devadatta M. Kulkarni
1999a Generalized matrix tree theorem for mixed graphs. Linear Multilinear Algebra

46 (1999), 299–312. MR 2001c:05091. Zbl 940.05042.
Their “mixed graph” is a signed graph Σ: positive edges are called

“directed” and negative edges “undirected”. The matrix-tree theorem is
the unweighted case of Chaiken’s (1982a) all-minors theorem for signed
graphs. The technical formalism differs somewhat. They point out that
in case U ∪ W = V , the minor is the sum of signed ŪW̄ matchings.
Dictionary: “k-reduced substructure” ∼= independent set of rank n − k
in G(Σ); “quasibipartite” = balanced. Successor to Grossman, Kulkarni,
and Schochetman (1994a) [q.v. for more dictionary]. (sg: Incid)

2000a Edge version of the matrix tree theorem for trees. Linear Multilinear Algebra
47 (2000), 217–229. MR 1785029 (2001d:05112). Zbl 960.05067.

Successor to (1999a). Their “mixed tree” T is a signed tree as in
(1999a). Thm. 9 (simplified): The minor of HTH (H is the incidence
matrix of Σ) obtained by deleting rows corresponding to E ⊆ E(Σ)
and columns corresponding to F ⊆ E(Σ) has determinant equal, up
to sign, to the number of common SDR’s of vertex sets of components
of T \ E and T \ F . [Interesting, but edge signs are irrelevant because
any tree switches to all positive.] Dictionary: “substructure” = subgraph
allowing retention of edges incident to deleted vertices [thus they become
loose or half edges]. [See (1999a) for more dictionary.] (sg: Incid)

R.B. Bapat, D. Kalita, and S. Pati
2012a On weighted directed graphs. Linear Algebra Appl. 436 (2012), no. 1, 99–111.

They are complex unit gain graphs Φ with simple underlying graph.
K(Φ) is obtained in the usual way from H(Φ). §2, “D-similarity and
singularity in weighted directed graphs”: Thm. 8: K(Φ) is singular iff
Φ ∼ ‖Φ‖ iff Φ (assumed connected) is balanced. [Cf. Zaslavsky (2003b),
§2.1 esp. Thm. 2.1(a), noting that rkK(Φ) = rk H(Φ) = rkG(Φ).] §3,
“Edge singularity of weighted directed graphs”: Elementary results on
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frustration index, appearing less elementary because treated indirectly,
through eigenvalues, rather than directly, through the graph. Generaliz-
ing Tan and Fan (2008a) on signed graphs. §4, “3-Colored digraphs and
their singularity”: Gains restricted to ±1, i. Elementary results. Dic-
tionary: “weighted directed graph” = complex unit gain graph; “mixed
graph” = signed graph; D-similarity” [diagonal similarity] = switching
equivalence, “edge singularity” = frustration index. [Annot. 28 Oct
2011.] (gg: Adj, Incid, Bal)

R.B. Bapat and Devadatta M. Kulkarni
2000a Minors of some matrices associated with a tree. In: Algebra and Its Applications

(Athens, Ohio, 1999), pp. 45–66. Contemp. Math., Vol. 259. American Math.
Soc., Providence, R.I., 2000. MR 2001h:05065. Zbl 979.05075.

Concerns a “mixed tree”, really an oriented signed tree without extro-
verted edges (see Bapat, Grossman, and Kulkarni 1999a). The matrices
are the incidence matrix H, the Laplacian (i.e., Kirchhoff) matrix H HT,
and the “edge Laplacian” HTH. Partly expository. New results concern
Moore–Penrose inverses and their minor determinants. [Since a “mixed
tree” is switching equivalent to an ordinary unsigned tree, their results
should be identical to those for ordinary trees except for multiplication
by a V × V diagonal matrix with signs on the diagonal.] (sg: Incid)

Nadav S. Bar
See N. Radde.

Francisco Barahona
1981a Balancing signed toroidal graphs in polynomial-time. Unpublished manuscript,

1981.
Given a 2-connected Σ whose underlying graph is toroidal, polynomial-

time algorithms are given for calculating the frustration index l(Σ) and
the generating function of switchings Σµ by |E−(Σµ)|. The technique is
to solve a Chinese postman (T -join) problem in the toroidal dual graph,
T corresponding to the frustrated face boundaries. Generalizes (1982a).
[See (1990a), p. 4, for a partial description.] (SG: Fr, Alg)

1982a On the computational complexity of Ising spin glass models. J. Phys. A: Math.
Gen. 15 (1982), 3241–3253. MR 84c:82022.

The frustration-index problem, that is, minimization of |E−(Σζ)| over
all switching functions ζ : V → {±1}, for signed planar and toroidal
graphs and subgraphs of 3-dimensional grids. Analyzed structurally, in
terms of perfect matchings in a modified dual graph, and algorithmically.
The last is NP-hard, even when the grid has only 2 levels; the former are
polynomial-time solvable even with weighted edges. Also, the problem of
minimizing |E−(Σζ)|+

∑
v ζ(v) for planar grids (“2-dimensional problem

with external magnetic field”), which is NP-hard. (This corresponds to
adding an extra vertex, positively adjacent to every vertex.) [See infinite
analog in Istrail (2000a).] (SG: Phys, Fr, Fr(Gen): D, Alg)

1982b Two theorems in planar graphs. Unpublished manuscript, 1982. (SG: Fr)

1990a On some applications of the Chinese Postman Problem. In: B. Korte, L. Lovász,
H.J. Prömel, and A. Schrijver, eds., Paths, Flows and VLSI-Layout, pp. 1–16.
Algorithms and Combinatorics, Vol. 9. Springer-Verlag, Berlin, 1990. MR
92b:90139. Zbl 732.90086.

§2: “Spin glasses.” (SG: Phys, Fr: Exp)
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§5: “Max cut in graphs not contractible to K5,” pp. 12–13.
(sg: fr: Exp)

1990b Planar multicommodity flows, max cut, and the Chinese Postman Problem.
In: William Cook and Paul D. Seymour, eds., Polyhedral Combinatorics (Proc.
Workshop, 1989), pp. 189–202. DIMACS Ser. Discrete Math. Theor. Computer
Sci., Vol. 1. Amer. Math. Soc. and Assoc. Comput. Mach., Providence, R.I.,
1990. MR 92g:05165. Zbl 747.05067.

Negative cutsets, where signs come from a network with real-valued
capacities. Dual in the plane to negative circles. See §2.

(SG: D: Bal, Alg)

Francisco Barahona and Adolfo Casari
1988a On the magnetisation of the ground states in two-dimensional Ising spin glasses.

Comput. Phys. Comm. 49 (1988), 417–421. MR 89d:82004. Zbl 814.90132.
(SG: Fr: Alg)

Francisco Barahona, Martin Grötschel, Michael Jünger, and Gerhard Reinelt

1988a An application of combinatorial optimization to statistical physics and circuit
layout design. Oper. Res. 36 (1988), no. 3, 493–513. Zbl 646.90084.

Frustration index of a weighted signed graph (Ising ground state; via
minimum) is reduced to weighted max-cut. The algorithm uses cutting
planes on the cut polytope of the underlying graph, specifically applied
to toroidal grids with an extra vertex. Fractional solutions appear oc-
casionally, especially for signed graphs. Possible use of negative-circle
constraints is mentioned. [Annot. 18 Aug 2012.] (sg: Fr: Alg)

Francisco Barahona, Martin Grötschel, and Ali Ridha Mahjoub
1985a Facets of the bipartite subgraph polytope. Math. Operations Res. 10 (1985),

340–358. MR 87a:05123a. Zbl 578.05056.
The polytope PB(Γ) is the convex hull in RE of characteristic vectors of

bipartite edge sets. Various types of and techniques for generating facet-
defining inequalities, thus partially extending the description of PB(Γ)
from the weakly bipartite case (Grötschel and Pulleyblank (1981a)) in
which all facets are due to edge and odd-circle constraints. [Some can
be described best via signed graphs; see Poljak and Turźık (1987a).] [A
brief expository treatment of the polytope appears in Poljak and Tuza
(1995a).] (sg: par: fr: Geom)

Francisco Barahona and Enzo Maccioni
1982a On the exact ground states of three-dimensional Ising spin glasses. J. Phys. A:

Math. Gen. 15 (1982), L611–L615. MR 83k:82044.
Discusses a 3-dimensional analog of Barahona, Maynard, Rammal, and

Uhry (1982a). There may not always be a combinatorial LP optimum;
hence LP may not completely solve the problem. (SG: Phys, Fr, Alg)

Francisco Barahona and Ali Ridha Mahjoub
1986a On the cut polytope. Math. Programming 36 (1986), 157–173. MR 866986

(88d:05049). Zbl 616.90058.
Call PBS(Σ) the convex hull in RE of characteristic vectors of negation

sets (or “balancing [edge] sets”) in Σ. Finding a minimum-weight nega-
tion set in Σ corresponds to a maximum cut problem, whence PBS(Σ) is
a linear transform of the cut polytope PC(|Σ|), the convex hull of cuts.
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Conclusions follow about facet-defining inequalities of PBS(Σ). See §5:
“Signed graphs”. (SG: Fr: Geom)

1989a Facets of the balanced (acyclic) induced subgraph polytope. Math. Program-
ming Ser. B 45 (1989), 21–33. MR 1017209 (91c:05178). Zbl 675.90071.

The “balanced induced subgraph polytope” PBIS(Σ) is the convex
hull in RV of incidence vectors of vertex sets that induce balanced sub-
graphs. Conditions are studied under which certain inequalities of form∑

i∈Y xi ≤ f(Y ) define facets of this polytope: in particular, f(Y ) =
max. size of balance-inducing subets of Y , f(Y ) = 1 or 2, f(Y ) = |Y |−1
when Y = V (C) for a negative circle C, etc. (SG: Fr: Geom, Alg)

1994a Compositions of graphs and polyhedra. I: Balanced induced subgraphs and
acyclic subgraphs. SIAM J. Discrete Math. 7 (1994), 344–358. MR 95i:90056.
Zbl 802.05067.

More on PBIS(Σ) (see (1989a)). A balance-inducing vertex set in ±Γ =
a stable set in Γ. [See Zaslavsky (1982b) for a different correspondence.]
Thm. 2.1 is an interesting preparatory result: If Σ = Σ1 ∪ Σ2 where
Σ1 ∩ Σ2

∼= ±Kk, then PBIS(Σ) = PBIS(Σ1) ∩ PBIS(Σ2). The main result
is Thm. 2.2: If Σ has a 2-separation into Σ1 and Σ2, the polytope is the
projection of the intersection of polytopes associated with modifications
of Σ1 and Σ2. §5: “Compositions of facets”, derives the facets of PBIS(Σ).

(SG: Geom, WG, Alg)

F. Barahona, R. Maynard, R. Rammal, and J.P. Uhry
†1982a Morphology of ground states of two-dimensional frustration model. J. Phys.

A: Math. Gen. 15 (1982), 673–699. MR 83c:82045.
Treats many important aspects of the quantity l := minζ |E−(Σζ)|

[which equals the frustration index], over all switching functions ζ (“spin
configurations σ” in the paper) of a signed graph, mainly a signed planar
graph. (|E−(Σζ)| is the paper’s 1

2
(|E| + H), H := Hamiltonian.) They

maximize −H = W+ +W− −W+− where W+ +W− := # unswitched
positive edges − # unswitched negative edges and W+− := # switched
positive edges − # switched negative edges. Thus, −H = |E+|−|E−| =
|E| − 2|E−| after switching. Maximizing it ⇐⇒ minimizing |E−| over
all ζ.
§2: “The frustration model as the Chinese postman’s problem”, de-

scribes how to find l when |Σ| is planar, by solving a Chinese postman
(T -join) problem in the dual graph, T corresponding to the frustrated
(i.e., negative) face boundaries. The postman problem is solved by lin-
ear programming. [Solved independently by Katai and Iwai (1978a).]
[Barahona (1981a) generalizes to signed toroidal graphs.]
§3: “Solution of the frustration problem by duality: rigidity”. An

edge is “rigid” if it has the same sign in every Σζ that minimizes |E|
(such an ζ is a “ground state”). The endpoints of a rigid edge are
called “solidary”. Rigid edges are found via the dual linear program.
The boundary contours of connected sets of frustrated faces play an
important role.
§§4–5: “Numerical experimentation” and “Results”, for a randomly

signed square lattice graph. The proportion x of negative edges strongly
affects the properties; esp., there is significant long-range order below
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but not above x ≈ .15. [See Deng and Abell (2010a) for numerical
results on random signed graphs.]

More general problems discussed are (1) allowing positive edge weights
(due to variable bond strengths); (2) minimizing |E−(Σζ) + c

∑
V ζ(v),

with c 6= 0 because of an external magnetic field. Then one cannot
expect the LP to have a combinatorial optimum. [Annot. 20 Jan 2010.]

(SG: Phys, Fr, Fr(Gen), Alg)

F. Barahona and J.P. Uhry
1981a An application of combinatorial optimization to physics. Methods Operations

Res. 40 (1981), 221–224. Zbl 461.90080. (SG: Phys, Fr: Exp)

J. Wesley Barnes
See P.A. Jensen.

Lowell Bassett, John Maybee, and James Quirk
1968a Qualitative economics and the scope of the correspondence principle. Econo-

metrica 36 (1968), 544–563. MR 38 #5456. Zbl (e: 217.26802).
Lemma 3: A square matrix with every diagonal entry negative is sign-

nonsingular iff every cycle is negative in the associated signed digraph.
Thm. 4: A square matrix with negative diagonal is sign-invertible iff all
cycles are negative and the sign of any (open) path is determined by its
endpoints. And more. (QM: QSol, QSta: sd)

Vladimir Batagelj
See also P. Doreian and W. de Nooy.

1990a [Closure of the graph value matrix.] (In Slovenian. English summary.) Obzornik
Mat. Fiz. 37 (1990), 97–104. MR 91f:05058. Zbl 704.05035.

(SG: Adj, Bal, Clu)

1994a Semirings for social networks analysis. J. Math. Sociology 19 (1994), 53–68.
Zbl 827.92029. (SG: Adj, Bal, Clu)

1997a Notes on blockmodeling. Social Networks 19 (1997), 143–155.
§3, p. 6: Predicates to use for searching out balanced or clusterable

partitions. [Annot. 10 Mar 2011.] (SG: PsS, Alg)

V. Batagelj and T. Pisanski
1979a On partially directed Eulerian multigraphs. Publ. Inst. Math. (Beograd) (N.S.)

25(39) (1979), 16–24. MR 542818 (81a:05054). Zbl 418.05038. (sg: Ori)

Christian Bauckhage
See J. Kunegis.

Andrei Băutu and Elena Băutu
2007a Searching ground states of Ising spin glasses with particle swarms. Rom. J.

Phys. 52 (2007), no. 3-4, 337–342.
Experimental results for l(Σ) compared with known results. [Annot.

19 Aug 2012.] (SG, Phys: Fr: Alg)

2007b Searching ground states of Ising spin glasses with genetic algorithms and binary
particle swarm optimization. In: Natalio Krasnogor et al., eds., Nature Inspired
Cooperative Strategies for Optimization (NICSO 2007, Int. Workshop, Acireale,
Italy), pp. 85–94. Stud. Comput. Intelligence, Vol. 129. Springer, Berlin, 2008.

Compares the two algorithms for l(Σ). [Annot. 19 Aug 2012.]
(SG, Phys: Fr: Alg)
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2009a Particle swarms in statistical physics. In: Aleksandar Lazinica, ed., Particle
Swarm Optimization, Ch. 4, pp. 77–88. InTech, Rijeka, Croatia, and Shanghai,
2009.

§4, “Binary particle swarm optimization and Ising spin glasses”: The
signed graph; spins and states; satisfied and frustrated edges; some his-
tory. In particle swarm optimization, each vertex acts as a cell in a
cellular automaton, learning probabilistically, seeking a most satisfied
spin ζ(v) in order to minimize |E−v (Σζ)|. [It seems that this local min-
imization suffers from the same potential instability as Mitra’s (1962a)
deterministic local minimization.] [Annot. 19 Aug 2012.]

(SG, Phys: Fr: Alg: Exp)

Andrei Băutu, Elena Băutu, and Henri Luchian
2007a Particle swarm optimization hybrids for searching ground states of Ising spin

glasses. In: Viorel Negru et al., eds., SYNASC 2007: Ninth International Sym-
posium on Symbolic and Numeric Algorithms for Scientific Computing, 2007
(Timisoara, Romania), pp. 415–418. IEEE Computer Soc., Los Alamitos, Cal.,
2007.

Particle swarm optimization combined with hill-climbing to find l(Σ)
(ground state of Ising model); a hybrid method is promising. [Annot.
19 Aug 2012.] (SG, Phys: Fr: Alg)

2008a Searching ground states of Ising spin glasses with a tree bond-based represen-
tation. In: Viorel Negru et al., eds., SYNASC 2008: 10th International Sympo-
sium on Symbolic and Numeric Algorithms for Scientific Computing (Timisoara,
Romania), pp. 501–506. IEEE Computer Soc., Los Alamitos, Cal., 2008.

Bond-based representation means recording switched edge (“bond”)
signs instead of vertex spins; cf. Pelikan and Hartmann (2007a, 2008a).
Here, a state s : V → {+1,−1} is recorded as the signs of a spanning tree
switched by s. This has ambiguity [2, obviously]. Negating one tree edge
implies a chain of spin changes; this “may be considered a feature” [and
its implications could be interesting]. Computational experiments tested
the implied algorithm. [Annot. 19 Aug 2012.] (SG, Phys: Fr: Alg)

Andrei Băutu and Henri Luchian
2010a Particle swarm optimization with spanning tree representation for Ising spin

glasses. In: 2010 IEEE Congress on Evolutionary Computation (CEC 2010,
Barcelona), pp. 1–6. doi 10.1109/CEC.2010.5586473. IEEE, 2010.

Applies Băutu, Băutu, and Luchian (2008a). Shallower trees may
produce better results due to the lesser effect of negating one tree edge.
Computational comparisons of this and other algorithms for ground state
(i.e., frustration index). [Annot. 19 Aug 2012.] (SG, Phys: Fr: Alg)

Elena Băutu
See A. Băutu.

Matthias Beck and Mela Hardin
20xxa A bivariate chromatic polynomial for signed graphs. Submitted. arXiv:1204.2568.

(SG: Col, Geom)

Matthias Beck and Thomas Zaslavsky
2006a Inside-out polytopes. Advances in Math. 205 (2006), no. 1, 134–162. MR

2007e:52017. Zbl 1107.52009. arXiv:math/0309330.
§5: “In which we color graphs and signed graphs.” A geometric in-

terpretation of signed graph coloring by lattice points and hyperplane
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arrangements unifies the chromatic and zero-free chromatic polynomials
and gives immediate proofs of theorems on the chromatic polynomials
and acyclic orientations. (SG: Col: Geom, M: Invar, Bal)

2006b The number of nowhere-zero flows in graphs and signed graphs. J. Combin.
Theory Ser. B 96 (2006), no. 6, 901–918. MR 2007k:05084. Zbl 1119.05105.
arXiv:math/0309331.

The nowhere-zero flow polynomial of a signed graph, for flows in an
odd abelian group, and the integral nowhere-zero flow quasipolynomial
with period 2. (SG: Flows: Geom: M: Invar, Bal)

2006c An enumerative geometry for magic and magilatin labellings. Ann. Combin.
10 (2006), no. 4, 395–413. MR 2007m:05010. Zbl 1116.05071. arXiv:math/-
0506315.

In magic labellings of a bidirected graph, the labels are distinct positive
integers; at each vertex the sum over entering edge ends equals that over
departing edge ends. Thms. (implicit): The number of magic labellings
is a quasipolynomial function of the magic sum, if the magic sum is
prescribed. It is also a quasipolynomial function of the upper bound on
the labels, if an upper bound is prescribed. (ori: Geom, Enum)
§5: “Generalized exclusions.” Complementarity rules in magic squares,

etc., can be expressed by signed-graphic hyperplanes.
(sg: Geom, Enum)

2010a Six little squares and how their numbers grow. J. Integer Sequences 13 (2010),
Article 10.6.2, 43 pp. MR 2659218 (2011j:05052). Zbl 1230.05062. arXiv:1004.-
0282.

§3: “Semimagic squares.” Counts magic labellings of the extraverted
−K3,3 by an explicit geometrical solution. Counted either by upper
bound on the values or by magic sum. (par: incid, Geom)

M. Behzad and G. Chartrand
1969a Line-coloring of signed graphs. Elem. Math. 24 (1969), 49–52. MR 39 #5415.

Zbl 175, 503 (e: 175.50302).
ΛBC Their line graph ΛBC(Σ) of a signed simple graph Σ (not defined

explicitly) is Λ(|Σ|) with an edge negative when its two endpoints are
negative edges in Σ. They “color” as in Cartwright and Harary (1968a)
(i.e., clustering). Characterized: Σ with colorable line graphs. Found:
the fewest colors for line graphs of signed trees, Kn, and Kr,s. [For a more
sophisticated kind of line graph see Vijayakumar (various) and Zaslavsky
(1984c, 2010b, 20xxa). For another line graph, see M. Acharya (2009a).]

(SG: lg: Clu)

Lowell W. Beineke and Frank Harary
1966a [As “W. Beineke and F. Harary”] Binary matrices with equal determinant and

permanent. Studia Sci. Math. Hungar. 1 (1966), 179–183. MR 34 #7397. Zbl
145, 15e (e: 145.01505). (SD)

1978a Consistency in marked digraphs. J. Math. Psychology 18 (1978), 260–269. MR
522390 (80d:05026). Zbl 398.05040.

A “marked digraph” is a digraph ~D with signed vertices, ~S = ~D, µ)
where µ : V → {+,−}. It is “consistent” if all diwalks from v to w
have the same sign µ(W ). The sign of a walk is the vertex sign product.
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Thm. 1. Asssuming ~D is strongly connected, ~S is consistent iff every
dicycle is positive. [An important difference from signed graphs, where

no restriction is needed.] Thm. 2. ~S is consistent iff V has a bipartition
such that every arc with a positive tail lies within a set but no arc with
a negative tail does so. Define σ( ~uv := µ(u). Thm. 3. Asssuming ~D

is strongly connected, this signed graph is balanced iff ~S is consistent.
Thm. 4. A vertex-signed tournament ~S is consistent iff: When strongly
connected, [it is all positive or] it has exactly two negative vertices u, v
and, deleting uv, u is a source and v is a sink. When not strongly
connected, it is consistent iff it is all positive, or it has one negative
vertex which is a source or sink, or it has two negative vertices, one a
source and the other a sink. Thm. 5. ~D has µ 6≡ + such that ( ~D, µ) is
consistent (“markable”) iff ∃ ∅ ⊂ V0 ⊂ V such that, ∀ v, all out-arcs
from v, or none, go to V0. [Annot. 16 Sept 2010.] (VS)

1978b Consistent graphs with signed points. Riv. Mat. Sci. Econom. Social. 1 (1978),
81–88. MR 573718 (81h:05108). Zbl 493.05053.

A graph (not necessarily simple) with signed vertices is “consistent” if
every circle has positive sign product. Thm. 2.2: Γ with all negative ver-
tices is consistent iff bipartite. Thm. 2.3: 3-connected vertices must have
the same sign. Thm. 3.3: Contracting an edge with positive endpoints
preserves consistency and inconsistency. Further partial results. Open
problem: A full characterization of consistent vertex-signed graphs. [For
a good solution see Hoede (1992a). For the best solution see Joglekar,
Shah, and Diwan (2010a).] [Annot. Rev. 11 Sept 2010.] (VS: Bal)

Jacques Bélair, Sue Ann Campbell, and P. van den Driessche
1996a Frustration, stability, and delay-induced oscillations in a neural network model.

SIAM J. Appl. Math. 56 (1996), 245–255. MR 96j:92003. Zbl 840.92003.
The signed digraph of a square matrix is “frustrated” if it has a negative

cycle. Somewhat simplified: frustration is necessary for there to be
oscillation caused by intraneuronal processing delay. (SD: QM, Ref)

Francesco Belardo
See also J.F. Wang.

Francesco Belardo, Enzo M. Li Marzi, Slobodan K. Simić, and Jianfeng Wang

2010a On the index of necklaces. Graphs Combin. 26 (2010), no. 2, 163–172. MR
2606492 (2011g:05171).

The largest eigenvalue of A(G) for G = chain or necklace of cliques,
via K(−Γ) where G = Λ(Γ). [Annot. 16 Jan 2012.] (Par: Adj)

2011a Graphs whose signless Laplacian spectral radius does not exceed the Hoffman
limit value. Linear Algebra Appl. 435 (2011), no. 11, 2913–2920. (Par: Adj)

A. Bellacicco and V. Tulli
1996a Cluster identification in a signed graph by eigenvalue analysis. In: Matrices and

Graphs: Theory and Applications to Economics (full title Proceedings of the
Conferences on Matrices and Graphs: Theory and Applications to Economics)
(Brescia, 1993, 1995), pp. 233–242. World Scientific, Singapore, 1996. MR
99h:00029 (book). Zbl 914.65146.

Signed (di)graphs (“spin graphs”) are defined. The main concepts are
“dissimilarity”, “balance”, and “cluster” are defined and propositions
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are stated. Eigenvalues are mentioned. [This may be an announcement.
There are no proofs. It is hard to be sure what is being said.] (SD: Adj)

Joachim von Below
1994a The index of a periodic graph. Results Math. 25 (1994), 198–223. MR 95e:05081.

Zbl 802.05054.
Here a periodic graph [of dimension m] is defined as a connected

graph Γ = Ψ̃ where Ψ is a finite Zm-gain graph with gains contained
in {0,bi,bi − bj}. (b1, . . . ,bm are the unit basis vectors of Zm.) Let

us call such a Ψ a small-gain base graph for Γ. Any Φ̃, where Φ is a fi-
nite Zm-gain graph, has a small-gain base graph Ψ; thus this definition is
equivalent to that of Collatz (1978a). The “index” I(Γ), analogous to the
largest eigenvalue of a finite graph, is the spectral radius of A(||Ψ||) (here
written A(Γ, N)) for any small-gain base graph of Γ. The paper contains
basic theory and the lower bound Lm = inf{I(Γ) : Γ is m-dimensional},
where 1 = L1,

√
9/2 = L2 ≤ L3 ≤ · · · . (GG(Cov): Adj)

Jean Bénabou
1996a Some geometric aspects of the calculus of fractions. European Colloq. Cate-

gory Theory (Tours, 1994). Appl. Categ. Structures 4 (1996), 139–165. MR
97g:18007. Zbl 874.18007.

Morphisms of signed graphs are employed in category-theoretic con-
structions. (SG)

Radel Ben-Av
See D. Kandel.

Edward A. Bender and E. Rodney Canfield
1983a Enumeration of connected invariant graphs. J. Combin. Theory Ser. B 34

(1983), 268–278. MR 85b:05099. Zbl 532.05036.
§3: “Self-dual signed graphs,” gives the number of n-vertex graphs that

are signed, vertex-signed, or both; connected or not; self-isomorphic by
reversing edge and/or vertex signs or not, for all n ≤ 12. Some of this
appeared in Harary, Palmer, Robinson, and Schwenk (1977a).

(SG, VS: Enum)

Riccardo Benedetti
1998a A combinatorial approach to combings and framings of 3-manifolds. In: A.

Balog, G.O.H. Katona, A. Recski, and D. Sa’sz, eds., European Congress of
Mathematics (Budapest, 1996), Vol. I, pp. 52–63. Progress in Math., Vol. 168.
Birkhäuser, Basel, 1998. MR 1645797 (2000e:57033). Zbl 905.57018.

§8, “Spin manifolds”, hints at a use for decorated signed graphs in the
structure theory of spin 3-manifolds. (sg: Appl: Exp)

Curtis Bennett and Bruce E. Sagan
1995a A generalization of semimodular supersolvable lattices. J. Combin. Theory Ser.

A 72 (1995), 209–231. MR 96i:05180. Zbl 831.06003.
To illustrate the generalization, most of the article calculates the chro-

matic polynomial of ±K(k)
n (called DBn,k; this has half edges at k ver-

tices), builds an “atom decision tree” for k = 0, and describes and counts

the bases of G(±K(k)
n ) (called Dn) that contain no broken circuits.

(SG: M, Invar, col)
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M.K. Bennett, Kenneth P. Bogart, and Joseph E. Bonin
1994a The geometry of Dowling lattices. Adv. Math. 103 (1994), 131–161. MR

95b:05050. Zbl 814.51003.
Drawing an analogy between Desargues’ and Pappus’ theorems in pro-

jective spaces and similar incidence theorems in Dowling geometries.
[The rigorous avoidance of gain graphs makes the results less obvious
than they could be.] (gg: M, Geom)

Moussa Benoumhani
1996a On Whitney numbers of Dowling lattices. Discrete Math. 159 (1996), 13–33.

MR 98a:06005. Zbl 861.05004.
Cf. Dowling (1973b). Generating functions and identities for Whit-

ney numbers of the first and second kinds, analogous to usual treat-
ments of Stirling numbers. §2, “Whitney numbers of the second kind”:
Wm(n, k) := Wk(Qn(G)) = Wk(G(GK•n)) where m = |G|. E.g., Thm. 1:∑

nWm(n, k)zn/n! = [(emz−1)/m]kez/k!. Thm. 5:
∑

nWm(n, k)un−k =
mk+1/([1−u]/mu)k+1. §3, “Whitney numbers of the first kind”: wm(n, k)
:= wk(G(GK◦n)). E.g., Thm. 10:

∑
nwm(n, k)zn/n! =

(1 + mz)−1/m lnk(1 + mz)/k!mk. Thm. 12 is a reciprocity relation be-
tween wm(n, k) and s(n, k). §4, “The integers maximizing Wm(n, k) and
wm(n, k)”: Partial, complicated results. [Annot. 30 Apr 2012.]

(gg: M: Invar)

1997a On some numbers related to Whitney numbers of Dowling lattices. Adv. Appl.
Math. 19 (1997), 106–116. MR 98f:05004. Zbl 876.05001.

Continuation of (1996a). §2, “Dowling polynomials”: Dm(n, x) :=∑
kWm(n, k)xk. Generating function, recurrence, infinite series expres-

sion. §3 similarly studies Fm,1(x) :=
∑

k k!mkWm(n, k)xk and Fm,1(x) :=∑
k k!Wm(n, k)xk. §4, “Log-concavity of k!Wm(n, k)”. Deduced from

real negativity of zeros. [See (1999a) for Wm(n, k).] [Annot. 1 May
2012.] (gg: M: Invar)

1999a Log-concavity of Whitney numbers of Dowling lattices. Adv. Appl. Math. 22
(1999), 186–189. MR 2000i:05008. Zbl 918.05003.

Logarithmic concavity of Whitney numbers of the second kind is de-
duced by proving that their generating polynomial has only real zeros.
[Cf. Stonesifer (1975a), Dur (1986a), and Damiani, D’Antona, and Reg-
onati (1994a).] (gg: M: Invar)

C. Benzaken
See also P.L. Hammer.

C. Benzaken, S.C. Boyd, P.L. Hammer, and B. Simeone
1983a Adjoints of pure bidirected graphs. Proc. Fourteenth Southeastern Conf. on

Combinatorics, Graph Theory and Computing (Boca Raton, Fla., 1983). Con-
gressus Numer. 39 (1983), 123–144. MR 85e:05077. Zbl 537.05024.

(sg: Ori: LG)

Cl. Benzaken, P.L. Hammer, and B. Simeone
1980a Some remarks on conflict graphs of quadratic pseudo-boolean functions. In:

L. Collatz, G. Meinardus, and W. Wetterling, eds., Konstruktive Methoden der
finiten nichtlinearen Optimierung (Tagung, Oberwolfach, 1980), pp. 9–30. Int.
Ser. Num. Math., 55. Birkhäuser, Basel, 1980. MR 83e:90096. Zbl 455.90063.

(par: fr)(sg: Ori: LG)
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C. Benzaken, P.L. Hammer, and D. de Werra
1981a Threshold signed graphs. Res. Rep. No. 237, IMAG, Univ. Grenoble, Grenoble,

1981.
See (1985a). (SG: Bal)

1985b Threshold characterization of graphs with Dilworth number two. J. Graph
Theory 9 (1985), no. 2, 245–267. MR 797513 (87d:05135). Zbl 583.05048.

They are identical to “threshold signed graphs”. Γ is a threshold signed
graph if ∃ a : V → R, S, T ∈ R, such that vivj ∈ E iff |ai + aj| ≥ S or
|ai − aj| ≥ T . [Proposed signed graph Σ: −vivj ∈ E iff |ai + aj| ≥ S,
+vivj ∈ E iff |ai − aj| ≥ T . Then Γ = simplification of |Σ|. Question.
Is Σ interesting?] [Annot. 16 Jan 2012.] (SG: Bal)

C. Berge and J.-L. Fouquet
1997a On the optimal transversals of the odd cycles. Discrete Math. 169 (1997),

169–175. MR 1449714 (98c:05094). Zbl 883.05088.
All-negative signed graphs in which the vertex frustration number

equals the negative-circle vertex-packing number. This is called the
“König property” [since it is a vertex König-type property for negative
circles]. Example: the line graphs of cubic bipartite graphs. [Problems.
Investigate for arbitrary signed and biased graphs.] (par: Fr)

Claude Berge and A. Ghouila-Houri
1962a Programmes, jeu et reseaux de transport. Dunod, Paris, 1962. MR 33 #1137.

Zbl (e: 111.17302).
2e partie, Ch. IV, §2: “Les reseaux de transport avec multiplicateurs.”

Pp. 223–229. (GN: incid)

1965a Programming, Games and Transportation Networks. Methuen, London; Wiley,
New York, 1965. MR 33 #7114.

English edition of (1962a).
Part II, 10.2: “The transportation network with multipliers.” Pp.

221–227. (GN: incid)

1967a Programme, Spiele, Transportnetze. B.G. Teubner Verlagsgesellschaft, Leipzig,
1967, 1969. MR 36 #1195. Zbl (e: 183.23905, 194.19803).

German edition(s) of (1962a). (GN: incid)

Claude Berge and Bruce Reed
1999a Edge-disjoint odd cycles in graphs with small chromatic number. Symposium à

la Mémoire de François Jaeger (Grenoble, 1998). Ann. Inst. Fourier (Grenoble)
49 (1999), 783–786. MR 1703423 (2000f:05051). Zbl 923.05034.

If −Γ is an all-negative signed graph in which the frustration index
equals the negative-circle edge-packing number for every subgraph, then
χ(Γ) ≤ 3. [Problem 1. Is it natural to state this bound in terms of the
signed chromatic number of −Γ? Problem 2. Generalize to arbitrary
signed graphs.] (par: Fr)

2000a Optimal packings of edge-disjoint odd cycles. Discrete Math. 211 (2000), 197–
202. MR 1735345 (2000h:05161). Zbl 945.05048.

An upper bound on the frustration index in terms of the negative-circle
edge-packing number. (par: Fr)

Joseph Berger, Bernard P. Cohen, J. Laurie Snell, and Morris Zelditch, Jr.
1962a Types of Formalization in Small Group Research. Houghton Mifflin, Boston,
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1962.
See Ch. 2: “Explicational models.” (PsS)(SG: Bal)(Ref)

A. Nihat Berker
See D. Blankschtein.

Abraham Berman and B. David Saunders
1981a Matrices with zero line sums and maximal rank. Linear Algebra Appl. 40 (1981),

229–235. MR 82i:15029. Zbl 478.15013. (QM, sd: ori)

Abraham Berman and Miriam Farber
2011a A lower bound for the second largest Laplacian eigenvalue of weighted graphs.

Electronic J. Linear Algebra 22 (2011), 1179-1184.
§4, “The signless Laplacian”: Upper bounds on the second largest

eigenvalue of K(−Γ, w) for a positively edge-weighted graph. [Annot.
20 Jan 2012.] (par: WG: Adj)

Pascal Berthomé, Raul Cordovil, David Forge, Véronique Ventos, and Thomas
Zaslavsky

2009a An elementary chromatic reduction for gain graphs and special hyperplane
arrangements. Electronic J. Combinatorics 16 (1) (2009), Article R121, 31 pp.
MR 2546324 (2010k:05253). Zbl 1188.05076.

Calculating chromatic functions (which satisfy deletion-contraction for
zero-gain edges and equal 0 if there is a balanced loop) by eliminating or
adding identity-gain edges. Application to integral, modular, and zero-
free chromatic polynomials of the Shi, Linial, Catalan, and intermediate
hyperplane arrangements via their gain graphs [cf. Stanley (1999a)].

(GG: Invar, Geom)

Nadja Betzler
See F. Hüffner.

Amitava Bhattacharya, Uri N. Peled, and Murali K. Srinivasan
2007a Cones of closed alternating walks and trails. Linear Algebra Appl. 423 (2007),

no. 2-3, 351–365. MR 2312413 (2008j:05132). Zbl 1115.05067.
The cone of Eulerian real-weighted subgraphs of a bidirected all-

negative signed graph. (sg: Par: Geom)

2009a The cone of balanced subgraphs. Linear Algebra Appl. 431 (2009), no. 1-2,
266–273. MR 2522574 (2010h:05226). Zbl 1169.05372.

A “balanced subgraph” is an edge 2-colored graph where the red and
blue degrees are equal at each vertex. [Equivalent to an all-negative
signed graph, oriented so that every vertex has equal in- and out-degree,
which is the all-negative case of an Eulerian bidirected graph. P.D.
Seymour, Sums of circuits, in Graph Theory and Related Topics, pp.
341–355, Academic Press, New York, 1979, treated the all-positive case.]
The problem is to describe the facets of the convex cone generated by
Eulerian subgraphs of an all-negative bidirected graph. [Problem. Solve
for an arbitrary bidirected graph.] (sg: Par: Geom)

Gora Bhaumik
See P.A. Jensen.

V.N. Bhave
See E. Sampathkumar.

Mani Bhushan and Raghunathan Rengaswamy
2000a Design of sensor network based on the signed directed graph of the process for



the electronic journal of combinatorics #DS8 39

efficient fault diagnosis. Ind. Eng. Chem. Res. 39 (2000), 999–1019.
Another application to fault diagnosis in chemical engineering, this one

to location of sensors. (SD: Appl)

I. Bieche, R. Maynard, R. Rammal, and J.P. Uhry
1980a On the ground states of the frustration model of a spin glass by a matching

method of graph theory. J. Phys. A: Math. Gen. 13 (1980), 2553–2576. MR
81g:82037.

The frustration index and ground states of a planar square grid graph
can be found by matching in the dual graph. [Solved for all planar
graphs by Katai and Iwai (1978a), Barahona (1982b).] [Annot. 29 Aug
2012.] (SG: Phys, Fr, Alg)

Dan Bienstock
1991a On the complexity of testing for odd holes and induced odd paths. Discrete

Math. 90 (1991), 85–92. MR 92m:68040a. Zbl 753.05046. Corrigendum. ibid.
102 (1992), 109. MR 92m.68040b. Zbl 760.05080.

Given a graph. Problem 1: Is there an odd hole on a particular vertex?
Problem 2: Is there an odd induced path joining two specified vertices?
Problem 3: Is every pair of vertices joined by an odd-length induced
path? All three problems are NP-complete. [Obviously, one can replace
the graph by a signed graph and “odd length” by “negative” and the
problems remain NP-complete.] (Par: Circles, Paths: Alg)

Norman Biggs
1974a Algebraic Graph Theory. Cambridge Math. Tracts, No. 67. Cambridge Univ.

Press, London, 1974. MR 50 #151. Zbl 284.05101.
Ch. 19: “The covering graph construction.” The covering graphs of

gain graphs, with emphasis on automorphisms. Let Φ := (Γ, ϕ) with
gain group Z2E and ϕ(e) = e. Thm. 19.5: If Γ is t-transitive (t ≥ 1)
[and connected], then Φ̃ is vertex transitive [actually, t-transitive] and
has n− c(Γ) components (all isomorphic). [The number of components
and the isomorphism of components of Φ̃ require only connectedness of
Φ, because Aut Φ̃ acts transitively on each vertex fiber.] 19A: “Double
coverings.” The signed covering graph of −Γ. 19B: “The Desargues

graph.” With P := Petersen graph, −̃P is the Desargues graph. [An-
not. 11 July 2009.]

[Tutte (1967a) implicitly develops the double covering of an oriented
Σ; it is a self-converse orientation of Σ̃.] (SG, GG: Cov, Aut, bal)

1993a Algebraic Graph Theory. Second edn. Cambridge Math. Library, Cambridge
Univ. Press, Cambridge, Eng., 1993. MR 95h:05105. Zbl 797.05032.

As in (1974a), but 19A, 19B have become Additional Results 19a, 19b.
(SG, GG: Cov, Aut, bal)

1997a International finance. In: Lowell W. Beineke and Robin J. Wilson, eds., Graph
Connections: Relationships between Graph Theory and other Areas of Mathe-
matics, Ch. 17, pp. 261–279. The Clarendon Press, Oxford, 1997. MR 1634542
(99a:05001) (book). Zbl 876.90014.

A model of currency exchange rates in which no cyclic arbitrage is
possible, hence the rates are given by a potential function. [That is, the
exchange-rate gain graph is balanced, with the natural consequences.]
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Assuming cash exchange without accumulation in any currency, ex-
change rates are determined. [See also Ellerman (1984a).]

(GG, gn: Bal: Exp)

Yonatan Bilu and Nathan Linial
2004a Ramanujan signing of regular graphs. Combin. Probab. Comput. 13 (2004), no.

6, 911–912. Zbl 1060.05040.
Conjecture 2 (based on (2006a)). Every d-regular Ramanujan graph

can be signed so it has spectral radius ≤ 2
√
d− 1. Conjecture 3. The

same for every d-regular graph. Dictionary: “2-lift” = signed covering
graph. [Annot. 2 Mar 2011.] (SG: Adj, Cov)

2006a Lifts, discrepancy and nearly optimal spectral gap. Combinatorica 26 (2006),
no. 5, 495–519. MR 2279667 (2008a:05160). Zbl 1121.05054.

A remarkable result: Lemma: The spectrum of A(Σ̃) is SpecA(Σ) ∪
SpecA(|Σ|). [Proved independently by Kalita and Pati (2012a). Gener-
alized to branched coverings in Butler (2010a).] [Annot. 2 Mar 2011.]

(SG: Adj, Cov)

K. Binder and A.P. Young
1986a Spin glasses: Experimental facts, theoretical concepts, and open questions.

Rev. Modern Phys. 58 (1986), no. 4, 801–976.
§ III.F.2, “Frustration and gauge invariance”: A valuable summary

of the state of knowledge and speculation. Signed graphs with spin set
{+1,−1} (Ising spins) and U(1) (“XY spins” = complex units). Frus-
tration is treated via girth circles (“plaquettes”) in lattice graphs, where
the girth is 3 or 4 (triangular or square planar lattice). Analytic solu-
tions being too difficult, results are numerical, qualitative, or for “simpler
limiting cases”. XY spins show quantization (cf. Villain (1977b)). For
3-dimensional lattices, plaquette duality leads to vector gains in a dual
lattice, thence to closed paths of frustrated plaquettes.

In Ch. IV, “Mean-field theory”: Complete-graph (“infinite range”)
models. § IV.A, “Sherrington-Kirkpatrick model and replica-symmetric
solutions”: Ising models (G = {+1,−1}). § IV.H, “Non-Ising models”:
Weighted edge signs are random variables. Spins may be normalized
vectors (§1, “Isotropic vector spin glasses in zero field”) or other. §3,
“Other models”: “p-spin couplings” = p-uniform complete hypergraphs.
Energy valleys and their shapes. Potts models (signed graphs, spins are
multivalued).

Dictionary: “site” = vertex, “bond” = edge, “state” = function s :
V → G, “spin” = value s(v), “ferromagnetic” = positive, “antiferro-
magnetic” = negative, “quenched variable” = constant (instead of ran-
dom variable), “gauge group” = gain group, “gauge transformation” =
switching, “ground state” = state minimizing |E \ E1G(Φs)|. [Annot.
17 Aug 2012.] (Phys: sg, gg: Fr, Sw, Exp, Ref)

Robert E. Bixby
1981a Hidden structure in linear programs. In: Harvey J. Greenberg and John S. May-

bee, eds., Computer-Assisted Analysis and Model Simplification (Proc. Sym-
pos., Boulder, Col., 1980), pp. 327–360; discussion, pp. 397–404. Academic
Press, New York, 1981. MR 82g:00016 (book). Zbl 495.93001 (book). (GN)
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Türker Bıyıkoğlu and Josef Leydold
2010a Semiregular trees with minimal Laplacian spectral radius. Linear Algebra Appl.

432 (2010), 2335–2341. MR 2599863 (2011b:05114). Zbl 1225.05139.
In a semiregular tree T , all internal vertices have the same degree d.

Thm. 2: Given n, d ≥ 3, semiregular T minimizes λ1(K(T )) iff it is a
caterpillar. The proof is via SpecK(−T ), which = SpecK(T ) since a
signed tree is balanced. [Annot. 21 Jan 2012.] (Par: Adj)

Türker Biyikoğlu, Marc Hellmuth, and Josef Leydold
†2009a Largest eigenvalues of the discrete p-Laplacian of trees with degree sequences.

Electronic J. Linear Algebra 18 (2009), 202–210. MR 2491656 (2010d:05089).
Zbl 1169.05335.

The p-Laplacian (1 < p < ∞) generalizes the Laplacian or Kirchhoff
matrix acting on vertex functions. [Generalizing to signed graphs, define
the p-Laplacian of Σ by ∆p(Σ)f(u) :=

∑
uv∈E sgn[f(u) − σ(uv)f(v)] ·

|f(u) − σ(uv)f(v)|p−1. Then p = 2 gives K(Σ).] The p-Laplacian of
Γ is ∆p(+Γ) and its signless p-Laplacian is ∆p(−Γ). Prop. 3.3 et seq.
concern ∆p(−Γ). [Unlike with the Laplacian K, switching does not
preserve properties, so signs matter in a tree.] [Problem. Generalize to
signed graphs.] [Annot. 21 Jan 2012.] (Par: Adj: Gen)

Anders Björner and Bruce E. Sagan
1996a Subspace arrangements of type Bn and Dn. J. Algebraic Combin. 5 (1996),

291–314. MR 97g:52028. Zbl 864.57031.
They study lattices Πn,k,h (for 0 < h ≤ k ≤ n) consisting of all

spanning subgraphs of ±K◦n that have at most one nontrivial component
K, for which either K is balanced and complete and |V (K)| ≥ k, or
K is induced and |V (K)| ≥ h. (They also study a generalization of
this.) Characteristic polynomial, homotopy and homology of the order
complex, cohomology of the real complement.

(SG: Geom, M(Gen): Invar, col)

Anders Björner, Michel Las Vergnas, Bernd Sturmfels, Neil White, and Günter
M. Ziegler

1993a Oriented Matroids. Encyclop. Math. Appl., Vol. 46. Cambridge University
Press, Cambridge, Eng., 1993. MR 95e:52023. Zbl 773.52001.

The adjacency graph of bases of an oriented matroid is signed, using
circuit signatures, to make the “signed basis graph”. See §3.5, “Basis
orientations and chirotopes”, pp. 132–3. (M: SG)

Daniel Blankschtein, M. Ma, and A. Nihat Berker
1984a Fully and partially frustrated simple-cubic Ising models: Landau-Ginzburg-

Wilson theory. Phys. Rev. B 30 (1984), no. 3, 1362–1365. (Phys, SG: Fr, sw)

Daniel Blankschtein, M. Ma, A. Nihat Berker, Gary S. Grest, and C.M. Souk-
oulis

1984a Orderings of a stacked frustrated triangular system in three dimensions. Phys.
Rev. B 29 (1984), no. 9, 5250–5252.

Physics of (−L3)×(+Pm), consisting of m all-negative triangular lattice
layers −L3, stacked vertically with vertical positive edges forming paths
Pm (0 � m ≤ ∞). The horizontal triangles are negative (the layers
are “totally frustrated”) while the vertical squares are positive. Ground
states (ζ : V → {+1,−1} such that minζ |(Eζ)−|) are ground states of
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−L3 (cf. Wannier 1950a) repeated in every layer. [Annot. 18 Jun 2012.]
(Phys, SG: Fr, sw)

Andreas Blass
1995a Quasi-varieties, congruences, and generalized Dowling lattices. J. Algebraic

Combin. 4 (1995), 277–294. MR 96i:06012. Zbl 857.08002. Errata. Ibid. 5
(1996), 167. MR 96i:06012, 1382046. Zbl 857.08002.

Treats the generalized Dowling lattices of Hanlon (1991a) as congru-
ence lattices of certain quasi-varieties, in order to calculate characteristic
polynomials and generalizations. (M(gg): Gen: Invar)

Andreas Blass and Frank Harary
1982a Deletion versus alteration in finite structures. J. Combin. Inform. System Sci.

7 (1982), 139–142. MR 84d:05087. Zbl 506.05038.
The theorem that deletion index = negation index of a signed graph

(Harary (1959b)) is shown to be a special case of a very general phe-
nomenon involving hereditary classes of “partial choice functions”. An-
other special case: deletion index = alteration index of a gain graph
[an immediate corollary of Harary, Lindstöm, and Zetterström (1982a),
Thm. 2]. (SG, GG: Bal, Fr)

Andreas Blass and Bruce Sagan
1997a Möbius functions of lattices. Adv. Math. 127 (1997), 94–123. MR 98c:06001.

Zbl 970.32977.
§3: “Non-crossing Bn and Dn”. Lattices of noncrossing signed par-

tial partitions. Atoms of the lattices are defined as edge fibers of the
signed covering graph of ±K◦n, thus corresponding to edges of ±K◦n.
[The “half edges” are perhaps best regarded as negative loops.] The
lattices studied, called NCBn, NCDn, NCBDn(S), consist of the non-
crossing members of the Dowling and near-Dowling lattices of the sign

group, i.e., LatG(±K(T )
n ) for T = [n],∅, [n]\S, respectively.

(SG: Geom, M(Gen), Invar, cov)

1998a Characteristic and Ehrhart polynomials. J. Algebraic Combin. 7 (1998), 115–
126. MR 99c:05204. Zbl 899.05003.

Signed-graph chromatic polynomials are recast geometrically by ob-
serving that the number of k-colorings equals the number of points of
{−k,−k+1, . . . , k−1, k}n that lie in none of the edge hyperplanes of the
signed graph. The interesting part is that this generalizes to subspace
arrangements of signed graphs and, somewhat ad hoc, to the hyperplane
arrangements of the exceptional root systems. [See also Athanisiadis
(1996a), Zaslavsky (20xxi). For applications see articles of Sagan and
Zhang.] (SG, Gen: M(Gen), Geom: col, Invar)

Matthew Bloss
2003a G-colored partition algebras as centralizer algebras of wreath products. J. Al-

gebra 265 (2003), no. 2, 690–710. MR 1987025 (2004e:20020). Zbl 1028.20007.

Let G denote any group. The algebra is CLatbG(GK2k(U,W )) where
Latb G(GK2k(U,W )) = the semilattice of balanced flats of the Dowling
lattice Q2k(G) on a set V := U ∪·W of 2k vertices, U := {u1, . . . , uk},
and W := {w1, . . . , wk}.

The definition requires a multiplication on LatbG(GK2k(U,W )) which
involves an indeterminate x. For each balanced flat (equivalently, G-
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valued partition) α label its vertices uαi := ui, wαi := wi. Define γ :=
α · β by identifying wαi with uβi in α ∪·β (call the result γ′), taking the
closure in G(GK3k), multiplying by xm where m := # of components of
γ′ contained completely within the identified vertices, and deleting the
identified vertices wαi. Set uγi := uαi and wγi := wβi. [Annot. 20 Mar
2011.] (gg: m: Algeb)

Avrim Blum
See N. Bansal.

F.T. Boesch, X. Li [Xiao Ming Li], and J. Rodriguez
1995a Graphs with most number of three point induced connected subgraphs. Dis-

crete Appl. Math. 59 (1995), no. 1, 1–10. MR 96b:05073 (q.v.). Zbl 835.05056.
Two-graphs and switching are mentioned. (TG, Sw)

Irina E. Bocharova, Florian Hug, Rolf Johannesson, Boris D. Kudryashov, and
Roman V. Satyukov

2011a Some voltage graph-based LDPC tailbiting codes with large girth. Information
Theory (ISIT2011) (Proc. 2011 IEEE Int. Sympos., St. Petersburg), pp. 732–
736. IEEE, 2011. arXiv:1108.0840. (GG: Cov)

2011b Searching for voltage graph-based LDPC tailbiting codes with large girth. IEEE
Trans. Information Theory 57 (2011), no. 12, to appear. arXiv:1108.0840.

(GG: Cov)

Sebastian Böcker, Falk Hüffner, Anke Truss, and Magnus Wahlström
2009a A faster fixed-parameter approach to drawing binary tanglegrams. In: J. Chen

and F.V. Fomin, eds., Parameterized and Exact Computation (4th Int. Work-
shop, IWPEC 2009, Copenhagen), pp. 38–49. Lect. Notes in Computer Sci.,
Vol. 5917. Springer, Berlin, 2009. MR 2773930 (no rev).

The signed graph arises as a graph with edges labelled = (+) or 6= (−).
The “Balanced Subgraph” problem is to find a minimum balancing et.
The algorithm of Hüffner, Betzler, and Niedermeier (2007a) is applied.
[Annot. 6 Feb 2011.] (sg: fr: Alg: Appl)

Alexander Bockmayr
See H. Siebert.

Bernhard G. Bodmann, Vern I. Paulsen, and Mark Tomforde
2009a Equiangular tight frames from complex Seidel matrices containing cube roots of

unity. Linear Algebra Appl. 430 (2009), 396–417. MR 2460526 (2010b:42040).
Zbl 1165.42007.

Adjacency matrices of cube-root-of-unity gain graphs on Kn. Dictio-
nary: “Seidel matrix” = adjacency matrix of such a gain graph. [Annot.
27 Apr 2012.] (gg: Geom, adj: kg)

T.B. Boffey
1982a Graph Theory in Operations Research. Macmillan, London, 1982. Zbl 509.90053.

Ch. 10: “Network flow: extensions.” 10.1(g): “Flows with gains,” pp.
224–226. 10.3: “The simplex method applied to network problems,” sub-
section “Generalised networks,” pp. 246–250. (GN: m(bases): Exp)

Kenneth P. Bogart
See M.K. Bennett, J.E. Bonin, and J.R. Weeks.

Petre Boldescu
1970a Les théorèmes de Menelaus et Ceva dans un éspace affine de dimension n.

[The theorems of Menelaus and Ceva in an n-dimensional affine space.] (In
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Romanian. French summary.) An. Univ. Craiova Ser. a IV-a 1 (1970), 101–
106. MR 48 #12251. Zbl 275.50008.

Generalized Ceva [strengthened via gain graphs in Zaslavsky (2003b)
§2.6] and Menelaus theorems. [Problem. Formulate, explain, generalize
Boldescu’s Menelaus generalization in terms of gain graphs.]

(gg: Geom)

Ethan D. Bolker
1977a Bracing grids of cubes. Environment and Planning B 4 (1977), 157–172.

The elementary 1-cycles associated with circuits of G(−Γ) (“bicycles”)
are crucial. [Their first publication, I believe.] (EC, sg: m)

1979a Bracing rectangular frameworks. II. SIAM J. Appl. Math. 36 (1979), 491–503.
MR 81j:73066b. Zbl 416.70010.

The elementary 1-cycles associated with circuits of G(Σ) (“bicycles”),
mostly for Σ = −Γ. General signed graphs appear at Thm. 7, p. 505.
Dictionary: “Signed bicycle” = elementary 1-cycle (circulation) associ-
ated with a circuit. (EC, SG: M, incid)

Ethan D. Bolker and Thomas Zaslavsky
2006a A simple algorithm that proves half-integrality of bidirected network program-

ming. Networks 48 (2006), no. 1, 36–38. MR 2007b:05098. Zbl 1100.05046.
An idea of Bolker’s (1979a), as developed by Bouchet (1983a), is turned

into an algorithm simpler than that of Appa and Kotnyek (2006a).
(SG: Ori, Incid, Alg, Sw)

Bela Bollobás
1978a Extremal Graph Theory. L.M.S. Monographs, Vol. 11. Academic Press, Lon-

don, 1978. MR 80a:05120. Zbl 419.05031.
A rich source of problems: find interesting generalizations to signed

graphs of questions involving even or odd circles, or bipartite graphs or
subgraphs.

(par: Xtreml)
§3.2, Thm. 2.2, is Lovász’s (1965a) characterization of the graphs having

no two vertex-disjoint circles. [Problem. Generalize to biased graphs
having no two vertex-disjoint unbalanced circles, Lovász’s theorem being
the contrabalanced case.] (GG: Circles)
§6.6, Problem 47, is the theorem on biparticity (all-negative vertex

frustration number) from Bollobás, Erdős, Simonovits, and Szemerédi
(1978a). (par: Fr)

1998a Modern Graph Theory. Springer, New York, 1998. MR 99h:05001. Zbl 902.-
05016.

Sign-colored plane graphs in Ch. X, “The Tutte polynomial”, §6, “Poly-
nomials of knots and links”, pp. 368-370. Little use is made of the signs.

(SGc: Knot)

B. Bollobás, P. Erdös, M. Simonovits, and E. Szemerédi
1978a Extremal graphs without large forbidden subgraphs. In: B. Bollobás, ed.,

Advances in Graph Theory (Proc. Cambridge Combin. Conf., 1977), pp. 29–41.
Ann. Discrete Math., Vol. 3. North-Holland, Amsterdam, 1978. MR 80a:05119.
Zbl 375.05034.

Thm. 9 asymptotically estimates upper bounds on frustration index
and vertex frustration number for all-negative signed graphs with fixed
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negative girth. [Sharpened by Komlós (1997a).] (par: Fr)

Bela Bollobás, Luke Pebody, and Oliver Riordan
2000a Contraction-deletion invariants for graphs. J. Combin. Theory Ser. B 80 (2000),

320–345. MR 2001j:05055. Zbl 1024.05028.
§4, “Coloured graphs”. (SGc: Gen: Invar)

Bela Bollobás and Oliver Riordan
1999a A Tutte polynomial for coloured graphs. Recent Trends in Combinatorics

(Mátraháza, 1995). Combin. Probab. Comput. 8 (1999), 45–93. MR 2000f:05033.
Zbl 926.05017.

Discovers the fundamental relations for the commutative algebra un-
derlying the parametrized Tutte polynomial of colored graphs. Cf. Za-
slavsky (1992b). (SGc: Gen: Invar, Knot)

2002a A polynomial of graphs on surfaces. Math. Ann. 323 (2002), no. 1, 81–96. MR
2003b:05052. Zbl 1004.05021.

The polynomial is a deletion-contraction invariant of signed graphs
with rotation systems (called “ribbon graphs”). (sg: Top: Incid)

Erik G. Boman, Doron Chen, Ojas Parekh, and Sivan Toledo
2005a On factor width and symmetric H-matrices. Linear Algebra Appl. 405 (2005),

239–248. MR 2148173 (2006e:15024). Zbl 1098.15014.
A real symmetric matrix = H(Φ)H(Φ)T for a real gain graph Φ with a

link (called “factor width 2”). Thm. 9. A has factor width 2 iff it is a
symmetric H-matrix with diagonal ≥ 0. [Annot. 8 Mar 2011.]

(gg: Incid, Adj)

Phillip Bonacich
1999a An algebraic theory of strong power in negatively connected exchange networks.

J. Math. Sociology 23 (1999), no. 3, 203–224. Zbl 1083.91574.
P. 214: The distribution of power depends in part on whether H(−Γ)

has full rank, i.e., Γ is bipartite (cf. van Nuffelen (1973a)), where Γ is
the graph of potential exchanges. [Annot. 13 Aug 2012.]

(par: Incid, PsS)

2007a Some unique properties of eigenvector centrality. Social Networks 29 (2007),
555–564.

§1.1.3, “Uses of c(β) and x in signed graphs”. [Annot. 12 Sept 2010.]
(SG, PsS: Adj)

Phillip Bonacich and Paulette Lloyd
2004a Calculating status with negative relations. Social Networks 26 (2004), 331–338.

Compares the dominant-eigenvector measure of centrality in Σ, Σ+,
and dense induced subgraphs, in a standard example. [Annot. 22 Oct
2009.] (SG: PsS: Adj)

J.A. Bondy and L. Lovász
1981a Cycles through specified vertices of a graph. Combinatorica 1 (1981), 117–140.

MR 82k:05073. Zbl 492.05049.
If Γ is k-connected [and not bipartite], then any k [k−1] vertices lie on

an even [odd] circle. [Problem. Generalize to signed graphs, this being
the all-negative case.] (sg: bal)
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J.A. Bondy and M. Simonovits
1974a Cycles of even length in graphs. J. Combin. Theory Ser. B 16 (1974), 97–105.

MR 49 #4851. Zbl 283.05108.
If a graph has enough edges, it has even circles of all moderately small

lengths. [Problem 1. Generalize to positive circles in signed graphs, this
being the antibalanced (all-negative) case. For instance, Problem 2. If
an unbalanced signed simple graph has positive girth ≥ l (i.e., no bal-
anced circle of length < l), what is its maximum size? Are the extremal
examples antibalanced? Balanced?] (par: bal(Circles), Xtreml)

Joseph E. Bonin
See also M.K. Bennett.

1993a Automorphism groups of higher-weight Dowling geometries. J. Combin. Theory
Ser. B 58 (1993), 161–173. MR 94k:51005. Zbl 733.05027, (789.05017).

A weight-k higher Dowling geometry of rank n, Qn,k(GF(q)×), is the
union of all coordinate k-flats of PG(n− 1, q): i.e., all flats spanned by
k elements of a fixed basis. If k > 2, the automorphism groups are those
of PG(n− 1, q) for q > 2 and are symmetric groups if q = 2.

(gg: Gen: M, Aut)

1993b Modular elements of higher-weight Dowling lattices. Discrete Math. 119 (1993),
3–11. MR 94h:05018. Zbl 808.06012.

See definition in (1993a). For k > 2 the only nontrivial modular flats
are the projective coordinate k-flats and their subflats. This gives some
information about the characteristic polynomials [which, however, are
still only partially known]. [Kung (1996a), §6, has further results.]

(gg: Gen: M: Invar)

1995a Automorphisms of Dowling lattices and related geometries. Combin. Probab.
Comput. 4 (1995), 1–9. MR 96e:05039. Zbl 950.37335.

The automorphisms of a Dowling geometry of a nontrivial group are
the compositions of a coordinate permutation, switching, and a group
automorphism. A similar result holds, with two exceptions, if some or all
coordinate points are deleted. [A third exception is missed: the jointless
Dowling geometry Q0

3(Z3).] [Cf. Schwartz (2002a).] (gg: M: Aut)

1996a Open problem 6. A problem on Dowling lattices. In: Joseph E. Bonin, James
G. Oxley, and Brigitte Servatius, eds., Matroid Theory (Proc., Seattle, 1995),
pp. 417–418. Contemp. Math., Vol. 197. Amer. Math. Soc., Providence, R.I.,
1996.

Problem 6.1. If a finite matroid embeds in the Dowling geometry of
a group, does it embed in the Dowling geometry of some finite group?
[No; see Brooksbank, Qin, Robertson, and Seress (2004a).] (gg: M)

2006a Extending a matroid by a cocircuit. Discrete Math. 306 (2006), no. 8–9, 812–
819. MR 2006m:05045. Zbl 1090.05008.

§4 concerns Dowling lattices. (GG: M)

Joseph E. Bonin and Kenneth P. Bogart
1991a A geometric characterization of Dowling lattices. J. Combin. Theory Ser. A 56

(1991), 195–202. MR 92b:05019. Zbl 723.05033. (gg: M)

Joseph E. Bonin and Joseph P.S. Kung
1994a Every group is the automorphism group of a rank-3 matroid. Geom. Dedicata

50 (1994), 243–246. MR 95m:20005. Zbl 808.05029. (gg: M: Aut)
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Joseph E. Bonin and William P. Miller
1999a Characterizing combinatorial geometries by numerical invariants. European J.

Combin. 20 (1999), 713–724. MR 2001a:51007. Zbl 946.05020.
Dowling geometries are characterized amongst all simple matroids by

numerical properties of large flats of ranks ≤ 7 (Thm. 3.4); amongst all
matroids by their Tutte polynomials. (gg: M)

Joseph E. Bonin and Hongxun Qin
2000a Size functions of subgeometry-closed classes of representable combinatorial ge-

ometries. Discrete Math. 224 (2000), 37–60. MR 2001g:05031. Zbl 968.52009.
Extremal matroid theory. The Dowling geometry Q3(GF(3)×) =

G(±K•3) appears as an exceptional extremal matroid in Thm. 2.10. The
extremal subset of PG(n− 1, q) that does not contain the higher-weight
Dowling geometry Qm,m−1(GF(q)×) (see Bonin 1993a) is found in Thm.
2.14. (GG, Gen: M: Xtreml, Invar)

C. Paul Bonnington and Charles H.C. Little
1995a The Foundations of Topological Graph Theory. Springer, New York, 1995. MR

97e:05090. Zbl 950.48477.
Signed-graph imbedding: see §2.3, §2.6 (esp. Thm. 2.4), pp. 44–48 (for

the colorful 3-gem approach to crosscaps), §3.3, and Ch. 4 (esp. Thms.
4.5, 4.6). (sg: Top, bal)

Stefan Bornholdt
See J. Reichardt.

Bojana Borovićanin
See J.F. Wang.

E. Boros, Y. Crama, and P.L. Hammer
1992a Chvàtal cuts and odd cycle inequalities in quadratic 0—1 optimization. SIAM

J. Discrete Math. 5 (1992), 163–177. MR 93a:90043. Zbl 761.90069.
§4: “Odd cycles [i.e., negative circles] in signed graphs.” Main problem:

Find a minimum-weight deletion set in a signed graph with positively
weighted edges. Related problems: A circle-covering formulation whose
constraints correspond to negative circles. A dual circle-packing prob-
lem. (SG: Fr, Geom, Alg)

Endre Boros and Peter L. Hammer
1991a The max-cut problem and quadratic 0—1 optimization; polyhedral aspects, re-

laxations and bounds. Ann. Operations Res. 33 (1991), 151–180. MR 92j:90049.
Zbl 741.90077.

Includes finding a minimum-weight deletion set (as in Boros, Crama,
and Hammer (1991a)). (SG, WG: Fr: Geom, Alg)

André Bouchet
1982a Constructions of covering triangulations with folds. J. Graph Theory 6 (1982),

57–74. MR 83b:05057. Zbl 488.05032. (sg: Ori, Appl(Top))

1983a Nowhere-zero integral flows on a bidirected graph. J. Combin. Theory Ser. B
34 (1983), 279–292. MR 85d:05109. Zbl 518.05058.

Introduces nowhere-zero flows on signed graphs. A connected, coloop-
free signed graph has a nowhere-zero integral flow with maximum weight
≤ 216. The value 216 cannot be replaced by 5, but: Conjecture(Bouchet):
it can be replaced by 6. [See Khelladi (1987a), Xu and Zhang (2005a),
Raspaud and Zhu (2011a), and Akbari, Daemi, et al. (20xxa) for progress.
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See Jensen and Toft (1995a) for other contributions.] A topological ap-
plication is outlined. [The bidirection is inessential; it is a device to keep
track of the flow.] [Annot. ca. 1983.]

(SG: M, Ori, Flows, Appl(Top))

Jean-Marie Bourjolly
1988a An extension of the König–Egerváry property to node-weighted bidirected graphs.

Math. Programming 41 (1988), 375–384. MR 90c:05161. Zbl 653.90083.
[See Sewell (1996a).] (sg: Ori, GG: Alg)

J.-M. Bourjolly, P.L. Hammer, and B. Simeone
1984a Node-weighted graphs having the König–Egerváry property. Mathematical

Programming at Oberwolfach II (Oberwolfach, 1983). Math. Programming
Stud. 22 (1984), 44–63. MR 86d:05099. Zbl 558.05054. (par: ori)

Jean-Marie Bourjolly and William R. Pulleyblank
1989a König–Egerváry graphs, 2-bicritical graphs and fractional matchings. Discrete

Appl. Math. 24 (1989), 63–82. MR 90m:05069. Zbl 684.05036.
[It is hard to escape the feeling that we are dealing with all-negative

signed graphs and that something here will generalize to other signed
graphs. Especially see Thm. 5.1. Consult the references for related
work.] (Par; Ref)

Garry Bowlin
2009a Maximum Frustration of Bipartite Signed Graphs. Doctoral dissertation, Bing-

hamton Univ. (SUNY), 2009. MR 2713583 (no rev).
Strong results on structure, bounds, and asymptotics of the generalized

Gale–Berlekamp switching game, i.e., maximum frustration of a signed
Kr,s (cf. Brown and Spencer (1971a)), by a linear programming method.
Improves on Brown and Spencer (1971a) (q.v.), Gordon and Witsen-
hausen (1972a), Solé and Zaslavsky (1994a), [Annot. 9 Sept 2010, 30
Oct 2011.] (SG: Fr: Geom)

John Paul Boyd
1969a The algebra of group kinship. J. Math. Psychology 6 (1967), 139–167. Repr.

in: Samuel Leinhardt, ed., Social Networks: A Developing Paradigm, pp. 319–
346. Academic Press, New York, 1977. Zbl (e: 172.45501). Erratum. J. Math.
Psychology 9 (1972), 339. Zbl 242.92010. (SG: Bal)

S.C. Boyd
See C. Benzaken.

John Bramsen
2002a Further algebraic results in the theory of balance. J. Math. Sociology 26 (2002),

309–319. Zbl 1014.05041.
Algorithmic ideas for estimating l(Σ). Remarks on clusterability.

(SH) (SG: Fr: Alg; Clu)

Franz J. Brandenburg
2002a Cycles in generalized networks. In: Luděk Kučera, ed., Graph-Theoretic Con-

cepts in Computer Science (28th Int. Workshop, WG 2002, Český Krumlov,
Czech Rep., 2002), pp. 47–56. Lect. Notes in Computer Sci., Vol. 2573. Springer-
Verlag, Berlin, 2002. MR 2062357. Zbl 1022.90035.

The effects of gainy and lossy cycles and negative cycles on cheapest flow
from source or between two nodes. [Annot. 21 Mar 2011.] (GN: Alg)
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2003a Erratum: “Cycles in generalized networks”. In: Hans L. Bodlaender, ed.,
Graph-Theoretic Concepts in Computer Science (29th Int. Workshop, WG 2003,
Elspeet, The Netherlands, 2003), p. 383. Lect. Notes in Computer Sci., Vol.
2880. Springer-Verlag, Berlin, 2003. MR 2080096.

Results in (2002a) on cheapest flow from source are incorrect. [Annot.
21 Mar 2011.] (GN: Alg)

Franz J. Brandenburg and Mao-Cheng Cai
2009a Shortest path and maximum flow problems in networks with additive losses and

gains. In: X. Deng, J.E. Hopcroft, and J. Xue, eds., Frontiers in Algorithmics:
Third International Workshop (FAW 2009, Hefei, China), pp. 4–15. Lect. Notes
in Comput. Sci., Vol. 5598. Springer-Verlag, Berlin, 2009.

See (2011a). (gg: incid: Alg, m)

2011a Shortest path and maximum flow problems in networks with additive losses
and gains. Theor. Computer Sci. 412 (2011), no. 4-5, 391–401. MR 2778472
(2011k:68052). Zbl 1230.90045.

Additive real gains. The lift matroid is implicit. Contrasts algorithmic
complexity of additive with multiplicative gains. [Annot. 30 May 2012.]

(gg: incid: Alg, m)

A.J. Bray, M.A. Moore, and P. Reed
1978a Vanishing of the Edwards-Anderson order parameter in two- and three-dimen-

sional Ising spin glasses. J. Phys. C: Solid State Phys. 11 (1978), 1187–1202.
Random edge signs on a hypercubic lattice. [Annot. 12 Aug 2012.]

(Phys: SG: Rand, Fr)

Peter Brooksbank, Hongxung Qin, Edmund Robertson, and Ákos Seress
2004a On Dowling geometries of infinite groups. J. Combin. Theory Ser. A 108 (2004),

no. 1, 155–158. MR 2005e:51014. Zbl 1056.51011.
Solution of Bonin (1996a). They produce a finite gain graph that has

gains in no finite group. (gg: M)

A.E. Brouwer, A.M. Cohen, and A. Neumaier
1989a Distance-Regular Graphs. Ergeb. Math., Third Ser., Vol. 18. Springer-Verlag,

Berlin, 1989. MR 90e:05001. Zbl 747.05073.
§1.5, “Taylor graphs and regular two-graphs”: Signed complete graphs

appear in the form of double covers of the complete graph. §3.8, “Graph
switching, equiangular lines, and representations of two-graphs”. §7.6C,
“2-Transitive regular two-graphs”. (TG: kg, Geom: Exp, Ref)

Andries E. Brouwer and Willem H. Haemers
2012a Spectra of Graphs. Universitext. Springer-Verlag, Berlin, 2012.

§1.1, “Matrices associated to a graph”: “Laplace matrix” = Kirch-
hoff matrix K(+Γ), from the “directed [i.e., oriented] incidence ma-
trix” H(+Γ). “Signless Laplace matrix” = Kirchhoff matrix K(−Γ),
from the “(undirected) [unoriented] incidence matrix” H(−Γ) (with no
−1s). Many results employ K(−Γ), but signed graphs are ignored; e.g.,
see §§1.4.5, 14.4.3, “Line graphs” [cf. G.R. Vijayakumar et al.]. §1.8.2,
“Seidel switching”, defines the Seidel adjacency matrix A(KΓ) and its
switching. Ch. 10, “Regular two-graphs”.
K(−Γ) appears in: Ch. 3: “Eigenvalues and Eigenvectors of Graphs”,
§15.3: “Other matrices with at most three eigenvalues”. §15.3.1: “Few
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Seidel eigenvalues”; §15.3.3: “Three signless Laplace eigenvalues”. [An-
not. 19 Sept 2010, 23 Jan 2012.] (sg: Par: Adj, incid, TG, sw)

Floor Brouwer and Peter Nijkamp
1983a Qualitative structure analysis of complex systems. In: P. Nijkamp, H. Leitner,

and N. Wrigley, eds., Measuring the Unmeasurable, pp. 509–530. Martinus
Nijhoff, The Hague, 1983. (QM, SD: QSol, QSta: Exp)

Edward M. Brown and Robert Messer
1979a The classification of two-dimensional manifolds. Trans. Amer. Math. Soc. 255

(1979), 377–402. MR 80j:57007. Zbl 391.57010, (414.57003).
Their “signed graph” we might call a type of Eulerian partially bidi-

rected graph. That is, some edge ends are oriented (hence “partially
bidirected”), and every vertex has even degree and at each vertex equally
many edge ends point in and out (“Eulerian”). More specially, at each
vertex all or none of the edge ends are oriented. (sg: ori: gen: Appl)

Gerald G. Brown and Richard D. McBride
1984a Solving generalized networks. Management Sci. 30 (1984), 1497–1523. MR

0878883. Zbl 554.90032. (GN: M(bases))

Gerald G. Brown, Richard D. McBride, and R. Kevin Wood
1985a Extracting embedded generalized networks from linear programming problems.

Math. Programming 32 (1985), no. 1, 11–31. MR 0787741 (86f:90090). Zbl
574.90060.

Identifying largest embedded generalized network matrices (i.e., inci-
dence matrices of real multiplicative gain graphs) in a matrix is NP-
complete. Heuristic algorithms for finding such embedded matrices and
using them to speed up linear programming. [Annot. 2 Oct 2009.]

(GN: Incid: Alg)

Kenneth S. Brown and Persi Diaconis
1998a Random walks and hyperplane arrangements. Ann. Probab. 26 (1998), 1813–

1854. MR 1675083 (2000k:60138). Zbl 938.60064.
The real hyperplane arrangement representing −Kn is studied in §3D.

It leads to a random walk on threshold graphs. (par: Geom)

Thomas A. Brown
See also F.S. Roberts.

T.A. Brown, F.S. Roberts, and J. Spencer
1972a Pulse processes on signed digraphs: a tool for analyzing energy demand. Rep.

R-926-NSF, Rand Corp., Santa Monica, Cal., March, 1972. (SDw)

Thomas A. Brown and Joel H. Spencer
1971a Minimization of ±1 matrices under line shifts. Colloq. Math. 23 (1971), 165–

171. MR 46 #7059. Zbl 222.05016.
Asymptotic estimates for the Gale–Berlekamp switching game, i.e.,

l(Kr,s), the maximum frustration index of signatures of Kr,s. [Improved
by Gordon and Witsenhausen (1972a) and Bowlin (2009a).] Also, exact
values stated for r ≤ 4 [extended by Solé and Zaslavsky (1994a) to
r = 5, which was corrected and generalized by Bowlin (2009a)]. [Cf.
Fishburn and Sloane (1989a), Carlson and Stolarski (2004a), and Roth
and Viswanathan (2007a, 2008a) on Berlekamp’s game, where r = s.]

(sg: Fr)
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William G. Brown, ed.
1980a Reviews in Graph Theory. 4 vols. American Math. Soc., Providence, R.I., 1980.

Zbl 538.05001.
See esp.: §208: “Signed graphs (+ or − on each edge), balance” (undi-

rected and directed), Vol. 1, pp. 569–571. (SG, SD)

Richard A. Brualdi
2011a The Mutually Beneficial Relationship of Graphs and Matrices. CBMS Reg.

Conf. Ser. Math., No. 115. American Math. Soc., Providence, R.I., 2011 MR
2808017 (2012i:05159). Zbl 1218.05002.

§6.1, “Sign-nonsingular matrices”: Signed digraphs, called “weighted
digraphs” of (0,±1)-matrices such that every matrix with that sign pat-
tern is nonsingular. Cf. esp. Maybee et al., van den Driessche et al.
[Annot. 20 Nov 2011.] (QM: QSol: sd: Exp)
§9.4, “ASM patterns”: Signed graphs appear in the study of patterns in

alternating sign matrices. Cf. Brualdi, Kiernan, et al. (20xxa). [Annot.
18 Nov 2011.] (SG: Exp)

Richard A. Brualdi, Kathleen P. Kiernan, Seth A. Meyer, and Michael W.
Schroeder

20xxa Patterns of alternating sign matrices. Linear Algebra Appl., to appear. arXiv:-
1104.4075. (SG)

Richard A. Brualdi and Nancy Ann Neudauer
1997a The minimal presentations of a bicircular matroid. Quart. J. Math. Oxford (2)

48 (1997), 17–26. MR 97m:05065. Zbl 938.05023.
Minimal transversal presentations of G(Γ,∅), given Γ. (Bic)

Richard A. Brualdi and Herbert J. Ryser
1991a Combinatorial Matrix Theory. Encycl. Math. Appl., Vol. 39. Cambridge Uni-

versity Press, Cambridge, Eng., 1991. MR 93a:05087. Zbl 746.05002.
See §7.5. (QM: QSol, SD, bal)(Exp, Ref)

Richard A. Brualdi and Bryan L. Shader
1991a On sign-nonsingular matrices and the conversion of the permanent into the de-

terminant. In: Peter Gritzman and Bernd Sturmfels, eds., Applied Geometry
and Discrete Mathematics: The Victor Klee Festschrift, pp. 117–134. DIMACS
Ser. Discrete Math. Theor. Comput. Sci., Vol. 4. American Math. Soc., Provi-
dence, R.I., 1991. MR 1116343 (92f:15003). Zbl 742.15001.

§1 reviews Seymour and Thomassen (1987a). Thm. 2.1: If two sign-
nonsingular (0, 1,−1)-matrices have the same 0’s (and total support),
their signed digraphs are switching equivalent. [Annot. 12 Jun 2012.]

(QM, SD: QSol: Exp)

1995a Matrices of Sign-Solvable Linear Systems. Cambridge Tracts in Math., Vol. 116.
Cambridge University Press, Cambridge, Eng., 1995. MR 1358133 (97k:15001).
Zbl 833.15002.

Innumerable results and references on signed digraphs are contained
herein. (QM, SD: QSol, QSta)(Exp, Ref, Alg)

Jeroen Bruggeman
See V.A. Traag.

Michael Brundage
1996a From the even-cycle mystery to the L-matrix problem and beyond. M.S. thesis,

Dept. of Mathematics, Univ. of Washington, Seattle, 1996.
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http://www.math.washington.edu/~brundage/evcy/ (10/1997)
A concise expository survey. Ch. 1: “Even cycles in directed graphs”.

Ch. 2: “L-matrices and sign-solvability”, esp. sect. “Signed digraphs”.
Ch. 3: “Beyond”, esp. sect. “Balanced labellings” (vertices labelled from
{0,+1,−1} so that from each vertex labelled ε 6= 0 there is an arc to a
vertex labelled −ε) and sect. “Pfaffian orientations”.

(SD, Par: Circles, QSol, Alg, VS: Exp, Ref)

Tom Brylawski
1975a A note on Tutte’s unimodular representation theorem. Proc. Amer. Math. Soc.

52 (1975), 499–502. MR 54 #7294. Zbl 328.05017.
Implicitly, switching in the bipartite gain graph of a matrix. (gg: sw)

2000a A Möbius identity arising from modularity in a matroid bilinear form. J. Com-
bin. Theory Ser. A 91 (2000), 622–639. MR 2002a:05059. Zbl 966.05014.

Dowling lattices are an example in §5.1. (gg: M, Invar)

Thomas Brylawski and James Oxley
1992a The Tutte polynomial and its applications. In: Neil White, ed., Matroid Ap-

plications, Ch. 6, pp. 123–225. Encycl. Math. Appl., Vol. 40. Cambridge Univ.
Press, Cambridge, Eng., 1992. MR 1165543 (93k:05060). Zbl 769.05026.

§6.4, “The critical problem”, §6.4.B, “Minimal and tangential blocks”,
pp. 171–172: Tangential blocks in Dowling geometries Qn(GF(q)×), after
Whittle (1989a). [Annot. 16 Sept 2011.] (gg: M)

J.A. Brzozowski
See C.J. Shi.

Changjiang Bu and Jiang Zhou
2012a Starlike trees whose maximum degree exceed 4 are determined by their Q-

spectra. Linear Algebra Appl. 436 (2012), 143–151. (Par: Adj)

2012b Signless Laplacian spectral characterization of the cones over some regular
graphs. Linear Algebra Appl. 436 (2012), no. 9, 3634–3641. (Par: Adj)

Fred Buckley, Lynne L. Doty, and Frank Harary
1988a On graphs with signed inverses. Networks 18 (1988), 151–157. MR 89i:05222.

Zbl 646.05061.
“Signed invertible graph” [i.e., sign-invertible graph] = graph Γ such

that A(Γ)−1 = A(Σ) for some signed graph Σ. Finds two classes of such
graphs. Characterizes sign-invertible trees. [no. Godsil (1985a) and, for
a different notion, Greenberg, Lundgren, and Maybee (1984b).]

(SG: Adj)

Fred Buckley and Frank Harary
1990a Distance in Graphs. Addison–Wesley, Redwood City, Cal., 1990. MR 90m:05002.

Zbl 688.05017.
Signed graphs and sign-invertible graphs (Buckley, Doty, and Harary

1988a): pp. 120–122. (SG: Adj: Exp)

James R. Burns and Wayland H. Winstead
1982a Input and output redundancy. IEEE Trans. Systems Man Cybernetics SMC-12

(1982), no. 6, 785–793.
§ IV: “The computation of contradictory redundancy.” Summarized in

modified notation: In a signed graph, define wεij(r) = number of walks
of length r and sign ε from vi to vj. Define an adjacency matrix A by

http://www.math.washington.edu/~brundage/evcy/
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aij = w+
ij(1) + w−ij(1)θ, where θ is an indeterminate whose square is 1.

Then w+
ij(r) + w−ij(r)θ = (Ar)ij for all r ≥ 1. [We should regard this

computation as taking place in the group ring of the sign group, where
the sign group is treated as {+1, θ}. The generalization to arbitrary
gain graphs and digraphs is obvious.] Other sections also discuss signed
digraphs [but have little mathematical content]. (SD, gd: Adj, Paths)

F.C. Bussemaker, P.J. Cameron, J.J. Seidel, and S.V. Tsaranov
1991a Tables of signed graphs. EUT Report 91-WSK-01. Dept. of Math. and Com-

puting Sci., Eindhoven Univ. of Technology, Eindhoven, 1991. MR 92g:05001.
(SG: Sw)

F.C. Bussemaker, D.M. Cvetković, and J.J. Seidel
1976a Graphs related to exceptional root systems. T.H.-Report 76-WSK-05, 91 pp.

Dept. of Math., Technological Univ. Eindhoven, Eindhoven, The Netherlands,
1976. Zbl 338.05116.

The 187 simple graphs with eigenvalues ≥ −2 that are not (negatives
of) reduced line graphs of signed graphs are found, with computer aid.
By Cameron, Goethals, Seidel, and Shult (1976a), all are represented
by root systems Ed, d = 6, 7, 8. Most interesting is Thm. 2: each such
graph is Seidel-switching equivalent to a line graph of a graph. [Problem.
Explain this within signed graph theory.] (LG: par: Adj)

1978a Graphs related to exceptional root systems. In: A. Hajnal and Vera T. Sós,
eds., Combinatorics (Proc. Fifth Hungar. Colloq., Keszthely, 1976), Vol. 1, pp.
185–191. Colloq. Math. Soc. János Bolyai, 18. North-Holland, Amsterdam,
1978. MR 80g:05049. Zbl 392.05055.

Announces the results of (1976a). (LG: par: Adj)

F.C. Bussemaker, R.A. Mathon, and J.J. Seidel
1979a Tables of two-graphs. TH-Report 79-WSK-05. Dept. of Math., Technological

Univ. Eindhoven, Eindhoven, The Netherlands, 1979. Zbl 439.05032. (TG)

1981a Tables of two-graphs. In: S.B. Rao, ed., Combinatorics and Graph Theory
(Proc. Sympos., Calcutta, 1980), pp. 70–112. Lecture Notes in Math., 885.
Springer-Verlag, Berlin, 1981. MR 84b:05055. Zbl 482.05024.

“The most important tables from” (1979a). (TG)

F.C. Bussemaker and A. Neumaier
1992a Exceptional graphs with smallest eigenvalue −2 and related problems. Math.

Comput. 59 (1992), 583–608. MR 1134718 (93a:05089). Zbl 770.05060.
They are the antibalanced signed graphs with largest eigenvalue −2.

Also, largest eigenvalue around −2. Two-graphs and work of Vijayaku-
mar et al. are mentioned. [Annot. 29 Apr 2012.] (TG, LG, Adj)

Steve Butler
2010a Eigenvalues of 2-edge coverings. Linear Multilinear Algebra 58 (2010), 413–423.

MR 2663442 (2011g:05173). Zbl 1187.05047.
Generalizing D’Amato (1979a) and Bilu and Linial (2006a). The

“signed graph” G is vertex-signed; it is a branched double cover of a
signed graph H whose edge signs are incorporated into weights. The in-
teresting new idea is the branching, wherein a vertex may be singly cov-
ered. [May the branches correspond to half edges?] Adjacency and nor-
malized Laplacian spectra ofG are each obtained from the those ofH and
a modified |H|. [Annot. 9 Mar 2011.] (VS(Gen: Adj))(SG: cov, Adj)
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Jesper Makholm Byskov, Bolette Ammitzbøll Madsen, and Bjarke Skjernaa
2005a On the number of maximal bipartite subgraphs of a graph. J. Graph Theory

48 (2005), no. 2, 127–132. MR 2005h:05099. Zbl 1059.05045.
Bounds on the number of maximal induced bipartite subgraphs. [Prob-

lem. Generalize to maximal induced balanced subgraphs, equivalently
minimal balancing sets of vertices, especially in a signed graph.]

(par: bal)

S. Cabasino, E. Marinari, P. Paolucci, and G. Parisi
1988a Eigenstates and limit cycles in the SK model. J. Phys. A 21 (1988), no. 22,

4201–4210. MR 983779 (89k:82070). (Phys: SG)

Leishen Cai and Baruch Schieber
1997a A linear-time algorithm for computing the intersection of all odd cycles in a

graph, Discrete Appl. Math. 73 (1997), 27–34. MR 97g:05149. Zbl 867.05066.
By the negative-subdivision trick (subdividing each positive edge into

two negative ones), the algorithm will find the intersection of all negative
circles of a signed graph. (Par, sg: Fr: Alg)

Mao-cheng Cai
See F.J. Brandenburg.

Grant Cairns and Yuri Nikolayevsky
2009a Generalized thrackle drawings of non-bipartite graphs. Discrete Comput. Geom.

41 (2009), no. 1, 119–134. MR 2470073 (2010a:05059). Zbl 1191.05032.
Thm. 2: Γ, connected and not bipartite, has a generalized thrackle

drawing in the orientable surface of genus g iff −Γ has an orientation
embedding in the nonorientable surface with demigenus 2g−1. [Problem.
Generalize to all signed graphs.] (Par: Top)

Kyle David Calderhead
2002a Variations on the Slope Problem. Doctoral dissertation, University of Min-

nesota, 2002.
Ch. 6, “Type B analogs”, introduces threshold signed graphs and

applies signed graphs to the slopes problem (the minimum number of
slopes of n points in the plane) for centrally symmetric points. A signed
graph is threshold if its double cover is a threshold graph. (SG)

Verónica Cambiazo
See J. Aracena.

Peter J. Cameron
See also L. Babai and F.C. Bussemaker.

1977a Automorphisms and cohomology of switching classes. J. Combin. Theory Ser.
B 22 (1977), 297–298. MR 58 #16382. Zbl 331.05113, (344.05128).

The first step towards (1977b), Thm. 3.1. (TG: Aut)

†1977b Cohomological aspects of two-graphs. Math. Z. 157 (1977), 101–119. MR 58
#21779. Zbl 353.20004, (359.20004).

Introducing the cohomological theory of two-graphs. A two-graph τ
is a 2-coboundary in the complex of GF(2)-cochains on E(Kn). [The
1-cochains are the signed complete graphs, equivalently the graphs that
are their negative subgraphs. Cf. D.E. Taylor (1977a).] Write Zi, Z

i, Bi

for the i-cycle, i-cocycle, and i-coboundary spaces. Switching a signed
complete graph means adding a 1-cocycle to it; a switching class of
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signed complete graphs is viewed as a coset of Z1 and is equivalent to a
two-graph.

Take a group G of automorphisms of τ . Special cohomology elements
γ ∈ H1(G, B1) and β ∈ H2(G, B̃0) (where B̃0 = {0, V (Kn)}, the reduced
0-coboundary group) are defined. Thm. 3.1: γ = 0 iff G fixes a graph in
τ . Thm. 5.1: β = 0 iff G can be realized as an automorphism group of
the canonical double covering graph of τ (viewing τ as a switching class
of signed complete graphs). Conditions are explored for the vanishing of
γ (related to Harries and Liebeck (1978a)) and β.

Z1 is the annihilator of Z1 = the space of even-degree simple graphs;
the theorems of Mallows and Sloane (1975a) follow immediately. More
generally: Lemma 8.2: Zi is the annihilator of Zi. Thm. 8.3: The
numbers of isomorphism types of i-cycles and i-cocycles are equal, for
i = 1, . . . , n− 2.
§8 concludes with discussion of possible generalizations, e.g., to ori-

ented two-graphs (replacing GF(2) by GF(3)×) and double coverings of
complete digraphs (Thms. 8.6, 8.7). [A full ternary analog is developed
in Cheng and Wells (1986a).] (TG: Sw, Aut, Enum, Geom)

1979a Cohomological aspects of 2-graphs. II. In: C.T.C. Wall, ed., Homological
Group Theory (Proc. Sympos., Durham, 1977), Ch. 11, pp. 241–244. Lon-
don Math. Soc. Lect. Note Ser. 36. Cambridge Univ. Press, Cambridge, 1979.
MR 81a:05061. Zbl 461.20001.

Exposition of parts of (1977b) with a simplified proof of the connection
between β and γ. (TG: Aut, Enum, Geom, Exp)

1980a A note on generalized line graphs. J. Graph Theory 4 (1980), 243–245. MR
81j:05089. Zbl 403.05048, (427.05039).

[For generalized line graphs see Zaslavsky (1984c).] If two generalized
line graphs are isomorphic, their underlying graphs and cocktail-party
attachments are isomorphic, with small exceptions related to exceptional
isomorphisms and automorphisms of root systems. The proof, along
the lines of Cameron, Goethals, Seidel, and Shult (1976a), employs the
canonical vector representation of the underlying signed graph.

(sg: LG: Aut, Geom)

1983a Automorphism groups of graphs. Ch. 4 in: Lowell W. Beineke and Robin J.
Wilson, eds., Selected Topics in Graph Theory 2, pp. 89–127. Academic Press,
London, 1983. MR 797250 (86i:05079). Zbl 536.05037.

§8, “Switching”: Graph switching, graph switching classes. Existence
of a “representative”: a graph in a switching class that has the same
automorphism group as the switching class. §9, “Digraphs”: Switch-
ing classes of tournaments on pp. 117–118. Switching a digraph means
reversing all edges between X ⊆ V and Xc. [Annot. 27 Dec 2010.]

(TG: Sw: Aut: Exp)

1994a Two-graphs and trees. Graph Theory and Applications (Proc., Hakone, 1990).
Discrete Math. 127 (1994), 63–74. MR 95f:05027. Zbl 802.05042.

Let T be a tree. Construction 1 (simplifying Seidel and Tsaranov
(1990a)): Take all triples of edges such that none separates the other two.
This defines a two-graph on E(T ) [whose underlying signed complete
graph is described by Tsaranov (1992a)]. Construction 2: Choose X ⊆
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V (T ). Take all triples of end vertices of T whose minimal connecting
subtree has its trivalent vertex in X. The two-graphs (V, T ) that arise
from these constructions are characterized by forbidden substructures,
namely, the two-graphs of (1) C5 and C6; (2) C5. Also, trees that yield
identical two-graphs are characterized. (TG)

2007a Orbit counting and the Tutte polynomial. In: Geoffrey Grimmett and Colin
McDiarmid, eds., Combinatorics, Complexity, and Chance: A Tribute to Do-
minic Welsh, pp. 1–10. Oxford Lect. Ser. Math. Appl., Vol. 34. Oxford Univ.
Press, Oxford, 2007. MR 2008a:05043. Zbl 1122.05022.

1995a Counting two-graphs related to trees. Electronic J. Combin. 2 (1995), Research
Paper 4. MR 95j:05112. Zbl 810.05031.

Counting two-graphs of the types constructed in (1994a). (TG: Enum)

P.J. Cameron, J.M. Goethals, J.J. Seidel, and E.E. Shult
††1976a Line graphs, root systems, and elliptic geometry. J. Algebra 43 (1976), 305–327.

MR 56 #182. Zbl 337.05142. Repr. in Seidel (1991a), pp. 208–230.
The essential idea is that graphs with least eigenvalue ≥ −2 are rep-

resented by the angles of root systems. It follows that line graphs are
so represented. [Similarly, signed graphs with largest eigenvalue ≤ 2 are
represented by the inner products of root systems, as in Vijayakumar
et al. These include the line graphs of signed graphs as in Zaslavsky
(1984c), since simply signed graphs are represented by Bn or Cn with
a few exceptions. The representation of ordinary graphs by all-negative
signed graphs is motivated in Zaslavsky (1984c).]

(LG: sg: Adj, Geom, Sw)

Peter J. Cameron, Bill Jackson, and Jason D. Rudd
2008a Orbit-counting polynomials for graphs and codes. Discrete Math. 308 (2008),

920–930. MR 2378927 (2009e:05140). Zbl 1133.05030. (sg: Invar: Flows)

Peter J. Cameron and Charles R. Johnson
2006a The number of equivalence classes of symmetric sign patterns. Int. Workshop

Combin., Linear Algebra, Graph Coloring. Discrete Math. 306 (2006), no. 23,
3074–3077. MR 2273136 (2007j:05105). Zbl 1105.05034.

The number of signatures of K◦n, the complete graph with loops, under
symmetry, switching, and negation. [Annot. 12 Aug 2012.]

(sg: Adj: Invar, sw, tg)

P.J. Cameron, J.J. Seidel, and S.V. Tsaranov
1994a Signed graphs, root lattices, and Coxeter groups. J. Algebra 164 (1994), 173–

209. MR 95f:20063. Zbl 802.05043.
A generalized Coxeter group Cox(Σ) and a Tsaranov group Ts(Σ) are

defined via Coxeter relations and an extra relation for each negative
circle in Σ. They generalize Coxeter groups of tree Coxeter graphs and
the Tsaranov groups of a two-graph (|Σ| = Kn; see Seidel and Tsaranov
(1990a)). A new operation of “local switching” is introduced, which
changes the edge set of Σ but preserves the associated groups.
§2, “Signed graphs”, proves some well-known properties of switching

and reviews interesting data from Bussemaker, Cameron, Seidel, and
Tsaranov (1991a). §3, “Root lattices and Weyl groups”: The “intersec-
tion matrix” 2I + A(Σ) is a hyperbolic Gram matrix of a basis of Rn

whose vectors form only angles π/2, π/3, 2π/3. To these vectors are asso-
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ciated the lattice L(Σ) of their integral linear combinations and the Weyl
group W (Σ) generated by reflecting along the vectors. W is finite iff
2I+A(Σ) is positive definite (Thm. 3.1). Problem 3.6. Determine which
Σ have this property. §4 introduces local switching to partially solve
Problem 4.1: Which signed graphs generate the same lattice? Results
and some experimental data are reported. All-negative signed graphs
play a special role. Definition of local switching at v: (1) switch so the
edges at v are positive, (2) divide the components of the negative sub-
graph of the neighborhood of v into two halves J,K, (3) add negative
edges joining all vertices of J to all those of K, (4) negate all edges
from v to J , (5) reverse the switching in step (1). [See Isihara (2007a)
for more.] §6, “Coxeter groups”: The relationship between the Coxeter
and Weyl groups of Σ. Cox(Σ) is Cox(|Σ|) with additional relations for
antinegative (i.e., negative in −Σ) induced circles. §7: “Signed complete
graphs”. §8: “Tsaranov groups” of signed Kn’s §9: “Two-graphs arising
from trees” (as in Seidel and Tsaranov (1990a)).

Dictionary: “(Γ, f)” = Σ = (Γ, σ). “Fundamental signing” = all-
negative signing, giving the antibalanced switching class. “The balance”
of a cycle (i.e., circle) = its sign σ(C); “the parity” = σ(−C) where
−C = C with all signs negated. “Even” = positive and “odd” = negative
(referring to “parity”). “The balance” of Σ = the partition of all circles
into positive and negative classes C+ and C−; this is the bias on |Σ| due
to the signing and should not be confused with the customary meaning
of “balance”, i.e., all circles are positive.

[A more natural definition of the intersection matrix would be 2I −
A. Then signs would be negative to those in the paper. The need for
“parity” would be obviated, ordinary graphs would correspond to all-
positive signings (and those would be “fundamental”), and the extra
Coxeter relations would pertain to negative induced circles.]

(SG: Adj, Geom, Sw(Gen), lg)

Peter J. Cameron and Sam Tarzi
2004a Switching with more than two colours. European J. Combin. 25 (2004), no. 2,

169–177. MR 2005j:05059. Zbl 033.05038.
The edges of Kn are colored by m colors. Thm.: For m > 2, the

combined action of Sn on vertices and Sm on colors is transitive on
m-edge-colored complete graphs for finite n but not for infinite n.

(SGc: Gen: Sw)

P.J. Cameron and Albert L. Wells, Jr.
1986a Signatures and signed switching classes. J. Combin. Theory Ser. B 40 (1986),

344–361. MR 87m:05115. Zbl 591.05061. (SG: TG: Gen)

Paul Camion
1963a Caracterisation des matrices unimodulaires. Cahiers Centre Études Recherche

Opér. 5 (1963), 181–190. MR 31 #3352. Zbl 124.00901.
Camion’s signing algorithm (implicitly) finds a set of sign reversals to

balance a bipartite signed graph.

1965a Characterization of totally unimodular matrices. Proc. Amer. Math. Soc. 16
(1965), 1068–1073. MR 31 #4802. Zbl 134.25201.

1968a Modules unimodulaires. J. Combin. Theory 4 (1968), 301–362. MR 48 #5918.
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Zbl 174.29504.
2006a Unimodular modules. Discrete Math. 306 (2006), no. 19-20, 2355–2382. MR

2007e:05096. Zbl 1099.13021.
Sue Ann Campbell

See J. Bélair.
Manoel Campelo and Gérard Cornuéjols

2009a The Chvátal closure of generalized stable sets in bidirected graphs. LAGOS’09?
Latin-American Algorithms, Graphs and Optimization Symposium. Electronic
Notes Discrete Math. 35 (2009), 89–95. MR 2579413 (no rev).

The generalized stable set polyhedron of B is (equivalent to) conv(Zn∩
{0 ≤ x ∈ Rn : H(B)x ≤ b} where b ∈ Zm, m = |E|. Dictionary:
“directed edge” = positive, “undirected edge” = negative; “odd cycle”
= negative circle. [Annot. 9 June 2011.] (sg: ori, Incid, Geom)

E. Rodney Canfield
See E.A. Bender.

Chun Zheng Cao
See X.X. Zhu.

D.S. Cao
See R. Simion.

Domingos M. Cardoso
See also N.M.M. Abreu and I. Gutman.

Domingos M. Cardoso, Dragoš Cvetković, Peter Rowlinson, and Slobodan K.
Simić

2008a A sharp lower bound for the least eigenvalue of the signless Laplacian of a non-
bipartite graph. Linear Algebra Appl. 429 (2008), no. 11-12, 2770–2780. MR
2455532 (2009i:05145). Zbl 1148.05046.

See Cvetković, Rowlinson, and Simić (2007a). Thm.: minΓ λ1(K(−Γ)),
for connected, nonbipartite Γ with |V | = n is attained iff Γ is K3 with an
attached path. [Problem. Generalize to connected, unbalanced signed
graphs.] [Annot. 4 Sept 2010.] (Par: Adj)

Jordan Carlson and Daniel Stolarski
2004a The correct solution to Berlekamp’s switching game. Discrete Math. 287 (2004),

145–150. MR 2005d:05005. Zbl 1054.94023.
The minimum frustration index of a signed Kn,n for n = 10, 11, 12 and

bounds up to 20. Corrects and extends Fishburn and Sloane (1989a).
(sg: fr)

J. Cartes
See J.F. Valdés.

Dorwin Cartwright
See also T.C. Gleason; Harary, Norman, and Cartwright (1965a, etc.)

Dorwin Cartwright and Terry C. Gleason
1966a The number of paths and cycles in a digraph. Psychometrika 31 (1966), 179–

199. MR 33 #5377. Zbl (e: 143.43702). (SD: Adj, Paths)

Dorwin Cartwright and Frank Harary
1956a Structural balance: a generalization of Heider’s theory. Psychological Rev. 63

(1956), 277–293. Repr. in: Dorwin Cartwright and Alvin Zander, eds., Group
Dynamics: Research and Theory, Second Edition, pp. 705–726. Harper and
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Row, New York, 1960. Also reprinted in: Samuel Leinhardt, ed., Social Net-
works: A Developing Paradigm, pp. 9–25. Academic Press, New York, 1977.

Expounds Harary (1953a, 1955a) with sociological discussion. Proposes
to measure imbalance by the proportion of balanced circles (the “degree
of balance”) or balanced circles of length ≤ k (“degree of k-balance”).

(PsS, SG: Bal, Fr)

1968a On the coloring of signed graphs. Elem. Math. 23 (1968), 85–89. MR 38 #2053.
Zbl 155, 317 (e: 155.31703).

“Coloring” is clustering as in Davis (1967a). Thm. 1 adds a bit to
Davis (1967a). Thm. 3: The clustering is unique ⇐⇒ all components
of Σ+ are adjacent. (SG: Clu)

1970a Ambivalence and indifference in generalizations of structural balance. Behav-
ioral Sci. 15 (1970), 497–513. (SD, Bal)

1977a A graph theoretic approach to the investigation of system-environment rela-
tionships. J. Math. Sociology 5 (1977), 87–111. MR 56 #2477. Zbl 336.92026.

(SD: Clu)

1979a Balance and clusterability: an overview. In: Paul W. Holland and Samuel
Leinhardt, eds., Perspectives on Social Network Research (Proc. Sympos., Dart-
mouth Coll., Hanover, N.H., 1975), Ch. 3, pp. 25–50. Academic Press, New
York, 1979. (SG, SD, VS: Bal, Fr, Clu, Adj: Exp)

Adolfo Casari
See F. Barahona.

Paul A. Catlin
1979a Hajós’ graph-coloring conjecture: variations and counterexamples. J. Combin.

Theory Ser. B 26 (1979), 268–274. MR 81g:05057. Zbl 385.05033, 395.05033.
Thm. 2: If Γ is 4-chromatic, [−Γ] contains a subdivision of [−K4] (an

“odd-K4”). [Question. Can this possibly be a signed-graph theorem?
For instance, should it be interpreted as concerning the 0-free (signed)
chromatic number of −Γ?] (par: col)

M. Catral, D.D. Olesky, and P. van den Driessche
2009a Allow problems concerning spectral properties of sign pattern matrices: A sur-

vey. Linear Algebra Appl. 430 (2009), no. 11-12, 3080–3094. MR 2517861
(2010i:15066). Zbl 1165.15009.

D is the signed digraph of a square sign-pattern matrix S. Thm. 3.1: If
the spectrum of A with signs S is arbitrary, D has positive and negative
disjoint cycle unions of all orders. Thm. 4.1: If the inertia is arbitrary,
D has a positive and a negative loop and a negative digon. [Annot. 4
Nov 2011.] (SG: QM, Exp)

Michael S. Cavers
2010a On reducible matrix patterns. Linear Multilinear Algebra 58 (2010), no. 2,

257–267. MR 2641538 (2011b:15072). Zbl 1189.15010. (SD: QM)

Michael S. Cavers and Kevin N. Vander Meulen
2005a Spectrally and inertially arbitrary sign patterns. Linear Algebra Appl. 394

(2005), 53–72. MR 2100576 (2005f:15008). Zbl 1065.15009.
Lem. 5.1: An inertially arbitrary sign pattern contains a negative digon.

[Annot. 5 Nov 2011.] (QM: sd, sw)
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Seth Chaiken
1982a A combinatorial proof of the all minors matrix tree theorem. SIAM J. Algebraic

Discrete Methods 3 (1982), 319–329. MR 83h:05062. Zbl 495.05018.
§4: “Extension to signed graphs”. Generalizing Zaslavsky (1982a),

an all-minors matrix-tree theorem for weighted signed digraphs and a
corollary for weighted signed graphs. Given: a signed graph on vertex
set [n]. For a Kirchoff (or “Laplace”)-type n × n matrix K (A in the
paper), K(Ū , W̄ ) is K with the rows indexed by U and the columns
indexed by W deleted. Take U,W ⊆ V with |U | = |W | = k ≤ n. Then
detK(Ū , W̄ ) is a sum of terms, one for each independent set F of rank
n − k in G(Σ) in which each tree component contains just one vertex
from U and one from W . Each term has a sign depending partly on the
number of negative paths by which F links U to W and partly on the
linking pattern, and with magnitude 4c·(weight product of F ), where
c = # of circles in F . [The credit to Zaslavsky is overly generous: only
the case U = W = ∅ is his; the others are new.] The digraph version
replaces 4 by 2 and imposes conditions on arc directions in the tree and
nontree components of F .

A brief remark describes a gain-graphic (“voltage-graphic”) generaliza-
tion. (SD, SG, GG: Adj, Incid, m)

1996a Oriented matroid pairs, theory and an electrical application. In: Joseph E.
Bonin, James G. Oxley, and Brigitte Servatius, eds., Matroid Theory (Proc.,
Seattle, 1995), pp. 313–331. Contemp. Math., Vol. 197. Amer. Math. Soc.,
Providence, R.I., 1996. MR 97e:05058.

Connects a problem on common covectors of two subspaces of Rm, and
more generally of a pair of oriented matroids, to the problem of sign-
solvability of a matrix and the even-cycle problem for signed digraphs.

(QSol, sd: Par, Alg)

1996b Open problem 5. A problem about common covectors and bases in oriented
matroid pairs. In: Joseph E. Bonin, James G. Oxley, and Brigitte Servatius,
eds., Matroid Theory (Proc., Seattle, 1995), pp. 415–417. Contemp. Math.,
Vol. 197. Amer. Math. Soc., Providence, R.I., 1996.

Possible generalizations to oriented matroids of sign-nonsingularity of
a matrix. (QSol, SD: Par)

Seth Chaiken, Christopher R.H. Hanusa, and Thomas Zaslavsky
2010a Nonattacking queens in a rectangular strip. Ann. Combin. 14 (2010), 419–441.

MR 2776757 (2012d:05034). Zbl 1233.05022.
Affinographic hyperplanes and rooted integral gain graphs, from Forge

and Zaslavsky (2007a), imply the structure of formulas counting nonat-
tacking arrangements of identical chess pieces in an m × n strip, as a
function of n. (GG: Geom, Invar)

Vijaya Chandru, Collette R. Coullard, and Donald K. Wagner
1985a On the complexity of recognizing a class of generalized networks. Operations

Res. Letters 4 (1985), 75–78. MR 87a:90144. Zbl 565.90078.
Determining whether a gain graph with real multiplicative gains has a

balanced circle, i.e., is not contrabalanced, is NP-hard. So is determining
whether a real matrix is projectively equivalent to the incidence matrix
of a contrabalanced real gain graph. (GN, Bic: Incid, Alg)
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Chung-Chien Chang and Cheng-Ching Yu
1990a On-line fault diagnosis using the signed directed graph. Industrial and Engi-

neering Chem. Res. 29 (1990), 1290–1299.
Modifies the method of Iri, Aoki, O’Shima, and Matsuyama (1979a) of

constructing the diagnostic signed digraph, e.g. by considering transient
and steady-state situations. (SD: Appl, Ref)

Gerard J. Chang
See J.H. Yan.

Michael D. Chang
See M. Engquist.

Ting-Chung Chang [Ting-Jung Chang]
See T.J. Chang.

Ting-Jung Chang [Ting-Chung Chang]
Ting-Jung Chang and Bit-Shun Tam

2010a Graphs with maximal signless Laplacian spectral radius. Linear Algebra Appl.
432 (2010), no. 7, 1708–1733. MR 2592913 (2011e:15014).

See Cvetković, Rowlinson, and Simić (2007a). (Par: Adj)

Ting-Jung Chang [as Ting-Chung Chang] and Bit-Shun Tam
2011a Connected graphs with maximal Q-index: The one-dominating-vertex case.

Linear Algebra Appl. 435 (2011), no. 10, 2451–2461. MR 2811129 (2012d:05220).
Zbl 1222.05029. (Par: Adj)

Ting-Jung Chang, Bit-Shun Tam, and Shu-Hui Wu
2011a Theorems on partitioned matrices revisited and their applications to graph

spectra. Linear Algebra Appl. 434 (2011), 559–581. MR 2741241 (2012g:05131).
Zbl 1225.05160. (Par: Adj)

Claudine Chaouiya
See A. Naldi.

Moses Charikar
See also N. Ailon.

Moses Charikar, Venkatesan Guruswami, and Anthony Wirth
2003a Clustering with qualitative information. In: Proceedings of the 44th Annual

IEEE Symposium on Foundations of Computer Science (FOCS’03), pp. 524–
533. IEEE, 2003.

Conference version of (2005a). (SG: WG: Clu: Alg)

2005a Clustering with qualitative information. Learning Theory 2003. J. Com-
put. System Sci. 71 (2005), no. 3, 360–383. MR 2168358 (2006f:68141). Zbl
1094.68075. (SG: WG: Clu: Alg)

A. Charnes, M. Kirby, and W. Raike
1966a Chance-constrained generalized networks. Operations Res. 14 (1966), 1113–

1120. Zbl (e: 152.18302). (GN)

A. Charnes and W.M. Raike
1966a One-pass algorithms for some generalized network problems. Operations Res.

14 (1966), 914–924. Zbl (e: 149.38106). (GN: Incid)

Gary Chartrand
See also M. Behzad.

1977a Graphs as Mathematical Models. Prindle, Weber and Schmidt, Boston, 1977.
MR 58 #9947. Zbl 384.05029.
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[Repr. (1985a).] (SG: Bal, Clu)

1985a Introductory Graph Theory. Dover Publications, New York, 1985. MR 86c:05001.
“Corrected reprint” of (1977a). (SG: Bal, Clu)

Gary Chartrand, Heather Gavlas, Frank Harary, and Michelle Schultz
1994a On signed degrees in signed graphs. Czechoslovak Math. J. 44(119) (1994),

677–690. MR 95g:05084. Zbl 837.05110.
Net degree sequences (i.e., d+ − d−; called “signed degree sequences”)

of signed simple graphs. A Havel–Hakimi-type reduction formula, but
with an indeterminate length parameter; a determinate specialization
to complete graphs. A necessary condition for a sequence to be a net
degree sequence. Examples: paths, stars, double stars. [Continued in
Yan, Lih, Kuo, and Chang (1997a). Solved in Michael (2002a).]

[This is a special case of weighted degree sequences of Kn with in-
teger edge weights chosen from a fixed interval of integers. Here the
interval is [−1,+1]. The theory of such degree sequences is due to V.
Chungphaisan, Conditions for sequences to be r-graphic, Discrete Math.
7 (1974), 31–39. MR 50 #4391. Michael (2002a) characterizes net degree
sequences by noticing this connection.] (SGw: Invar)

[One can interpret net degrees as the net indegrees (din − dout) of
certain bidirected graphs. Change the positive (negative) edges to ex-
troverted (resp., introverted). Then we have the net indegree sequence of
an oriented −Γ. Problem 1. Generalize to all bidirected (simple, or sim-
ply signed) graphs, especially Kn’s. Problem 2. Find an Erdős–Gallai-
type characterization of net degree sequences of signed simple graphs.
[Solved by Michael (2002a).] Problem 3. Characterize the separated
signed degree sequences of signed simple graphs, where the separated
signed degree is (d+(v), d−(v)). Problem 4. Generalize Problem 3 to
edge k-colorings of Kn.] (SG: ori: Invar)

Gary Chartrand, Frank Harary, Hector Hevia, and Kathleen A. McKeon
1992a On signed graphs with prescribed positive and negative graphs. Vishwa Int. J.

Graph Theory 1 (1992), 9–18. MR 93m:05095.
What is the smallest order of an edge-disjoint union of two (isomor-

phism types of) simple graphs, Γ and Γ′? Bounds, constructions, and
special cases. (The union is called a signed graph with Γ and Γ′ as
its positive and negative subgraphs.) Thm. 13: If Γ′ is bipartite (i.e.,
the union is balanced) with color classes V ′1 and V ′2 , the minimum order
= min(|V ′1 |, |V ′2 |) + max(|V |, |V ′1 |, |V ′2 |). (wg)(SG: Bal)

Guy Chaty
1988a On signed digraphs with all cycles negative. Discrete Appl. Math. 20 (1988),

83–85. MR 89d:05148. Zbl 647.05028.
Clarifies the structure of “free cyclic” digraphs and shows they include

strong “upper” digraphs (see Harary, Lundgren, and Maybee (1985a)).
(SD: Str)

P.D. Chawathe and G.R. Vijayakumar
1990a A characterization of signed graphs represented by root system D∞. European

J. Combin. 11 (1990), 523–533. MR 91k:05071. Zbl 764.05090.
A list of the 49 switching classes of signed simple graphs that are the

forbidden induced subgraphs for a signed simple graph to be a reduced
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line graph of a simply signed graph without loops or half edges. The
graphs have orders 4, 5, and 6. [See several other works of Vijayakumar
et al.] (SG: adj, LG, Geom, incid)

Shuchi Chawla
See N. Bansal.

Beifang Chen and Shuchao Li
2011a The number of nowhere-zero tensions on graphs and signed graphs. Ars Com-

bin. 102 (2011), 47–64. (SG)

Beifang Chen and Jue Wang
†2009a The flow and tension spaces and lattices of signed graphs. European J. Combin.

30 (2009), 263–279. MR 2460231 (2009i:05102). Zbl 1198.05085.
Introduces cuts, and directed circuits and cuts, of a signed graph; and

the cycle (or circuit) and cut (or cocycle) spaces of a signed graph over a
commutative, unital ring in which 2 is invertible. Definitions, basic the-
ory, and graphical proofs. Orthogonal complementarity between real, or
integral, circuit and cut spaces. Relationships between real and integral
spaces. Interpretations in terms of flows and tensions.

A cut is an edge set U := E〈X,Xc〉 ∪ UX where X ⊆ V and UX
is a minimal balancing set of E:X. A minimal cut is a bond, i.e., a
cocircuit in G(Σ). A circuit or cut has two possible “directions”. A
minimal directed cut need not be a directed bond. The indicator vectors
of directed circuits generate the cycle (“circuit”) space; the indicator
vectors of directed cuts generate the cocycle (“cut”) space.
The flow space or lattice is the real or integral null space of the incidence

matrix. The tension space or lattice is the real or integral row space.
The spaces equal lattices equal the real cycle and cut spaces and the
lattices are their integral parts. Not every integral flow is in the integral
span of circuit indicator vectors; but every integral tension is spanned
by cut indicator vectors.

[Based upon and extending parts of J. Wang (2007a).]
(SG: Str, Ori, Incid)

2010a Torsion formulas for signed graphs. Discrete Appl. Math. 158 (2010), 1148–
1157. MR 2629892 (2011j:05131).

[Based upon part of J. Wang (2007a).] (SG)

20xxa Classification of indecomposable flows of signed graphs. Submitted. arXiv:-
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20xxa Resolution of irreducible integral flows on a signed graph. In preparation.

Irreducible integral flows include circuit flows as well as others of a
complicated and unexpected nature. Resolved by lifting to the signed
covering graph. [Based on part of J. Wang (2007a).] (SG: Incid, Str)
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See also E.G. Boman.

Doron Chen and Sivan Toledo
2005a Combinatorial characterization of the null spaces of symmetric H-matrices. Lin-

ear Algebra Appl. 392 (2004), 71–90. MR 2005h:15016. Zbl 1061.65028.
Certain matrices are related to gain graphs and others to signed graphs.

(GG, SG)
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2010a Sharp bounds for the largest eigenvalue of the signless Laplacian of a graph.

Linear Algebra Appl. 433 (2010), no. 5, 908–913. MR 2658641 (2011h:05149).
Zbl 1215.05100.

See Cvetković, Rowlinson, and Simić (2007a). (Par: Adj)

Zhi-Hong Chen, Ying-Qiang Kuang, and Hong-Jian Lai
1999a Connectivity of cycle matroids and bicircular matroids. Ars Combin. 52 (1999),

239–250. MR 2001d:05032. Zbl 977.05027.
The relationship between graph structure and the Tutte, verticial, and

cyclic connectivities of the bicircular matroid. (Bic: Str)

Zhi-Hong Chen, Hong-Jian Lai, Xiankun Zhang, and Lei Xu
1998a Group coloring and group connectivity of graphs. Proc. Twenty-ninth South-

eastern Int. Conf. on Combinatorics, Graph Theory and Computing (Boca Ra-
ton, Fla., 1998). Congr. Numer. 134 (1998), 123–130. MR 99j:05068. Zbl
952.05031.

§2 summarizes Lai and Zhang (2002a). §3 concerns the duality between
[abelian] group colorability and [abelian] group connectivity. (GG: Col)

Bo Cheng and Bolian Liu
2008a The base sets of primitive zero-symmetric sign pattern matrices. Linear Algebra

Appl. 428 (2008), 715–73. MR 2382083 (2009c:15028). Zbl 1135.15014.
The Abelson–Rosenberg (1958a) algebra is employed, with symbols

0, 1,−1,# for o, p, n, a. “Generalized sign pattern matrix”: # entries are
allowed. “Generalized signed digraph”: #-arcs are allowed. (QM: SD)

2010a Primitive zero-symmetric sign pattern matrices with the maximum base. Linear
Algebra Appl. 433 (2010), no. 2, 365–379. MR 2645090 (2011e:15058). Zbl
1193.15029. (QM: SD)

Ying Cheng
1986a Switching classes of directed graphs and H-equivalent matrices. Discrete Math.

61 (1986), 27–40. MR 88a:05075. Zbl 609.05039.
This article studies what are described as Z4-gain graphs Φ with un-

derlying simple graph Γ. [However, see below.] They are regarded as
digraphs D, the gains being determined by D as follows: ϕ(u, v) = 1 or
2 if (u, v) is an arc, 2 or 3 if (v, u) is an arc. [N.B. Γ is not uniquely
determined by D.] Cheng’s “switching” is gain-graph switching but only
by switching functions η : V → {0, 2}; I will call this “semiswitching”.
His “isomorphisms” are vertex permutations that are automorphisms of
Γ; I will call them “Γ-isomorphisms”. The objects of study are equiva-
lence classes under semiswitching (semiswitching classes) or semiswitch-
ing and Γ-isomorphism (semiswitching Γ-isomorphism classes). Prop. 3.1
concerns adjacency of vertex orbits of a Γ-isomorphism that preserves
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a semiswitching class (call it a Γ-automorphism of the class). Thm.
4.3 gives the number of semiswitching Γ-isomorphism classes. Thm. 5.2
characterizes those Γ-automorphisms of a semiswitching class that fix an
element of the class; Thm. 5.3 characterizes the Γ-isomorphisms g that
fix an element of every g-invariant semiswitching class.

[Likely the right viewpoint, as is hinted in §6, is that the edge labels
are not Z4-gains but weights from the set {±1,±2, . . . ,±k} with k = 2.
Then semiswitching is ordinary signed switching, and so forth. However,
I forbear to reinterpret everything here.]

In §6, Z4 is replaced by Z2k [but this should be {±1,±2, . . . ,±k}];
semiswitching functions take values 0, k only. Generalizations of §§3, 4
are sketched and are applied to find the number of H-equivalent matrices
of given size with entries±1,±1, . . . ,±k. (H- [or Hadamard] equivalence
means permuting rows and columns and scaling by −1.)

( sg, wg, GG: Sw, Aut, Enum)

Ying Cheng and Albert L. Wells, Jr.
1984a Automorphisms of two-digraphs. (Summary.) Proc. Fifteenth Southeastern

Conf. on Combinatorics, Graph Theory and Computing (Baton Rouge, 1984).
Congressus Numer. 45 (1984), 335–336. MR 86c:05004c (volume).

A two-digraph is a switching class of Z3-gain graphs based on Kn.
(gg, SD: Sw, Aut)

†1986a Switching classes of directed graphs. J. Combin. Theory Ser. B 40 (1986),
169–186. MR 87g:05104. Zbl 565.05034, (579.05027).

This exceptionally interesting paper treats a digraph as a ternary gain
graph Φ (i.e., with gains in GF(3)+) based on Kn. A theory of switching
classes and triple covering graphs, analogous to that of signed complete
graphs (and of two-graphs) is developed. The approach, analogous to
that in Cameron (1977b), employs cohomology. The basic results are
those of general gain-graph theory specialized to the ternary gain group
and graph Kn.

The main results concern a switching class [Φ] of digraphs and an
automorphism group A of [Φ]. §3, “The first invariant”: Thm. 3.2 char-
acterizes, by a cohomological obstruction γ, the pairs ([Φ],A) such that
some digraph in [Φ] is fixed. Thm. 3.5 is an [interestingly] more detailed
result for cyclic A. §4: “Triple covers and the second invariant”. Di-
graph triple covers of the complete digraph are considered. Those that
correspond to gain covering graphs of ternary gain graphs Φ are charac-
terized (“cyclic triple covers”, pp. 178–180). Automorphisms of Φ and
its triple covering Φ̃ are compared. Given ([Φ],A), Thm. 4.4 finds the
cohomological obstruction β to lifting A to Φ̃. Thm. 4.7 establishes an
equivalence between γ and β in the case of cyclic A.
§5: “Enumeration”. Thm. 5.1 gives the number of isomorphism types

of switching classes on n vertices, based on the method of Wells (1984a)
for signed graphs. §6: “The fixed signing property”. Thm. 6.1 character-
izes the permutations of V (Kn) that fix a gain graph in every invariant
switching class, based on the method of Wells (1984a).

Dictionary: “Alternating function” on X × X = GF(3)+-valued gain
function on KX .
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[See Babai and Cameron (2000a) for a treatment of nowhere-zero
ternary gain graphs based on Kn.] (gg: Sw, Aut, Enum, Cov)

William K. Cheung
See B. Yang.

Sergei Chmutov
2009a Generalized duality for graphs on surfaces and the signed Bollobás–Riordan

polynomial. J. Combin. Theory Ser. B 99 (2009), no. 3, 617–638. MR 2507944
(2010f:05046). Zbl 1172.05015. arXiv:

Sign-colored graphs embedded in a surface (Chmutov and Pak 2007a).
Duality with respect to an edge subset, applied to a sign-colored Bol-
lobás–Riordan polynomial, gives a polynomial duality. [Further devel-
opments in Vignes-Tourneret (2009a) and Krushkal (2011a).]

(SGc: Top, Invar)

Sergei Chmutov and Igor Pak
2007a The Kauffman bracket of virtual links and the Bollobás-Riordan polynomial.

Moscow Math. J. 7 (2007), no. 3, 409–418. MR 2343139 (2008h:57006). Zbl
1155.57004.

Sign-colored graphs embedded in a surface (orientable or not, indepen-
dently of the edge signs. [The orientation properties of the ribbons make
a signed graph, independent of the sign-colors.] (SGc: Top, Invar)

Hyeong-ah Choi, Kazuo Nakajima, and Chong S. Rim
1989a Graph bipartization and via minimization. SIAM J. Discrete Math. 2 (1989),

38–47. MR 89m:90132. Zbl 677.68036.
Vertex biparticity (the fewest vertices to delete to get a bipartite graph

[i.e., vertex frustration number of −Γ]) is compared to edge biparticity
[frustration index of −Γ] (for cubic graphs) and studied algorithmically.
(par: Fr)

Timothy Y. Chow
2003a Symplectic matroids, independent sets, and signed graphs. Discrete Math. 263

(2003), 35–45. MR 2004a:05033. Zbl 1014.05017.
§4, “From graphs to symplectic matroids”: The matroid union of

G(Γ, σ) over all signatures of a fixed graph yields a symplectic matroid.
(SG: M)

Debashish Chowdhury
1986a Spin Glasses and Other Frustrated Systems. Princeton Univ. Press, Princeton,

and World Scientific, Singapore, 1986.
Includes brief survey of how physicists look upon frustration. See

esp. §1.3, “An elementary introduction to frustration”, where the signed
square lattice graph illustrates balance vs. imbalance; Ch. 20, “Frustra-
tion, gauge invariance, defects and SG [spin glasses]”, discussing planar
duality (see e.g. Barahona (1982a), “gauge theories”, where gains are in
the orthogonal or unitary group (switching is called “gauge transforma-
tion” by physicists), and functions of interest to physicists; Addendum
to Ch. 20, pp. 378–379, mentioning results on when the proportion of
negative bonds is fixed, and on gauge theories.

(Phys: SG, GG, VS, Fr: Exp, Ref)

San Yan Chu
See S.L. Lee.
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Maria Chudnovsky
2005a Even hole free graphs. Graph Theory Notes N. Y. 49 (2005), 22–24. MR

2006h:05185. (SG: Cycles: Alg)

Maria Chudnovsky, William H. Cunningham, and Jim Geelen
2008a An algorithm for packing non-zero A-paths in group-labelled graphs. Combina-

torica 28 (2008), no. 2, 145–161. MR 2399016 (2009a:05103). Zbl 1164.05029.
See Chudnovsky, Geelen, et al. (2006a). Structure theorem for optimal
A-paths in terms of switching only vertices in Ac; algorithm for finding
such. Lemma 3.1 generalizes the basis result of (2006a). [Question.
B(Π) is a subset of V × G. How is this related to the covering graph?
Can one simplify their proofs? A “non-zero” path is like a level-changing
path in Φ̃ (covering graph). This suggests modelling their picture by
Φ′ = Φ ∪ 1Kn, i.e., with distinguished identity-gain complete subgraph.
Or, by Ω ⊆ M ·∆ = a biased expansion, with a distinguished maximal
balanced subgraph.] (GG: Paths: Str, Alg)

Maria Chudnovsky, Jim Geelen, Bert Gerards, Luis Goddyn, Michael Lohman,
and Paul Seymour

2006a Packing non-zero A-paths in group-labelled graphs. Combinatorica 26 (2006),
no. 5, 521–532. MR 2279668 (2007j:05184). Zbl 1127.05050.

In a gain graph Φ, find the maximum number of vertex-disjoint paths
with non-identity gain and with endpoints in A ⊆ V (non-zero A-paths).
Thm.: If max < k, there is a set X of up to 2k − 2 vertices such that
every A-path in Φ \X has identity gain. This is not best possible.

They prove: {B(Π) : Π ∈ P∗(G,A)} is the set of bases of a matroid.
Dictionary: “Group-labelled graph” = gain graph; Γ-labelled graph =

Γ-gain graph (for a group Γ); “weight” = gain. “Shifting” = switching;
“A-equivalent” = Ac-switching equivalent, i.e., obtained by switching
vertices not in A. (GG: Str, Paths)

Maria Chudnovsky, Ken-ichi Kawarabayashi, and Paul Seymour
2005a Detecting even holes. J. Graph Theory 48 (2005), no. 2, 85–111. MR 2006k:-

05197. Zbl 1062.05135.
Algorithm to detect positive holes (induced circles) in a signed graph. A

polynomially equivalent problem is to decide whether a graph is negative-
hole signable, i.e., has a signature in which every hole is negative.

(SG: Cycles: Alg)

S.T. Chui
See also B.W. Southern.

S.T. Chui, G. Forgacs, and D.M. Hatch
1982a Ground states and the nature of a phase transition in a simple cubic fully

frustrated Ising model. Phys. Rev. B 25 (1982), no. 11, 6952–6958.
Physics of “fully frustrated” 3-dimensional cubic lattice, i.e., every

square (“plaquette”) is negative. Each square has one negative edge.
This is the unique fully frustrated signature up to switching [short proof:
the squares generate the cycle space], but there are many nonisomor-
phic ground states (ζ : V → {+1,−1} such that minζ |(Eζ)−|); they
are said to form 12 mutually unreachable classes. App. A character-
izes the ground states [and implies l(Σ) = 1

4
|V | since each cube has

one negative edge in each direction, neglecting boundary effects—or as-
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suming toroidality]. The signed lattice is at times assumed to have a
2 × 2 fundamental domain; under that assumption there are 8 transla-
tional symmetry types of vertex, each forming a double-sized sublattice.
Approximate clustering is discussed. [Annot. 18 Jun 2012.]

(Phys, SG: Fr, sw, Clu)

F.R.K. Chung, Wayne Goddard, and Daniel J. Kleitman
1994a Even cycles in directed graphs. SIAM J. Discrete Math. 7 (1994), 474–483.

MR 1285584 (95e:05050). Zbl 809.05062.
A strongly connected digraph with |E| ≥ b(n + 1)2/4c has an even

cycle. This is best possible. [This equals Petersdorf’s (1966a) bound for
l(Kn, σ). Question. Are they related?] [Annot. 12 Jun 2012.]

(SD, Par: Bal)

Taeyoung Chung, Jack Koolen, Yoshio Sano, and Tetsuji Taniguchi
2011a The non-bipartite integral graphs with spectral radius three. Linear Alge-

bra Appl. 435 (2011), no. 10, 2544–2559. MR 2811137 (2012d:05224). Zbl
1222.05151.

§2.2, “Generalized line graphs and generalized signless Laplace matri-
ces”: The generalized signless Laplace matrix of (Γ, f), where f : V →
Z≥0, is K(−Γ) + 2D(f). The incidence matrix of (Γ, f) is H(Σ) where
Σ consists of −Γ with f(x) negative digons adjoined to x ∈ V . [See Za-
slavsky (1984c, 2010b, 20xxa) for this construction, which is not stated
here.] [Annot. 20 Dec 2011.] (Par: Adj, Incid, LG)

V. Chvátal
See J. Akiyama.

Olivier Cinquin and Jacques Demongeot
2002a Roles of positive and negative feedback in biological systems. C. R. Biologies

325 (2002), 1085–1095.
Stability of systems of nonlinear differential equations. Some mathe-

matical treatment. (SD: QSta, Appl)

Lane Clark
2004a Limit theorems for associated Whitney numbers of Dowling lattices. J. Combin.

Math. Combin. Comput. 50 (2004), 105–113. MR 2005b:06007. Zbl 1053.06003.
Aymptotics of numbers introduced by Benoumhani (1997a).

(gg: M: Invar)

F.W. Clarke, A.D. Thomas, and D.A. Waller
1980a Embeddings of covering projections of graphs. J. Combin. Theory Ser. B 28

(1980), 10–17. MR 81f:05066. Zbl 351.05126, (416.05069). (gg: Top)

A.M. Cohen
See A.E. Brouwer.

Bernard P. Cohen
See J. Berger.

Edith Cohen and Nimrod Megiddo
1989a Strongly polynomial-time and NC algorithms for detecting cycles in dynamic

graphs. In: Proceedings of the Twenty First Annual ACM Symposium on The-
ory of Computing (Seattle, 1989), pp. 523–534.

Partial version of (1993a). (GD: Bal: Alg)

1991a Recognizing properties of periodic graphs. In: Peter Gritzmann and Bernd
Sturmfels, eds., Applied geometry and Discrete Mathematics: The Victor Klee
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Festschrift, pp. 135–146. DIMACS Ser. Discrete Math. Theor. Computer Sci.,
Vol. 4. Amer. Math. Soc., Providence, R.I., and Assoc. Computing Mach.,
1991. MR 1116344 (92g:05166). Zbl 753.05047.

Given: a gain graph Φ with gains in Zd (a “static graph”). Found:
algorithms for (1) connected components and (2) bipartiteness of the
covering graph Φ̃ (the “periodic graph”) and, (3) given costs on the
edges of Φ, for a minimum-average-cost spanning tree in the covering
graph. Many references to related work. (GG: Cov: Alg, Ref)

1992a New algorithms for generalized network flows. In: D. Dolev, Z. Galil, and
M. Rodeh, eds., Theory of Computing and Systems (Proc., Haifa, 1992), pp.
103–114. Lect. Notes in Computer Sci., Vol. 601. Springer-Verlag, Berlin, 1992.
MR 94b:68023 (book).

Preliminary version of (1994a), differing only slightly.
(GN: Alg)(sg: Ori: Alg)

1993a Strongly polynomial-time and NC algorithms for detecting cycles in periodic
graphs. J. Assoc. Comput. Mach. 40 (1993), 791–830. MR 96h:05182. Zbl
782.68053.

Looking for a closed walk (“cycle”) with gain 0 in a gain digraph with
(additive) gains in Qd. [Cf. Kodialam and Orlin (1991a).]

(GD: Bal: Alg)

1994a New algorithms for generalized network flows. Math. Programming 64 (1994),
325–336. MR 95k:90111. Zbl 816.90057.

Maximize the fraction of demand satisfied by a flow on a network with
gains. Positive real gains in §3. Bidirected networks with positive gains
in §4; these are more general than networks with arbitrary non-zero real
gains. (GN: Alg)(sg: Ori: Alg)

1994b Improved algorithms for linear inequalities with two variables per inequality.
SIAM J. Comput. 23 (1994), 1313–1347. MR 95i:90040. Zbl 833.90094.

(GN: Incid: D: Alg)

Charles J. Colbourn and Derek G. Corneil
1980a On deciding switching equivalence of graphs. Discrete Appl. Math. 2 (1980),

181–184. MR 81k:05090. Zbl 438.05054.
Deciding switching isomorphism of graphs is polynomial-time equiva-

lent to graph isomorphism. (TG: Alg)

Tom Coleman, James Saunderson, and Anthony Wirth
2008a A local-search 2-approximation for 2-correlation-clustering. In: D. Halperin

and K. Mehlhorn, eds., Algorithms – ESA 2008 (16th Ann. Europ. Symp.
Algorithms, Karlsruhe, 2008), pp. 308–319. Lect. Notes in Computer Sci., Vol.
5193. Springer, Berlin, 2008. Zbl 1158.68549. (SG: Clu)

L. Collatz
1978a Spektren periodischer Graphen. Resultate Math. 1 (1978), 42–53. MR 80b:-

05042. Zbl 402.05054.
Introducing periodic graphs: these are connected canonical covering

graphs Γ = Φ̃ of finite Zd-gain graphs Φ. The “spectrum” of Γ is the set
of all eigenvalues of A(||Φ||) for all possible Φ. The spectrum, while infi-
nite, is contained in the interval [−r, r] where r is the largest eigenvalue
of each A(||Φ||) [the “index” of von Below (1994a)]. The inspiration is
tilings. (GG: Cov: Adj)
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Barry E. Collins and Bertram H. Raven
1968a Group structure: attraction, coalitions, communication, and power. In: Gard-

ner Lindzey and Elliot Aronson, eds., The Handbook of Social Psychology, Sec-
ond Edition, Vol. 4, Ch. 30, pp. 102–204. Addison-Wesley, Reading, Mass.,
1968.

“Graph theory and structural balance,” pp. 106–109.
(PsS: SG: Exp, Ref)

Barbara Coluzzi, Enzo Marinari, Giorgio Parisi, and Heiko Rieger
2000a On the energy minima of the Sherrington-Kirkpatrick model. J. Phys. A 33

(2000), no. 21, 3851–3862. (Phys: SG)

Ph. Combe and H. Nencka
1995a Non-frustrated signed graphs. In: J. Bertrand et al., eds., Modern Group Theo-

retical Methods in Physics (Proc. Conf. in Honour of Guy Rideau, Paris, 1995),
pp. 105–113. Math. Phys. Stud., Vol. 18. Kluwer, Dordrecht, 1995. MR
1361440 (96j:05105). Zbl 905.05071.

Σ is balanced iff a fundamental system of circles is balanced [as is
well known; see i.a. Popescu (1979a), Zaslavsky (1981b)]. An algorithm
[incredibly complicated, compared to the obvious method of tracing a
spanning tree] to determine all vertex signings of Σ that switch it to all
positive. Has several physics references. (SG: Bal, Fr, Alg, Ref)

1997a Cooperative networks and frustration on graphs. Methods Funct. Anal. Topol-
ogy 3 (1997), 40–50. MR 2001e:91135. Zbl 933.92005.

A signed-graphic model Σ of a neuron network. Obs.: A network is
cooperative iff Σ has a non-frustrated state s : V → {+1,−1}, i.e.,
the Hamiltonian (“energy”) H(s) := −1

2

∑
uv∈E σ(uv)s(u)s(v) = −|E|.

[Should be −1
2
|E|.] H [i.e., Σ] is non-frustrated if some state is. As-

sertion: H is non-frustrated iff Σ is balanced. A proof idea (not a
proof) is by setting up (real-valued) linear equations of positivity of
generating circles; carried out for Kn. [See (1997b).] [Easy proof:
H(s) = −1

2
|E| + |E−(Σs)|, hence H is non-frustrated iff Σs is all posi-

tive for some s iff Σ is balanced. See e.g. Zaslavsky (1982a), Cor. 3.3.]
[Annot. 17 Jun, 17 Aug 2012.] (SG: Bal, sw, Fr, Biol)

1997b Frustration and overblocking on graphs. Math. Computer Modelling 26 (1997),
no. 8-10, 307–309. MR 1492513 (no rev). Zbl 1185.05147.

No proofs. Prop. 1: The signatures of Γ are a “GF(2)-vector space”.
[Meaning: They are the points in {±1}|E| ⊂ R|E|.] Prop. 2: Nonfrustra-
tion corresponds to a large family of [real] linear systems. “Minimal” cir-
cles generalize plaquettes (girth circles) to arbitrary graphs. [“Minimal”
=(?) minimum length, assuming such circles generate the cycle space.
In general, choice of generating circles remains a good question.] “Fully
frustrated”: all minimal circles are negative. Prop. 3: Full frustration
corresponds to another family of [real] linear systems. [“Overblocking”:
Fully frustrated and some nonminimal circles are negative.] Prop. 4:
Linear system for overblocking in a fully frustrated signature. Cor. 5:
K5 is overblocking. K3,2 cannot be fully frustrated. [Annot. 17 Jun
2012.] (SG: Bal, sw, Fr, Phys)

Jean-Paul Comet
See A. Richard.
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F.G. Commoner
1973a A sufficient condition for a matrix to be totally unimodular. Networks 3 (1973),

351–365. MR 49 #331. Zbl 352.05012. (SD: Bal)

Michele Conforti, Gérard Cornuéjols, Ajai Kapoor, and Kristina Vuškoviić
1994a Recognizing balanced 0,±1 matrices. In: Proceedings of the 5th Annual ACM-

SIAM Symposium on Discrete Algorithms (Arlington, Va., 1994), pp. 103–111.
Assoc. Computing Mach., New York, 1994. MR 95e:05022. Zbl 867.05014.

(SG: Bal)

1995a A mickey-mouse decomposition theorem. In: Egon Balas and Jens Clausen,
eds., Integer Programming and Combinatorial Optimization (4th Int. IPCO
Conf., Copenhagen, 1995, Proc.), pp. 321–328. Lect. Notes in Computer Sci.,
Vol. 920. Springer, Berlin, 1995. MR 96i:05139. Zbl 875.90002 (book).

The structure of graphs that are signable to be “without odd holes”:
that is, so that each triangle is negative and each chordless circle of
length greater than 3 is positive. Proof based on Truemper (1982a).

(SG: Bal, Str)

1997a Universally signable graphs. Combinatorica 17 (1997), 67–77. MR 98g:05134.
Zbl 980.00112.

Γ is “universally signable” if it can be signed so as to make every
triangle negative and the holes independently positive or negative at
will. Such graphs are characterized by a decomposition theorem which
leads to a polynomial-time recognition algorithm. (SG: Bal, Str)

1999a Even and odd holes in cap-free graphs. J. Graph Theory 30 (1999), 289–308.
MR 99m:05155. Zbl 920.05028.

(SG: Bal)

2000a Triangle-free graphs that are signable without even holes. J. Graph Theory 34
(2000), 204–220. MR 2001b:05188. Zbl 953.05061.

“Even hole” means a chordless circle that is positive in a given signing
of the graph. The graphs of the title are characterized in several ways.
Most of them have significant wheels. (SG: Bal, Str, Alg)

2002a Even-hole-free graphs. Part I. Decomposition theorem. Journal of Graph The-
ory 39 (2002), 6–49. MR 2003c:05189. Zbl 1005.05034. (SG: Bal)

2002b Even-hole-free graphs. Part II. Recognition algorithm. Journal of Graph The-
ory 40 (2002), 238–266. MR 2004e:05182. Zbl 1003.05095. (SG: Bal)

Michele Conforti, Gérard Cornuéjols, and Kristina Vuškoviić
1999a Balanced cycles and holes in bipartite graphs. Discrete Math. 199 (1999), 27–

33. MR 99j:05119. Zbl 939.05050. (SGw, gg, sg: Bal)

Michele Conforti and Bert Gerards
2007a Packing odd circuits. SIAM J. Discrete Math. 21 (2007), no. 2, 273–302. MR

2008g:05162. Zbl 1139.05323.
The problem is to find the most vertex-disjoint negative circles in a

signed graph (thus, odd-length circles in an ordinary graph). It is NP-
hard but it can be solved in polynomial time for the signed graphs that
exclude the switching classes of the four signed graphs −K5, K1,1

3,3 , K1,2
3,3 ,

K2
3,3, which are defined as: K1,1

3,3 = +K3,3 with edge u1v1 made negative

and the additional negative edge −u2v2, K1,2
3,3 = +K3,3 with u1v1 made
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negative and added edges −u1u2 and −u1u3, and K2
3,3 = +K3,3 with

edges u1v1 and u2v2 made negative. (SG: Str)

Michele Conforti, Bert Gerards, and Ajai Kapoor
2000a A theorem of Truemper. Combinatorica 20 (2000), no. 1, 15–26. MR 2001h:-

05085. Zbl 949.05071.
Full version of Conforti and Kapoor (1998a). (SG: Bal)

Michele Conforti and Ajai Kapoor
1998a A theorem of Truemper. In: Robert E. Bixby, E. Andrew Boyd, and Roger Z.

Ŕıos-Mercado, eds., Integer Programming and Combinatorial Optimization (6th
Int. IPCO Conf., Houston, 1998, Proc.), pp. 53–68. Lect. Notes in Computer
Sci., Vol. 1412. Springer, Berlin, 1998. MR 2000h:05184. Zbl 907.90269.

A new proof of Truemper’s theorem on prescribed hole signs; discussion
of applications. (SG: Bal)

Joseph G. Conlon
2004a Even cycles in graphs. J. Graph Theory 45 (2004), no. 3, 163–223. MR

2004m:05145. Zbl 1033.05062.
Main theorem: For 3-connected G 6= K4, there is an even circle, dele-

tion of whose vertices or edges leaves a 2-connected graph. [Problem.
Generalize to signed graphs. And see Voss (1991a).] (par)

Raul Cordovil
See P. Berthomé.

Denis Cornaz
2006a On co-bicliques. RAIRO Oper. Res. 41 (2006), 295–304. MR 2348004 (2009f:-

90053). Zbl 1227.90043. (SG)

Denis Cornaz and A. Ridha Mahjoub
2007a The maximum induced bipartite subgraph problem with edge weights. SIAM

J. Discrete Math. 21 (2007), no. 3, 662–675. MR 2353996 (2008j:05331). Zbl
1141.05076. (SD)

Derek G. Corneil
See C.J. Colbourn and Seidel (1991a).

Gérard Cornuéjols
See also M. Campelo and M. Conforti.

2001a Combinatorial Optimization: Packing and Covering. CBMS-NSF Reg. Conf.
Ser. Appl. Math., Vol. 74. Soc. Indust. Appl. Math., Philadelphia, 2001. MR
2002e:90004. Zbl 972.90059.

The topic is linear optimization over a clutter, esp. a “binary clut-
ter”, which is the class of negative circuits of a signed binary matroid.
The class C−(Σ) is an important example (see Seymour 1977a), as is
its blocker b

(
C−(Σ)

)
[which is the class of minimal balancing edge sets;

hence the frustration index l(Σ) = minimum size of a member of the
blocker].

Ch. 5: “Graphs without odd-K5 minors”, i.e., signed graphs without
−K5 as a minor. Some esp. interesting results: Thm. 5.0.7 (special case
of Seymour (1977a), Main Thm.): The clutter of negative circles of Σ has
the “Max-Flow Min-Cut Property” (Seymour’s “Mengerian” property)
iff Σ has no−K4 minor. Conjecture 5.1.11 is Seymour’s (1981a) beautiful
conjecture (his “weak MFMC” is here called “ideal”). §5.2 reports the
partial result of Guenin (2001a). (See also §8.4.)
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Def. 6.2.6 defines a signed graph “G(A)” of a 0,±1-matrix A, whose
transposed incidence matrix is a submatrix of A. §6.3.3: “Perfect 0,±1-
matrices, bidirected graphs and conjectures of Johnson and Padberg”
(1982a), associates a bidirected graph with a system of 2-variable pseu-
doboolean inequalities; reports on Sewell (1997a) (q.v.).
§8.4: “On ideal binary clutters”, reports on Cornuéjols and Guenin

(2002a), Guenin (1998a), and Novick and Sebö (1995a) (qq.v.).
(Sgnd(M), SG: M, Geom, Incid(Gen), Ori: Exp, Ref, Exr)

Gérard Cornuéjols and Bertrand Guenin
2002a Ideal binary clutters, connectivity, and a conjecture of Seymour. SIAM J.

Discrete Math. 15 (2002), no. 3, 329–352. MR 2003h:05057. Zbl 1035.90045.
A partial proof of Seymour’s (1981a) conjecture. Main Thm.: A binary

clutter is ideal if it has as a minor none of the circuit clutter of F7,
C−(−K5) or its blocker, or C−(−K4) or its blocker. Important are the
lift and extended lift matroids, L(M,σ) and L0(M,σ), defined as in
signed graph theory. [See Cornuéjols (2001a), §8.4.]

(Sgnd(M), SG: M, Geom)

S. Cosares
See L. Adler.

Collette R. Coullard
See also V. Chandru.

Collette R. Coullard, John G. del Greco, and Donald K. Wagner
††1991a Representations of bicircular matroids. Discrete Appl. Math. 32 (1991), 223–

240. MR 92i:05072. Zbl 755.05025.
§4: §4.1 describes 4 fairly simple types of “legitimate” graph operation

that preserve the bicircular matroid. Thm. 4.11 is a converse: if Γ1 and
Γ2 have the same connected bicircular matroid, then either they are re-
lated by a sequence of legitimate operations, or they belong to a small
class of exceptions, all having order ≤ 4, whose bicircular matroid iso-
morphisms are also described. This completes the isomorphism theorem
of Wagner (1985a). §5: If finitely many graphs are related by a sequence
of legitimate operations (so their bicircular matroids are isomorphic),
then they have contrabalanced real gains whose incidence matrices are
row equivalent. These results are also found by a different approach in
Shull et al. (1989a, 1993a, 1997a). (Bic: Str, Incid)

1993a Recognizing a class of bicircular matroids. Discrete Appl. Math. 43 (1993),
197–215. MR 94i:05021. Zbl 777.05036. (Bic: Alg)

1993b Uncovering generalized-network structure in matrices. Discrete Appl. Math. 46
(1993), 191–220. MR 95c:68179. Zbl 784.05044. (GN: Bic: Incid, Alg)

Gheorghe Craciun
See also M. Banaji and M. Mincheva.

Gheorghe Craciun and Martin Feinberg
2005a Multiple equilibria in complex chemical reaction networks: I. The injectivity

property. SIAM J. Appl. Math. 65 (2005), 1526–1546. MR 2177713 (2006g:-
92075). Zbl 1094.80005. (SG, Chem)

2006a Multiple equilibria in complex chemical reaction networks: II. The species-
reaction graph. SIAM J. Appl. Math. 66, no. 4, 1321–1338. MR 2246058
(2007e:92027). Zbl 1136.80306. (SG, Chem)



the electronic journal of combinatorics #DS8 74

2006b Multiple equilibria in complex chemical reaction networks: extensions to en-
trapped species models. IEE Proc. Syst. Biol. 153 (2006), no. 4, 179–186.
(SG, Chem)

Gheorghe Craciun, Casian Pantea, and Eduardo D. Sontag
2011a Graph-theoretic analysis of multistability and monotonicity for biochemical re-

action networks. In: Heinz Koeppl, Douglas Densmore, Gianluca Setti, and
Mario di Bernardo, eds., Design and Analysis of Biomolecular Circuits: En-
gineering Approaches to Systems and Synthetic Biology, pp. 63–72. Springer,
New York, 2011. (SG, Chem: Exp)

Yves Crama
See also E. Boros.

1989a Recognition problems for special classes of polynomials in 0–1 variables. Math.
Programming A44 (1989), 139–155. MR 90f:90091. Zbl 674.90069.

Balance and switching are used to study pseudo-Boolean functions.
(§§2.2 and 4.) (SG: Bal, Sw)

Yves Crama and Peter L. Hammer
1989a Recognition of quadratic graphs and adjoints of bidirected graphs. Combina-

torial Math.: Proc. Third Int. Conf. Ann. New York Acad. Sci. 555 (1989),
140–149. MR 91d:05044. Zbl 744.05060.

“Adjoint” = unoriented positive part of the line graph of a bidirected
graph. “Quadratic graph” = graph that is an adjoint. Recognition of ad-
joints of bidirected simple graphs is NP-complete. (sg: Ori: LG: Alg)

Yves Crama, Peter L. Hammer, and Toshihide Ibaraki
1986a Strong unimodularity for matrices and hypergraphs. Discrete Appl. Math. 15

(1986), 221–239. MR 88a:05105. Zbl 647.05042.
§7: Signed hypergraphs, with a surprising generalization of balance.

(SH: Bal)

Y. Crama, M. Loebl, and S. Poljak
1992a A decomposition of strongly unimodular matrices into incidence matrices of

digraphs. Discrete Math. 102 (1992), 143–147. MR 93g:05097. Zbl 776.05071.
(SG)

Lin Cui and Yi-Zheng Fan
2010a The signless Laplacian spectral radius of graphs with given number of cut ver-

tices. Discuss. Math. Graph Theory 30 (2010), no. 1, 85–93. MR 2676064
(2011j:05196). Zbl 1215.05101. (Par: Adj)

William H. Cunningham
See J. Aráoz and M. Chudnovsky.

Dragoš M. Cvetković
See also R.A. Brualdi, F.C. Bussemaker, D.M. Cardoso, and M. Doob.

1978a The main part of the spectrum, divisors and switching of graphs. Publ. Inst.
Math. (Beograd) (N.S.) 23 (37) (1978), 31–38. MR 80h:05045. Zbl 423.05028.

1995a Star partitions and the graph isomorphism problem. Linear Algebra Appl. 39
(1995), 109–132. MR 97b:05105. Zbl 831.05043.

Pp. 128–130 discuss switching-equivalent graphs. Some of the theory
is invariant, hence applicable to two-graphs. [Question. How can this be
generalized to signed graphs and their switching classes?] (TG: Adj)
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2005a Signless Laplacians and line graphs. Bull. Cl. Sci. Math. Nat. Sci. Math. No.
30 (2005), 86–92. MR 2213761 (2006m:05152). Zbl 1119.05066.

See Cvetković, Rowlinson, and Simić (2007a). (Par: Adj)

2008a New theorems for signless Laplacian eigenvalues. Bull. Cl. Sci. Math. Nat. Sci.
Math. No. 33 (2008), 131–146. MR 2609604 (2011b:05145). Zbl 1199.05212.

See Cvetković, Rowlinson, and Simić (2007a). (Par: Adj)

Dragoš M. Cvetković and Michael Doob
1984a Root systems, forbidden subgraphs, and spectral characterizations of line graphs.

In: Graph Theory (Novi Sad, 1983), pp. 69–99. Univ. Novi Sad, Novi Sad, 1984.
MR 751442 (86a:05088). (sg: par: Geom, LG)

authorDragos M. Cvetković, Michael Doob, Ivan Gutman, and Aleksandar Torgašev
1988a Recent Results in the Theory of Graph Spectra. Ann. Discrete Math., 36. North-

Holland, Amsterdam, 1988. MR 89d:05130. Zbl 634.05034.
Signed graphs mentioned: P. 40 cites Zaslavsky (1981a). Pp. 44–

45 (with unusual terminology) describe B.D. Acharya (1980a) and Gill
(1981b). P. 100 cites B.D. Acharya (1979b). All-negative signatures are
implicated in the infinite-graph eigenvalue theorem of Torgašev (1982a),
Thm. 6.29 of this book. Möbius molecules (with signed molecular graphs)
mentioned on p. 149. (SG, par: Adj: Exp, Appl, Ref)

Dragoš M. Cvetković, Michael Doob, and Horst Sachs
1980a Spectra of Graphs: Theory and Application. VEB Deutscher Verlag der Wis-

senschaften, Berlin, 1980. Copublished as: Pure and Appl. Math., Vol. 87.
Academic Press, New York-London, 1980. MR 81i:05054. Zbl 458.05042.

§4.6: Signed digraphs with multiple edges are employed to analyze
the characteristic polynomial of a digraph. (Signed) switching, too. Pp.
187–188: Exercises involving Seidel switching and the Seidel adjacency
matrix. Thm. 6.11 (Doob (1973a)): The even-cycle matroid determines
the eigenvaluicity of −2. §7.3: “Equiangular lines and two-graphs.”
[Annot. ≤ 2000, rev. 20 Sept 2010.]

(SD, par, TG: Sw, Adj, Geom: Exp, Exr, Ref)

1982a Spectra of Graphs: Theory and Application. VEB Deutscher Verlag der Wis-
senschaften, Berlin, 1982. MR 84a:05046.

Update of (1980a). (SD, par, TG: Sw, Adj, Geom: Exp, Exr, Ref)

1995a Spectra of Graphs: Theory and Applications. Third ed. Johann Ambrosius
Barth, Heidelberg, 1995. MR 96b:05108. Zbl 824.05046.

Appendices update (1982a), beyond the updating in Cvetković, Doob,
Gutman, and Torgašev (1988a). App. B.3, p. 381 mentions work of
Vijayakumar (q.v.). P. 422: Pseudo-inverse graphs (when A(Γ)−1 =
A(Σ) for some balanced Σ, |Σ| is the “pseudo-inverse” of Γ).

(SD, par, TG: Adj, Sw, Geom, Bal: Exp, Exr, Ref)

Dragoš Cvetković, Michael Doob, and Slobodan Simić
1980a Some results on generalized line graphs. C. R. Math. Rep. Acad. Sci. Canada

2 (1980), 147–150. MR 81f:05136. Zbl 434.05057.
Abstract of (1981a). (sg: LG, Adj(LG), Aut(LG))

1981a Generalized line graphs. J. Graph Theory 5 (1981), 385–399. MR 82k:05091.
Zbl 475.05061. (sg: LG, Adj(LG), Aut(LG))
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Dragoš Cvetković, Peter Rowlinson, and Slobodan K. Simić
2004a Spectral Generalizations of Line Graphs: On Graphs with Least Eigenvalue −2.

London Math. Soc. Lect. Note Ser., 314. Cambridge Univ. Press, Cambridge,
Eng., 2004. MR 2120511 (2005m:05003). Zbl 1061.05057.

Generalized line graphs are the fundamental example. Pp. 190–191
mention signed graphs representable in root systems as in papers of G.R.
Vijayakumar (q.v.) [but not mentioning line graphs of signed graphs].
[Annot. 13 Oct 2010.] (LG: Gen, Geom, Adj)(SG: Geom: Exp)

2007a Signless Laplacians of finite graphs. Linear Algebra Appl. 423 (2007), no. 1,
155–171. MR 2312332 (2008c:05105). Zbl 1113.05061.

“Signless Laplacian” Q(Γ) := Kirchhoff matrix K(−Γ) = D(Γ) +
A(Γ). Spectral properties; bounds for graph invariants; combinatorics
of coefficients of characteristic polynomial of K(−Γ). [Problem. Find
all articles on “signless Laplacians”, herein called K(−Γ). Generalize
to signed graphs, with nonbipartite graphs generalizing to unbalanced
graphs.] [Annot. 14 Sept 2010.] (Par: Adj)

2007b Eigenvalue bounds for the signless Laplacian. Publ. Inst. Math. (Beograd)
(N.S.) 81(95) (2007), 11–27. MR 2401311 (2009e:05181). Zbl 1164.05038.

See (2007a). Thm.: For connected Γ with |V | = n and |E| = m,
λ1(K(−Γ)) is maximized when Γ is a nested split graph. Also, many
computer-generated conjectures (cf. Aouchiche and Hansen (2010a));
some are proved (here or elsewhere) or disproved; some are difficult.
[Annot. 4 Sept 2010, 22 Jan 2012.] (Par: Adj, LG)

2010a An Introduction to the Theory of Graph Spectra. London Math. Soc. Stu-
dent Texts, 75. Cambridge Univ. Press, Cambridge, Eng., 2010. MR 2571608
(2011g:05004). Zbl 1211.05002.

Graph switching in §1.1 Reduced line graphs of simply signed graphs
are implicit in the construction of generalized line graphs in §1.2. [An-
not. 14 Sept 2010.] (tg: Sw: Exp)(sg: LG: Exp)
§7.8, “The signless Laplacian”. (Par: Adj: Exp)

Dragoš M. Cvetković and Slobodan K. Simić
1978a Graphs which are switching equivalent to their line graphs. Publ. Inst. Math.

(Beograd) (N.S.) 23 (37) (1978), 39–51. MR 80c:05108. Zbl 423.05035.
(sw: LG)

2009a Towards a spectral theory of graphs based on the signless Laplacian. I. Publ.
Inst. Math. (Beograd) (N.S.) 85(99) (2009), 19–33. MR 2536686 (2010i:05203).
Zbl 224.05293.

See Cvetković, Rowlinson, and Simić (2007a). (Par: Adj)

2010a Towards a spectral theory of graphs based on the signless Laplacian. II. Linear
Algebra Appl. 432 (2010), no. 9, 2257–2272. MR 2599858 (2011d:05217). Zbl
1218.05089.

See Cvetković, Rowlinson, and Simić (2007a). (Par: Adj)

2010b Towards a spectral theory of graphs based on the signless Laplacian. III. Appl.
Anal. Discrete Math. 4 (2010), no. 1, 156–166. MR 2654936 (2011m:05169).

See Cvetković, Rowlinson, and Simić (2007a). (Par: Adj)

2011a Graph spectra in Computer Science. Linear Algebra Appl. 434 (2011), no. 6,
1545–1562. MR 2775765 (2011m:05170). Zbl 1207.68230. (Par: Adj: Exp)
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D. Cvetković, S.K. Simić, and Z. Stanić
2010a Spectral determination of graphs whose components are paths and cycles. Com-

puters Math. Appl. 59 (2010), 3849–3857. MR 2651858 (2011j:05197). Zbl
1198.05110. (Par: Adj)

Marek Cygan, Marcin Pilipczuk, Micha lPilipczuk, and Jakub Onufry Woj-
taszczyk

20xxa Sitting closer to friends than enemies, revisited. Submitted. arXiv:1201.1869.
Sequel to Kermarrec and Thraves (2011a). [Annot. 26 Apr 2012.]

(SG: KG: Bal, Alg)

A. Daemi
See S. Akbari.

Edwin R. van Dam and Willem H. Haemers
2003a Which graphs are determined by their spectrum? Special issue on the Combi-

natorial Matrix Theory Conference (Pohang, 2002). Linear Algebra Appl. 373
(2003), 241–272. MR 2022290 (2005a:05135). Zbl 1026.05079.

(Par: Adj)(Par: Adj: Exp)

2009a Developments on spectral characterizations of graphs. Int. Workshop Design
Theory, Graph Theory, Comput. Methods – IPM Combinatorics II. Discrete
Math. 309 (2009), no. 3, 576–586. MR 2499010 (2010h:05178). Zbl 1205.05156.

New and old results on K(−Γ), the “signless Laplacian” of Γ. [Annot.
20 Dec 2011.] (Par: Adj)(Par: Adj: Exp)

Susan S. D’Amato
1979a Eigenvalues of graphs with twofold symmetry. Molecular Phys. 37 (1979), 1363–

1369. MR 535191 (80c:05098).
Spectrum of signed covering graph. [See Butler (2010a).] [Annot. 9

Mar 2011.] (sg: cov: Adj)

1979b Eigenvalues of graphs with threefold symmetry. Theor. Chim. Acta 53 (1979),
319–326.

Ternary gain graphs: spectrum of covering graph, as with signed graphs
in (1979a). [Annot. 9 Mar 2011.] (gg: cov: Adj)

Jeffrey M. Dambacher, Richard Levins, and Philippe A. Rossignol
2005a Life expectancy change in perturbed communities: Derivation and qualitative

analysis. Math. Biosciences 197 (2005), no. 1, 1–14. MR 2167483 (2006d:92058).
Zbl 1074.92037. (SD: QM: QSta: Cycles, Ref)

Jeffrey M. Dambacher, Hiram W. Li, and Philippe A. Rossignol
2003a Qualitative predictions in model ecosystems. Ecological Modelling 161 (2003),

no. 1, 79–93.
Feedback predictions from signed digraph (D, σ) via “weighted predic-

tions” Wij := |Cij(−A(D, σ))|/Pij(A(D)), where Cij is the cofactor and
Pij is the permanental cofactor. Wij = 1 means perfect predictability,
= 0 means no predictability. Numerical tests. Dictionary: “Community
matrix” = A(D, σ). [Annot. 9 Sept 2010.]

(SD: QM: QSta: Cycles, Ref)

E. Damiani, O. D’Antona, and F. Regonati
1994a Whitney numbers of some geometric lattices. J. Combin. Theory Ser. A 65

(1994), 11–25. MR 95e:06019. Zbl 793.05037.
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E.g., log concavity of Whitney numbers of the second kind of Dowling
lattices. [Cf. Stonesifer (1975a) and Benoumhani (1999a).] [Annot.
Rev 30 Apr 2012.] (gg: M: Invar)

A. Danielian
1961a Ground state of an Ising face-centered cubic lattice. Phys. Rev. Lett. 6 (1961),

670–671.
“Ground states”, i.e. ζ : V → {+1,−1} with smallest |(Eζ)−|, of the all-

negative (antiferromagnetic) R × R× face-centered cubic lattice graph
[assumed toroidal to avoid boundary effects?]. Frustration index l =
2|V |; the number (“degeneracy”) of ground states is 2A

√
[3]|V | where A >

0; each ground state has 4-regular E−. See (1964a) for more structure.
[Problem. Determine the exact number and precise shape of all ground
states ζ in terms of the graph. Is there something interesting about
(Σζ)−, e.g., in its circle decomposition, symmetries, or transformations
from one to another?] [Annot. 21 Jun 2012.] (SG, Phys: Par: Fr)

1964a Low-temperature behavior of a face-centered cubic antiferromagnet. Phys. Rev.
133 (1964), no. 5A, A1344–A1349.

§ II, “The ground state”, continues (1961a) with more details on the
structure of ground states ζ. The number of them is small compared
to the all-negative triangular lattice [Question: and other all-negative,
highly symmetric graphs?]. ζ on each x-, y-, or z-layer has a form de-
scribed in the paper. Low-weight distance-2 edges will fix the ground
state (p. A1346). § III, “The partition function”, studies the effect of
moving out of ground states. App. A derives a formula for the energy
change from switching a cluster of vertices, in terms of frustrated and sat-
isfied edges within and without the cluster. App. B estimates the effect
of switching additional vertices. [Problem. Find rigorous treatments of
such switchings; this means studying the energy landscape of state space
{ζ} = {+1,−1}{+1,−1}V .] Dictionary: “bond” = edge, “even/odd bond”
= frustrated/satisfied edge = switches to + or −. [Annot. 21 Jun 2012.]

(Phys, SG: Par: Fr)

O. D’Antona
See E. Damiani.

George B. Dantzig
1963a Linear Programming and Extensions. Princeton Univ. Press, Princeton, N.J.,

1963. MR 34 #1073. Zbl (e: 108.33103).
Chapter 21: “The weighted distribution problem.” 21-2: “Linear graph

structure of the basis.” (GN: M(Bases))

F.A. Dar
See S. Pirzada.

Kinkar Ch. Das
2010a On conjectures involving second largest signless Laplacian eigenvalue of graphs.

Linear Algebra Appl. 432 (2010), no. 11, 3018–3029. MR 2639266 (2011h:05151).
Zbl 1195.05040.

See Cvetković, Rowlinson, and Simić (2007a). (Par: Adj)

2011a Proof of conjecture involving the second largest signless Laplacian eigenvalue
and the index of graphs. Linear Algebra Appl. 435 (2011), no. 10, 2420–2424.
Zbl 1223.05171. (Par: Adj)
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2012a Proof of conjectures involving the largest and the smallest signless Laplacian
eigenvalues of graphs. Discrete Math. 312 (2012), 992–998.

Assume n ≥ 4; λ1 = max eigenvalue. Thm. 3.2: λ1(−Γ) + λn(−Γ) ≤
3n−2−2α(Γ), where α := independence number; = iff Γ = Kn−α∨ K̄α.
Thm. 3.3: λ1(−Γ)− λn(−Γ) ≥ 2 + 2 cos(/pi/n), with equality iff Γ is a
path or odd circle. [Annot. 21 Jan 2012.] (Par: Adj)

Prabir Das and S.B. Rao
1983a Alternating eulerian trails with prescribed degrees in two edge-colored complete

graphs. Discrete Math. 43 (1983), 9–20. MR 84k:05069. Zbl 494.05020.
Given an all-negative bidirected Kn and a positive integer fi = 2gi

for each vertex vi. There is a connected subgraph having in-degree and
out-degree = gi at vi iff there is a g-factor of introverted and one of
extroverted edges and the degrees satisfy a complicated degree condition.
Generalizes Thm. 1 of Bánkfalvi and Bánkfalvi (1968a). [See Bang-
Jensen and Gutin (1997a) for how to convert an edge 2-coloring to an
orientation of an all-negative graph and for further developments on
alternating walks.] (par: ori)

B. Dasgupta, G.A. Enciso, E.D. Sontag, and Y. Zhang
2006a Algorithmic and complexity results for decompositions of biological networks

into monotone subsystems. In: C. ?varez and M. Serna, eds., Experimental
Algorithms (5th Int. Workshop, WEA 2006, Cala Galdana, Menorca, 2006),
pp. 253–264. Lect. Notes in Comput. Sci., Vol. 4007. Springer-Verlag, Berlin,
2006. Zbl 196.92016.

James A. Davis
1963a Structural balance, mechanical solidarity, and interpersonal relations. Amer.

J. Sociology 68 (1963), 444–463. Repr. with minor changes in: Joseph Berger,
Morris Zelditch, Jr., and Bo Anderson, eds., Sociological Theories in Progress,
Vol. One, Ch. 4, pp. 74–101. Houghton Mifflin, Boston, 1966. Also reprinted in:
Samuel Leinhardt, ed., Social Networks: A Developing Paradigm, pp. 199–217.
Academic Press, New York, 1977. (PsS: SG, WG: Exp)

1967a Clustering and structural balance in graphs. Human Relations 20 (1967), 181–
187. Repr. in: Samuel Leinhardt, ed., Social Networks: A Developing Paradigm,
pp. 27–33. Academic Press, New York, 1977.

Σ is “clusterable” if its vertices can be partioned so that each positive
edge is within a part and each negative edge joins different parts. Thm.:
Σ is clusterable ⇐⇒ no circle has exactly one negative edge. [See
Doreian and Mrvar (1996a).] (SG: Clu)

1979a The Davis/Holland/Leinhardt studies: An overview. In: Paul W. Holland
and Samuel Leinhardt, eds., Perspectives on Social Network Research (Proc.
Sympos., Dartmouth Coll., Hanover, N.H., 1975), Academic Press, New York,
1979.

Survey of triad analysis in signed complete digraphs; cf. e.g. Davis
and Leinhardt (1972a), Wasserman and Faust (1994a). [Annot. 28 Apr
2009.]

(PsS, SD: Clu(Gen): Exp)

James A. Davis and Samuel Leinhardt
1972a The structure of positive interpersonal relations in small groups. In: Joseph

Berger, Morris Zelditch, Jr., and Bo Anderson, eds., Sociological Theories in
Progress, Vol. Two, Ch. 10, pp. 218–251. Houghton Mifflin, Boston, 1972.
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In “ranked clusterability” the vertices of a signed complete, symmetric
digraph are divided into levels. The set of levels is totally ordered. A
symmetric pair, {+vw,+wv} or {−vw,−wv}, should be within a level.
For an asymmetric pair, {+vw,−wv}, w should be at a higher level than
v. Analysis in relation to both randomly generated and observational
data. [Annot. 28 Apr 2009.] (PsS, SD: Clu(Gen))

A.C. Day, R.B. Mallion, and M.J. Rigby
1983a On the use of Riemannian surfaces in the graph-theoretical representation of

Möbius systems. In: R.B. King, ed., Chemical Applications of Topology and
Graph Theory (Proc. Sympos., Athens, Ga., 1983), pp. 272–284. Stud. Phys.
Theor. Chem., Vol. 28. Elsevier, Amsterdam, 1983. MR 85h:05039.

A clumsy but intriguing way of representing some signed (or more
generally, Zn-weighted) graphs: via 2-page (or, n-page) looseleaf book
embedding (all vertices are on the spine and each edge is in a single page),
with an edge in page k weighted by the “sheet parity index” αk = (−1)k

(or, e2πik/n). (Described in the [unnecessary] terminology of an n-sheeted
Riemann surface.) [A Zn-weighted) graph has such a representation iff
the subgraph of edges with each weight is outerplanar.]

A variation to get switching classes of signed circles: replace αk by
the “connectivity parity index” ασkk where σk = number of edges in page
k. [The variation is valid only for circles.] [Questions vaguely suggested
by these procedures: Which signed graphs can be switched so that the
edges of each sign form an outerplanar graph? Also, the same for gain
graphs. And there are many similar questions: for instance, the same
ones with “outerplanar” replaced by “planar.”]
(SG: sw, Adj, Top, Chem: Exp, Ref)(WG: Adj, Top: Exp, Ref)

Nair Maria Maia de Abreu
See M.A.A. de Freitas and C.S. Oliveira.

Marisa Debowsky
See D. Archdeacon.

Pierre de la Harpe
See P. de la Harpe under “H”.

Anne Delandtsheer
1995a Dimensional linear spaces. In: F. Buekenhout, ed., Handbook of Incidence

Geometry: Buildings and Foundations, Ch. 6, pp. 193–294. North-Holland,
Amsterdam,1995. MR 96k:51012. Zbl 950.23458.

“Dimensional linear space” (DLS) = simple matroid. §2.7: “Dowling
lattices,” from Dowling (1973b). §6.7: “Subgeometry-closed and hered-
itary classes of DLS’s,” from Kahn and Kung (1982a). In §2.6, the
“Enough modular hyperplanes theorem” from Kahn and Kung (1986a).

(GG: M: Exp)

Patrick De Leenheer
See D. Angeli.

John G. del Greco
See also C.R. Coullard.

1992a Characterizing bias matroids. Discrete Math. 103 (1992), 153–159. MR 93m:-
05050. Zbl 753.05021.

How to decide, given a matroid M and a biased graph Ω, whether
M = G(Ω). (GG: M)
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Leonardo Silva de Lima
See also C.S. Oliveira.

Leonardo Silva de Lima, Carla Silva Oliveira, Nair Maria Maia de Abreu, and
Vladimir Nikiforov

2011a The smallest eigenvalue of the signless Laplacian. Linear Algebra Appl. 435
(2011), no. 10, 2570–2584. MR 2811139 (2012g:05140). Zbl 1222.05180.

(Par: Adj)

Alberto Del Pia and Giacomo Zambelli
2009a Half-integral vertex covers on bipartite bidirected graphs: total dual integral-

ity and cut-rank. SIAM J. Discrete Math. 23 (2009), no. 3, 1281–1296. MR
2538651 (2011b:05200). Zbl 1227.05209.

Dictionary: “Bipartite” = balanced. (sg: Ori: Incid, Alg)

Ernesto W. De Luca
See J. Kunegis.

Emanuele Delucchi
2007a Nested set complexes of Dowling lattices and complexes of Dowling trees. J.

Algebraic Combin. 26 (2007), no. 4, 477–494. MR 2008i:05190. Zbl 1127.05107.
Studies Dowling trees (cf. Hultman 2007a). (gg: M: Invar)

Renata R. Del-Vecchio
See M.A.A. de Freitas.

Erik D. Demaine, Dotan Emanuel, Amos Fiat, and Nicole Immorlica
2006a Correlation clustering in general weighted graphs. Approximation and Online

Algorithms. Theoretical Computer Sci. 361 (2006), no. 2–3, 172–187. MR
2252576 (2008e:68157). Zbl 1099.68074.

Weighted signed-graph clustering; cf. Bansal, Blum, and Chawla (2002a,
2004a). An O(log n)-approximation algorithm for the weighted case
based on linear-programming rounding and region growing. We also
prove that this linear program has a gap of Ω(log n), and therefore our
approximation is tight under this approach. An O(r3)-approximation
algorithm for graphs without a Kr,r-minor [e.g., planar, if r = 3]. The
problem is equivalent to minimum multicut, and therefore APX-hard
and difficult to approximate better than Θ(log n). [Annot. 13 Sept
2009.] (SG: WG: Clu: Alg)

Erik Demaine and Nicole Immorlica
2003a Correlation clustering with partial information. In: Proceedings of the 6th

International Workshop on Approximation Algorithms for Combinatorial Op-
timization Problems and 7th International Workshop on Randomization and
Approximation Techniques in Computer Science (RANDOM-APPROX 2003)
(Princeton, N.J., 2003), pp. 1–13. Lect. Notes in Computer Sci., Vol. 2764.
Springer, Berlin, 2003. MR 2080776 (2005c:68291). Zbl 1202.68479.

Conference version of Demaine, Emanuel, Fiat, and Immorlica (2006a).
[Annot. 13 Sept 2009.] (SG: WG: Clu: Alg)

Jacques Demongeot
See J. Aracena and O. Cinquin.

Hongzhong Deng and Peter Abell
2010a A study of local sign change adjustment in balancing structures. J. Math.

Sociology 34 (2010), no. 4, 253–282. Zbl 1201.91166.
A random signed graph has edge vw with probability d, which is posi-

tive with probability α0. Degree of balance is the proportion of triangles
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that are positive. A triangle of type Ti has i positive edges. They study
the long-term proportions of triangle types in examples. §3, “Balance
adjustment under a local rule”: A triangle4uvw and edge uv are chosen
at random; uv changes sign iff 4uvw is negative. This “myopic adjust-
ment rule” is iterated. For 0 < α0 < 1, the proportions approach 37%
each of 1 or 2 and 13% each of 0 or 3 negative edges. This contradicts the
Cartwright–Harary (1957a) balance hypothesis. Convergence behavior
in examples depends interestingly on n and d. §§4–7: The sign-change
probability depends on the triangle type. Probabilities are suggested
by models of Harary–Cartwright, Davis (1967a), and others, in which
different sets of triangle types are “attractors”. Analytical and example
results are reported.

Model based on Antal, Krapivsky, and Redner (2006a). Successor to
Abell and Ludwig (2009a) and Kujawski, Abell, and Ludwig (20xxa).
[See Barahona, Maynard, Rammal, and Uhry (1982a) for modelling of
planar grid graphs.] [Annot. 6 Dec 2009.] (SG: Bal)

Hongzhong Deng, Peter Abell, Ji Li, and Jun Wu
2012a A study of sign adjustment in weighted signed networks. Social Networks 34

(2012), no. 2, 253–263. (SG: WG, PsS)

Hongzhong Deng, Peter Abell, Jun Wu, and Yuejin Tang
20xxa The influence of structural balance and homophily/heterophobia on the adjust-

ment of random complete signed networks. Submitted. (SG: Bal, PsS: KG)

Wouter de Nooy
See W. de Nooy (under N).

Arnout van de Rijt
See A. van de Rijt (under V).

B. Derrida, Y. Pomeau, G. Toulouse, and J. Vannimenus
1979a Fully frustrated simple cubic lattices and the overblocking effect. J. Physique

40 (1979), 617–626.
Physics of the signed d-hypercube in which every plaquette is negative;

specifically, [cleverly] construct Σd = (Qd, σd), d > 0, as Σd−1 × (+Q1)
with the second copy of Σd−1 negated. Invariants of physical interest are
computed and compared to the balanced case. Dictionary: “plaquette”
= square. (Phys: SG)

1980a Fully frustrated simple cubic lattices and phase transitions. J. Physique 41
(1980), 213–221. MR 566063 (80m:82020). (Phys: SG)

Madhav Desai and Vasant Rao
1994a A characterization of the smallest eigenvalue of a graph. J. Graph Theory 18

(1994), no. 2, 181–194. MR 1258251 (95c:05084). Zbl 792.05096.
ψ(Γ) := minS(l(−Γ:S)+ |E(S, Sc)|/|S|), over ∅ ⊂ S ⊆ V , is a measure

of nonbipartiteness of Γ. µ1 := smallest eigenvalue of K(−Γ) satisfies
ψ(Γ)2/4∆(Γ) ≤ µ1 ≤ 4ψ(Γ). Their emin(Γ) := l(−Γ). [See Cvetković,
Rowlinson, and Simić (2007a).] [Annot. 19 Sept 2010.] (Par: Adj, Fr)

L. de Sèze
See L. de Sèze (under S).

C. De Simone, M. Diehl, M. Jnger, P. Mützel, G. Reinelt, and G Rinaldi
1995a Exact ground states of Ising spin glasses: New experimental results with a

branch and cut algorithm. J. Stat. Phys. 80 (1995), 487–496. Zbl 1106.82323.
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Improves the algorithm of Barahona, Grötschel, Michael Jünger, and
Gerhard Reinelt (1988a) to find a switching with minimum |E−| (= l(Σ))
for signed toroidal square lattice graphs with an extra vertex (exterior
magnetic field) and a fixed proportion of negative edges. Applied to
many signatures in order to find statistical properties. [Annot. 18 Aug
2012.] (Phys, sg: Fr: Alg)

1996a Exact ground states of two-dimensional ±J Ising spin glasses. J. Stat. Phys.
84 (1996), 1363–1371.

Continuation of (1995a). [Annot. 18 Aug 2012.] (Phys, sg: Fr: Alg)

A.H. Deutz, A. Ehrenfeucht, and G. Rozenberg
1994a Hyperedge channels are abelian. Theor. Computer Sci. 127 (1994), 367–393.

MR 96b:68023. Zbl 824.68011. (GH)

M. DeVos
2004a Flows on bidirected graphs. Manuscript, 2004.

Corrected and extended in Raspaud and Zhu (2011a) (q.v.). [Annot.
23 March 2010.] (SG: Ori, Flows)

M. Deza, V.P. Grishukhin, and M. Laurent
1991a The symmetries of the cut polytope and of some relatives. In: Peter Gritz-

man and Bernd Sturmfels, eds., Applied Geometry and Discrete Mathemat-
ics: The Victor Klee Festschrift, pp. 205–220. DIMACS Ser. Discrete Math.
Theor. Comput. Sci., Vol. 4. American Math. Soc., Providence, R.I., 1991. MR
1116350 (92e:52019). Zbl 748.05061.

Switching (on coordinates) is an important symmetry of the cut poly-
tope Pn (of Kn); see p. 206. [See (1997a).] Thm. 2.6: AutPn = Dn,
the Weyl group [= SwAut(±Kn), the switching automorphism group].
Question (p. 207): For the cut polytope Pc(Γ), does AutPc(Γ) =
SwAut(±Γ)? [Edge signs and SwAut are not stated as such.] [An-
not. 12 Jun 2012.] (sg: par: KG: Geom, sw)

Michel Marie Deza and Monique Laurent
1997a Geometry of Cuts and Metrics. Algorithms and Combin., Vol. 15. Springer,

Berlin, 1997. MR 98g:52001. Zbl 885.52001.
A main object of interest is the cut polytope, which is the bipartite

subgraph polytope (see Barahona, Grötschel, and Mahjoub (1985a)) of
Kn, i.e., the balanced subgraph polytope (Poljak and Turźık (1987a))
of −Kn. §4.5, “An application to statistical physics”, briefly discusses
the spin glass application. §26.3, “The switching operation”, discusses
graph switching and its generalization to sets. §30.3, “Circulant inequal-
ities”, mentions Poljak and Turźık (1987a, 1992a). No explicit mention
of signed graphs. (sg: par: KG: fr, sw Geom: Exp)

Persi Diaconis
See K.S. Brown.

Y. Diao, G. Hetyei, and K. Hinson
2009a Tutte polynomials of tensor products of signed graphs and their applications

in knot theory. J. Knot Theory Ramifications 18 (2009), no. 5, 561–589. MR
2527677 (2010c:57010). Zbl 1185.05083. arXiv:math/0702328.

(SGc: Invar, Knot)

M. Diehl
See C. De Simone.
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Hung T. Diep, P. Lallemand, and O. Nagai
1985a Simple cubic fully frustrated Ising crystal by Monte Carlo simulations. J. Appl.

Phys. 57 (1985), 3309–3311.
Physics of fully frustrated 3-dimensional cubic lattice (cf. Chui, Forgacs,

and Hatch (1982a), but the negative edges are specifically chosen to
form three orthogonal families of straight lines, alternating along each
plane. As signed lattice has a 2 × 2 fundamental domain, there are
8 translational symmetry types of vertex, each forming a double-sized
sublattice. The sublattices exhibit somewhat differentiated behavior.
[Annot. 18 Jun 2012.] (Phys, SG: Fr, sw)

1985b Critical properties of a simple cubic fully frustrated Ising lattice by Monte Carlo
method. J. Phys. C 18 (1985), 1067–1078.

Simulations on the the signed graph of (1985a). The 8 sublattices are
equivalent in pairs. [Annot. 18 Jun 2012.] (Phys, SG: Fr)

V. Di Giorgio
1974a 2-modules dans un graphe: equilibre et coequilibre d’un bigraphe—application

taxonomique. Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.) 18 (66)
(1974), 81–102 (1975). MR 57 #16124. Zbl 324.05127. (SG: Bal)

Wil Dijkstra
1979a Response bias in the survey interview; an approach from balance theory. Social

Networks 2(1979-1980), no. 3, 285–304.
Extends signed graphs to sign set {±1, 0} and extends the notion of

(degree of) cycle balance. A circle C is “balanced” if its sign product
σ(C) = +1. Degree of balance = average sign product of all circles.
Degree of local balance at X ⊆ V is the average sign of all circles that
contain X. Given a length weight function 1 ≥ f(2) ≥ f(3) ≥ · · · ≥ 0,
the weighted degree of balance is the average value of f(l(C))σ(C). [Cf.
kinds of cycle balance in Cartwright and Harary (1956a), Morrissette
(1958a), Norman and Roberts (1972a,b).] (SG: Bal, Fr)

It is assumed [!] that answers have probability dependent on weighted
degree of local balance at {p, y} where p = respondent and y = answer.
Speculation about choice of functions f et al. One post-hoc application.

(SG: PsS)

Genhong Ding
See X.B. Ma.

Yvo M.I. Dirickx and M.R. Rao
1974a Networks with gains in discrete dynamic programming. Management Sci. 20

(1974), No. 11 (July, 1974), 1428–1431. MR 50 #12279. Zbl 303.90052.
(GN: M(bases))

Ajit A. Diwan
See M. Joglekar.

Daniel B. Dix
2006a Polyspherical coordinate systems on orbit spaces with applications to biomolec-

ular shape. Acta Appl. Math. 90 (2006), 247–306. MR 2248745 (2007k:92043).
Zbl 1182.92028. (GG: Appl)

Duong D. Doan and Patricia A. Evans
2011a Haplotype inference in general pedigrees with two sites. 6th Int. Symp. Bioin-

formatics Res. Appl. (ISBRA10, Storrs, Conn., U.S.A., 2010). BMC Proc. 5
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(2011), Suppl. 2, 56, 10 pp.
A pedigree is a kind of signed graph with < n edges, with 3-colored

vertices. Frustration index (“line index”) l = minimum number of nec-
essary recombinations. Elementary relations among l, vertex cuts, and
switching. Reduction rules, inlcuding the negative-subdivision trick, to
test l ≤ k. [Question. Does sparseness reduce the hardness of testing
l ≤ k?] [Annot. 29 Apr 2012.] (Biol: SG: Fr, Alg, sw)

2011b An FPT haplotyping algorithm on pedigrees with a small number of sites.
Algorithms Molecular Biol. 6 (2011), no. 8, 8 pp.

See (2011a). This problem adds parity constraints. [Annot. 29 Apr
2012.] (Biol: SG: Fr, Alg)

Benjamin Doerr
2000a Linear discrepancy of basic totally unimodular matrices. Electronic J. Combin.

7 (2000), Research Paper R48, 4 pp. MR 2001e:15017. Zbl 996.15012.
The linear discrepancy of the transposed incidence matrix of a balanced

signed graph. (sg: bal: Incid)

B.G.S. Doman and J.K. Williams
1982a Low-temperature properties of frustrated Ising chains. J. Phys. C 15 (1982),

1693–1706.
§2, “The random bond model at low temperatures”: A path with

random edge signs, all weights J , magnetic field B [interpretable as an
extra all-positive vertex with edge weights B; cf. Barahona (1982a)]. §3,
“Frustrated periodic bond model”: A path with edges signed + − −−
periodically, with weight J , and a magnetic field B. Describes allowed
states [ground states], depending on B/J . [Annot. 28 Aug 2012.]

(Phys, SG, WG: fr)

Eytan Domany
See D. Kandel.

Bing-can Dong
See R.L. Li.

Michael Doob
See also D.M. Cvetković.

1970a A geometric interpretation of the least eigenvalue of a line graph. In: Proceed-
ings of the Second Chapel Hill Conference on Combinatorial Mathematics and
Its Applications (1970), pp. 126–135. Univ. of North Carolina at Chapel Hill,
Chapel Hill, N.C., 1970. MR 42 #2959. Zbl 209, 554 (e: 209.55403).

A readable, tutorial introduction to (1973a) (without matroids).
(ec: LG, Incid, Adj(LG))

1973a An interrelation between line graphs, eigenvalues, and matroids. J. Combin.
Theory Ser. B 15 (1973), 40–50. MR 55 #12573. Zbl 245.05125, (257.05132).

Along with Simões-Pereira (1973a), introduces to the literature the
even-cycle matroid G(−Γ) [previously invented by Tutte, unpublished].
The multiplicity of −2 as an eigenvalue (in characteristic 0) equals the
number of independent even circles = n− rkG(−Γ). In characteristic p
there is a similar theorem, but the pertinent matroid is G(Γ) if p = 2
and, when p|n, the matroid has rank 1 greater than otherwise [a fact
that mystifies me]. (EC: LG, Incid, Adj(LG))
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1974a Generalizations of magic graphs. J. Combin. Theory Ser. B 17 (1974), 205–217.
MR 51 #274. Zbl 271.05128, (287.05124).

Thm. 3.2 is the theorem of van Nuffelen (1973a), supplemented by the
observation that it remains true in any characteristic except 2.

(EC: Incid)

1974b On the construction of magic graphs. In: F. Hoffman et al., eds., Proceedings of
the Fifth Southeastern Conference on Combinatorics, Graph Theory and Com-
puting (Boca Raton, 1974), pp. 361–374. Utilitas Math. Publ. Inc., Winnipeg,
Man., 1974. MR 53 #13039. Zbl 325.05123. (ec: Incid)

1978a Characterizations of regular magic graphs. J. Combin. Theory Ser. B 25 (1978),
94–104. MR 58 #21840. Zbl 384.05054. (ec: Incid)

Michael Doob and Dragoš Cvetković
1979a On spectral characterizations and embeddings of graphs. Linear Algebra Appl.

27 (1979), 17–26. MR 81d:05050. Zbl 417.05025. (sg: LG, Adj(LG))

Patrick Doreian
See also N.P. Hummon and A. Mrvar.

1970a Book review: Balance in Small Groups by Howard F. Taylor. Sociological Rev.
18 (1970), no. 3, 422–424.

Review of Taylor (1970a). [Annot. 27 Apr 2012.]
(PsS: SG, WG: Bal, Fr, Adj: Exp)

1985a Book review: Structural Models in Anthropology by Per Hage and Frank Harary.
J. Math. Sociology 11 (1985), 283–285.

Review of Hage and Harary (1983a). [Annot. 27 Apr 2012.]
(PsS: SG: Exp)

2002a Event sequences as generators of social network evolution. Social Networks 24
(2002), 93–119. (SG: Bal, PsS)

2004a Evolution of signed human networks. Metodoloy̌ski Zvezki 1 (2004), 277–293.
Reviews the development of balance and clustering theory for signed

(di)graphs in social psychology, mainly Doreian and Mrvar (1996a),
Doreian and Krackhardt (2001a), and especially Hummon and Doreian
(2003a). The difference between Heider’s (1946a) and Cartwright and
Harary’s (1956a) models, and the need to combine them. [Annot. 24
Apr 2009.] (PsS: Exp: SD, Bal, Clu, Alg)

2006a Book review: W. de Nooy, A. Mrvar, and V. Batagelj, Exploratory Social Net-
work Analysis with Pajek. Social Networks 28 (2006), 269–274.

Review of de Nooy, Mrvar, and Batagelj (2005a). (PsS: SG, SD: Exp)

2008a A multiple indicator approach to blockmodeling signed networks. Social Net-
works 30 (2008), 247–258.

Signed graphs Σ1, . . . (“multiple indicators”) may be approximations of
a hidden signed graph Σ. Goals: detect whether Σ exists, and find an op-
timal clustering of Σ. Methods: (1) Examine the Σj for compatibility via
statistical tests. (2) Estimate Σ by

∑
j σj. (3) Applies the clusterability

index and algorithm of Doreian and Mrvar (1996a). ((2) implies using
weighted signed graphs.) This article treats examples, with analysis of
the methods’ success. [Annot. 27 Apr 2009.] (PsS, SD: sg: Clu)
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2008b Clashing paradigms and mathematics in the social sciences. Contemp. Sociology
37 (2008), no. 6, 542–545.

Two books on and the philosophy of mathematics and sociology. [An-
not. 27 Apr 2012.] (PsS: SG, SD)

Patrick Doreian, Vladimir Batagelj, and Anuška Ferligoj
2005a Generalized Blockmodeling. Structural Analysis in the Social Sciences, No. 25.

Cambridge Univ. Press, Cambridge, Eng., 2005.
Ch. 10: “Balance theory and blockmodeling signed networks”. Thm.

(pp. 305–306; proof by Martin Everett): The sizes of the partitions of
V that minimize the clustering index (Doreian and Mrvar 1996a) are
consecutive integers. (PsS, SD: sg: Clu, Bal)

Patrick Doreian, Roman Kapuscinski, David Krackhardt, and Janusz Szczy-
pula

1996a A brief history of balance through time. J. Math. Sociology 21 (1996), 113–
131. Repr. in Patrick Doreian and Frans N. Stokman, eds., Evolution of Social
Networks, pp. 129–147. Gordon and Breach, Australia, Amsterdam, etc., 1997.
Zbl 883.92034.

§2.3: “A method for group balance”. Describes the negation-minimal
index of clusterability (generalized imbalance) from Doreian and Mrvar
(1996a). (SG: Bal, Clu: Fr(Gen): Exp)
§3.3: “Results for group balance”. Describes results from analysis

of data on a small (social) group, in terms of frustration index l and
a clusterability index mink>2 2Pk,.5 (slightly different from the index in
Doreian and Mrvar (1996a)), finding both measures (but more so the
latter) decreasing with time. (PsS: Bal, Clu: Fr(Gen))

Patrick Doreian and David Krackhardt
2001a Pre-transitive balance mechanisms for signed networks. J. Math. Sociology 25

(2001), no. 1, 43–67. Zbl 1017.91520.
In a signed digraph from empirical social-group data, a tendency to

transitivity of signs on directed edges ij, ik, jk (i.e., σ(ij)σ(jk)σ(ik) =
+) holds when σ(ij) = + and fails when σ(ij) = −. This suggests that
balance is not a primary tendency and Harary’s (1953a) and Davis’s
(1967a) theorems on balance and clusterability have limited relevance
to social groups. [Also, that undirected signed graphs have limited
relevance. Digraph sign transitivity properties are more relevant.] [A
thoughtful article.] [Annot. 13 Apr 2009.] (PsS, sd)

Patrick Doreian, Paulette Lloyd, and Andrej Mrvar
20xxa Partitioning large signed two-mode networks: Problems and prospects. Social

Networks, to appear (SG: Bal, Fr, PsS)

Patrick Doreian and Andrej Mrvar
1996a A partitioning approach to structural balance. Social Networks 18 (1996), 149–

168.
They propose indices for clusterability (as in Davis (1967a)) that gener-

alize the frustration index of Σ. Fix k ≥ 2 and α ∈ [0, 1]. For a partition
π of V into k “clusters”, they define P (π) := αn− + (1 − α)n+, where
n+ := number of positive edges between clusters, n− := number of neg-
ative edges within clusters, and 0 ≤ α ≤ 1 is fixed. The first proposed
measure is minP (π), minimized over k-partitions. A second suggestion
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is the “negation-minimal index of generalized imbalance” [i.e., of clus-
terability], the smallest number of edges whose negation [equivalently,
deletion] makes Σ clusterable. [Call it the ‘clusterability index’ c(Σ).]
[Note that P (π) effectively generalizes the Potts Hamiltonian as given by
Welsh (1993a). Question. Does P (π) fit into an interesting generalized
Potts model?] [P (π) also resembles the Potts Hamiltonian in Fischer
and Hertz (1991a) (q.v. for a related research question).] [The data in
Doreian (2008a), and common sense, suggest that clusters should be
allowed to overlap. This is an open research direction.]
They employ a local optimization algorithm to evaluate Pk,α and find an

optimal partition: random descent from partition to neighboring parti-
tion, where π and π′ are neighbors if they differ by transfer of one vertex
or exchange of two vertices between two clusters. This was found to
work well if repeated many times. [A minimizing partition into at most
k clusters is equivalent to a ground state of the k-spin Potts model in
the form given by Welsh (1993a), but not quite in that of Fischer and
Hertz (1991a).]

Terminology: P (π) is called the “criterion function” [more explicitly,
one might call cα(Σ, π) := 2P (π) the ‘α-weighted clustering index of π’,
so the clusterability index c(Σ) = minπ c.5(Σ, π)]. Clusterability is “k-
balance” or “generalized balance”. The clusters are “plus-sets”. Signed
digraphs are employed in the notation but direction is ignored.

(SD: sg: Bal, Clu: Fr(Gen), Alg, PsS)

1996b Structural balance and partitioning signed graphs. In: A. Ferligoj and A.
Kramberger, eds., Developments in Data Analysis, pp. 195–208. Metodološki
zvezki, Vol. 12. FDV, Ljubljana, Slovenia, 1996.

Similar to (1996a). Some lesser theoretical detail; some new examples.
The k-clusterability index Pk,α (1996a) is compared for different values
of k, seeking the minimum. [But for which value(s) of α is not stated.]
Interesting observation: optimal values of k were small. It is said that
positive edges between parts are far more acceptable socially than nega-
tive edges within parts [thus, in the criterion function α should be rather
near 1]. (SD: sg: Bal, Clu: Fr(Gen), Alg, PsS)

2009a Partitioning signed social networks. Social Networks 31 (2009), no. 1, 1–11.
Generalizes the ideas of (1996a) (q.v.). Given: A signed digraph

(~Γ, σ); a “criterion function” P (π, ρ) := αn+ + (1 − α)n−, where π :=
{B1, . . . , Bk} partitions V into “clusters”, ρ : π × π → {+,−}, 0 ≤
α ≤ 1 is fixed, and nε := number of edges

−−−→
BiBj with sign ε for which

ρ(Bi, Bj) = −ε (over all i, j). Objective: (π, ρ), or simply k := |π|, that
minimizes P (π, ρ). What is new and most interesting is ρ; also new is
using the edge directions.

Call (~Γ, σ) “sign clusterable” if ∃ (π, ρ) with P (π, ρ) = 0. Cluster-
ability is sign clusterability with ρ = ρ+, where ρ+(Bi, Bj) := + if i =
j, − if i 6= j. Let P (k) := min{P (π, ρ) : |π| = k}. Thm. 4: P (k) is
monotonically decreasing. [Thus, there is always an optimum π with sin-
gleton clusters. Why this does not vitiate the model is not addressed.]

Thm. 5: If (~Γ, σ) is sign clusterable, then (~Γ,−σ) also is. If (~Γ, σ) is
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clusterable, then (~Γ,−σ) is not clusterable with the same π [provided

E 6= ∅]. If (~Γ, σ) is sign clusterable with ρ = −ρ+, then (~Γ,−σ) is clus-
terable with the same π. “Relocation”: Shift one vertex, or exchange
two vertices, between blocks so as to decrease P , as in (1996a). This is
said (but not proved) to minimize P .

Refinements discussed: partially prespecified blocks; null blocks (with-
out outgoing edges); criterion functions with special treatment of null
blocks.

Applications to standard test examples of social psychology.
Dictionary: “balanced” = clusterable; “relaxed balanced” = sign clus-

terable; “k-balanced” = clusterable with |π| = k; “relaxed structural
balance blockmodel” = this whole system. [Annot. 7 Feb 2009.]

(SG: Bal, Clu, PsS)

W. Dörfler
1977a Double covers of graphs and hypergraphs. In: Beitrage zur Graphentheorie

und deren Anwendungen (Proc. Int. Colloq., Oberhof, D.D.R., 1977), pp. 67–
79. Technische Hochschule, Ilmenau, 1977. MR 82c:05074. Zbl 405.05055.

(SG: Cov, LG)(SD, SH: Cov)

1978a Double covers of hypergraphs and their properties. Ars Combinatoria 6 (1978),
293–313. MR 82d:05085. Zbl 423.050532. (SH: Cov, LG)

Tomislav Došlić
See also Z. Yarahmadi.

Tomislav Došlić and Damir Vukičevic
2007a Computing the bipartite edge frustration of fullerene graphs. Discrete Appl.

Math. 155 (2007), 1294–1301. MR 2332321 (2008b:05086). Zbl 1118.05092.
(sg: Par: Fr)

Lynne L. Doty
See F. Buckley.

Peter Doubilet
1971a Dowling lattices and their multiplicative functions. In: Möbius Algebras (Proc.

Conf., Waterloo, Ont., 1971), pp. 187–192. Univ. of Waterloo, Ont., 1971,
reprinted 1975. MR 50 #9605. Zbl 385.05008. (GG: M)

Peter Doubilet, Gian-Carlo Rota, and Richard Stanley
1972a On the foundations of combinatorial theory (VI): The idea of generating func-

tion. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statis-
tics and Probability (Berkeley, Calif., 1970/71), Vol. II: Probability Theory, pp.
267–318. Univ. of California Press, Berkeley, Calif., 1972. MR 53 #7796.
Zbl 267.05002. Repr. in: Gian-Carlo Rota, Finite Operator Calculus, pp. 83–
134. Academic Press, New York, 1975. MR 52 #119. Zbl 328.05007. Repr.
again in: Joseph P.S. Kung, ed., Gian-Carlo Rota on Combinatorics: Introduc-
tory Papers and Commentaries, pp. 148–199. Birkhäuser, Boston, 1995. MR
99b:01027. Zbl 841.01031.

§5.3: Brief treatment of Dowling lattices via symmetric gain digraphs.
(GG: M)

T.A. Dowling
1971a Codes, packings, and the critical problem. In: Atti del Convegno di Geometria

Combinatoria e sue Applicazioni (Perugia, 1970), pp. 209–224. Ist. Mat., Univ.
di Perugia, Perugia, Italy, 1971. MR 49 #2438. Zbl 231.05029.
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Pp. 221–223: The first intimations of Dowling lattices/geometries/mat-
roids, as in (1973a, 1973b), and their higher-weight relatives (see Bonin
1993a). (gg, Gen: M)

1973a A q-analog of the partition lattice. Ch. 11 in: J.N. Srivastava et al., eds., A
Survey of Combinatorial Theory (Proc. Int. Sympos., Ft. Collins, Colo., 1971),
pp. 101–115. North-Holland, Amsterdam, 1973. MR 51 #2954. Zbl 259.05023.

Linear-algebraic progenitor of (1973b). Treats the Dowling lattice of
group GF(q)× as naturally embedded in PGn−1(q). Interesting is p. 105,
Remark: One might generalize some results to any ambient (simple)
matroid. (gg: Geom, M: Invar)

††1973b A class of geometric lattices based on finite groups. J. Combin. Theory Ser.
B 14 (1973), 61–86. MR 46 #7066. Zbl 247.05019. Erratum. Ibid. 15 (1973),
211. MR 47 #8369. Zbl 264.05022.
Qn(G) Introduces the Dowling lattices Qn(G) of a group, treated as lattices

of group-labelled partial partitions. Equivalent to the bias matroid of
complete G-gain graph GK•n. [The gain-graphic approach was known
to Dowling (1973a, p. 109) but first published in Doubilet, Rota, and
Stanley (1972a).] Isomorphism, vector representation, Whitney numbers
and characteristic polynomial. [The first and still fundamental paper.]

(gg: M: Invar)

Thomas Dowling and Hongxun Qin
2005a Reconstructing ternary Dowling geometries. Adv. Appl. Math. 34 (2005), no.

2, 358–365. MR 2005j:05017. Zbl 1068.52017.
Thm. 1.5: The Dowling geometry Qr(Z2) is the only matroid of rank

r ≥ 4 such that every contraction by a point is Qr−1(Z2). (sg: M)

20xxa Excluded minors for classes of cographic matroids. Submitted.
(GG: M, Top, SG)

Pauline van den Driessche
See van den Driessche (under ‘V’).

J.M. Drouffe
See R. Balian.

K. Drühl and H. Wagner
1982a Algebraic formulation of duality transformations for Abelian lattice models.

Ann. Phys. 141 (1982), 225–253. MR 673981 (84h:82064).
(SG, GG: Gen: D, Fr, Phys)

Natasha D’Souza
See T. Singh.

Hong Shan Du, Qing Jun Ren, Hou Chun Zhou, and Qing Yu Zheng
1998a The quasi-Laplacian permanental polynomial of a graph. (In Chinese.) Qufu

Shifan Daxue Xuebao Ziran Kexue Ban [J. Qufu Normal Univ., Nat. Sci.] 24
(1998), no. 2, 59–62. MR 1655784 (no rev). (Par: Adj)

Wenxue Du, Xueliang Li, and Yiyang Li
2010a Various energies of random graphs. MATCH Commun. Math. Comput. Chem.

64 (2010), no. 1, 251–260. MR 2677586 (2011k:05133).
Including a “tight bound” on signless Laplacian energy, of K(−Γ), and

“exact estimate” of incidence energy, of H(−Γ). [Annot. 24 Jan 2012.]
(Par: Adj)
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Hangen Duan
See S.C. Gong.

P. Robert Duimering
See G. Adejumo.

Richard A. Duke, Paul Erdös, and Vojtěch Rödl
1992a Cycle-connected graphs. Discrete Math. 108 (1992), 261–278. MR 94a:05106.

Zbl 776.05057.
All graphs are simple. This is one of four related papers that prove

extremal results concerning subgraphs of −Γ within which every two
edges belong to a balanced circle of length at most 2k, for all or particular
k. Typical theorem: Let Fl(n,m) = the largest number m′ = m′(n,m)
such that every −Γ with |V | = n and |E| ≥ m has a subgraph Σ′

with |E ′| = m′ in which every two edges belong to a balanced circle of
length at most l. For m = m(n) ≥ n3/2, there is a constant c3 > 0
such that Fl(n,m) ≤ c3m

2n−2 for all l. (§2, (2).) [Problem. Extend
these extremal results in an interesting way to arbitrary signed simple
graphs, or to simply signed graphs (no repeated edges with the same
sign). (Merely allowing positive edges in addition to negative ones just
makes the problem easier. Something more is required.)]

(par: bal(Circles): Xtreml)

David M. Duncan, Thomas R. Hoffman, and James P. Solazzo
2010a Equiangular tight frames and fourth root seidel matrices. Linear Algebra Appl.

432 (2010), 2816–2823. MR 2639246 (2011c:42081). Zbl 1223.05172.
Adjacency matrices of fourth-root-of-unity gain graphs on Kn. Dictio-

nary: “Seidel matrix” = adjacency matrix of such a gain graph. [Annot.
20 June 2011.] (gg: Geom, adj: kg)

Yen Duong, Joel Foisy, Killian Meehan, Leanne Merrill, and Lynea Snyder
†2012a Intrinsically linked signed graphs in projective space. Discrete Math. 312 (2012),

2009–2022. Zbl 1243.05101. (SG: Top)

Arne Dür
1986a Möbius Functions, Incidence Algebras and Power Series Representations. Lect.

Notes in Math., Vol. 1202. Springer-Verlag, Berlin, 1986. MR 88m:05005. Zbl
592.05006.

Dowling lattices are an example of a categorial approach to incidence-
algebra techniques in Ch. IV, §7. Computed are the characteristic poly-
nomial and second kind of Whitney numbers. Binomial concavity, hence
unimodality of the latter [cf. Stonesifer (1975a)] is proved by showing
that a suitable generating polynomial has only distinct, negative zeros
[cf. Benoumhani (1999a)]. (gg: M: Invar)

P.M. Duxbury
See M.J. Alava.

David Easley and Jon Kleinberg
2010a Networks, Crowds, and Markets: Reasoning About a Highly Connected World.

Cambridge Univ. Press, Cambridge, Eng., 2010. MR 2677125 (2011i:91001).
Zbl 1205.91007.

Ch. 5, “Positive and negative relationships”. §§5.1, “Structural bal-
ance”, 5.2, “Balanced networks and the Cartwright-Harary Theorem”:
Balance by triangles in signed complete graphs. Proof of Harary’s (1953a)
bipartition theorem for complete graphs (§5.2). §5.3, “Applications of
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structural balance”: Applications to history. Complete and incomplete
graphs. Alternatives to structural balance. §5.4, “A weaker form of
structural balance”: Clusterability (“weak balance”). Proof of Davis’s
(1967a) clusterability theorem. §5.5, “Advanced material: Generalizing
the definition of structural balance”: Two parts. §5.5A, “Structural bal-
ance in arbitrary (non-complete) networks”: Proof of Harary’s biparti-
tion theorem for general signed graphs by finding connected components
of the positive subgraph, then applying breadth-first search to sign the
components. [Annot. 22 March 2010.] (SG: Bal: Exp, Exr)
§5.5B, “Approximately balanced networks”: Thm.: If the proportion

of unbalanced triangles in a signed Kn is ≤ ε < 1
8
, and if δ :=

√
[3]ε,

then there are (1 − δ)|V | vertices in which at most a fraction δ of the
edges are negative, or there is a bipartition V = X ∪·Y such that at most
a fraction δ of the edges in X and also in Y are negative and at most
that fraction of the XY edges are positive. [Annot. 22 March 2010.]

(SG: Bal, fr)

Paul H. Edelman and Victor Reiner
1994a Free hyperplane arrangements between An−1 and Bn. Math. Z. 215 (1994),

347–365. MR 95b:52021. Zbl 793.05122.
Characterizes all Σ ⊇ +Kn whose bias matroid G(Σ) is supersolv-

able, free, or inductively free. Essentially, iff the negative links form a
threshold graph. [Continued in Bailey (20xxa). Generalized in part to
arbitrary gain groups in Zaslavsky (2001a).] (sg: M, Geom, col)

1996a Free arrangments and rhombic tilings. Discrete Comput. Geom. 15 (1996),
307–340. MR 97f:52019. Zbl 853.52013. Erratum. Discrete Comput. Geom. 17
(1997), 359. MR 97k:52013. Zbl 853.52013.

Paul H. Edelman and Michael Saks
1979a Group labelings of graphs. J. Graph Theory 3 (1979), 135–140. MR 80j:05071.

Zbl 411.05059.
Given Γ and abelian group A. Vertex and edge labellings λ : V → A

and η : E → A are “compatible” if λ(v) =
∑

e η(e) for every vertex v,
the sum taken over all edges incident with v. λ is “admissible” if it is
compatible with some η. Admissible vertex labellings are characterized
(differently for bipartite and nonbipartite graphs) and the number of
edge labelings compatible with a given vertex labelling is computed.
[Dual in a sense to Gimbel (1988a).] (WG, VS: Bal(D), Enum)

Herbert Edelsbrunner, Günter Rote, and Emo Welzl
1987a Testing the necklace condition for shortest tours and optimal factors in the

plane. In: T. Ottmann, ed., Automata, languages and programming (Proc.,
Karlsruhe, 1987), pp. 364–375. Lect. Notes in Computer Sci., Vol. 267. Springer,
Berlin, 1987. MR 88k:90065. Zbl 636.68042.

Summary of (1989a). (par: ori, Geom: Alg)

1989a Testing the necklace condition for shortest tours and optimal factors in the
plane. Theor. Computer Sci. 66 (1989), 157–180. MR 90i:90042. Zbl 686.68035.

§5.1, “Testing the feasibility of the linear program (2) or (1)”: The
dual linear program (4) belongs to an oriented all-negative signed graph.
Treated by expanding it to the graphic LP belonging to the canonical
covering graph. (par: ori, Geom: Alg)
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Jack Edmonds
See also J. Aráoz and E.L. Lawler (1976a).

1965a Paths, trees, and flowers. Canad. J. Math. 17 (1965), 449–467. MR 31 #2165.
Zbl 132, 209 (e: 132.20903).

Followed up by much work, e.g., Witzgall and Zahn (1965a); see Ahuja,
Magnanti, and Orlin (1993a) for some references.

(par: ori: incid, Alg)

1965b Maximum matching and a polyhedron with 0, 1-vertices. J. Res. Nat. Bur.
Standards (U.S.A.) Sect. B 69B (1965), 125–130. MR 32 #1012. Zbl (e:
141.21802).

Alludes to the polyhedron of Edmonds and Johnson (1970a).
(par: ori: Incid, Geom)

Jack Edmonds and Ellis L. Johnson
††1970a Matching: a well-solved class of integral linear programs. In: Richard Guy et

al., eds., Combinatorial Structures and Their Applications (Proc. Calgary Int.
Conf., Calgary, 1969), pp. 89–92. Gordon and Breach, New York, 1970. MR
42 #2799. Zbl 258.90032.

Introduces “bidirected graphs”. A “matching problem” is an integer
linear program with nonnegative and possibly bounded variables and
otherwise only equality constraints, whose coefficient matrix is the inci-
dence matrix of a bidirected graph. No proofs. [See Aráoz, Cunningham,
Edmonds, and Green-Krótki (1983a) for further work.]

(sg: Ori: Incid, Alg, Geom)

2003a Matching: a well-solved class of integral linear programs. In: Michael Jünger,
Gerhard Reinelt, and Giovanni Rinaldi, eds., Combinatorial Optimization ?Eu-
reka, You Shrink! Papers Dedicated to Jack Edmonds (5th Int. Workshop,
Aussois, France, 2001), pp. 27–30. Lect. Notes in Computer Sci., Vol. 2570,
Springer-Verlag, Berlin, 2003. MR 2163946. Zbl 1024.90505.

Readably typeset reprint of (1970a). (sg: Ori: Incid, Alg, Geom)

Yoshimi Egawa
See N. Alon.

Richard Ehrenborg
2001a Counting faces in the extended Shi arrangement Ârn. Conference Proceedings

of the 13th Int. Conference on Formal Power Series and Algebraic Combin.
(FPSAC, Tempe, Ariz., 2001), pp. 149–158.

Preliminary version of (20xxa). [Annot. 11 Mar 2011.]
(gg: col, Invar, m, Geom)

20xxa Counting faces in the extended Shi arrangement. Submitted.
Calculates the characteristic (Cor. 2.5) and, implicitly, Whitney-number

polynomials of [−r+1, r] ~Kn in terms of its affinographic hyperplane rep-
resentation, the extended Shi arrangement. The object is to count faces
of the latter by dimension and dimension of the infinite part.

(gg: col, Invar, m, Geom)

Richard Ehrenborg and Margaret A. Readdy
1998a On valuations, the characteristic polynomial, and complex subspace arrange-

ments. Adv. Math. 134 (1998), 32–42. MR 98m:52018. Zbl 906.52004.
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An abstract additive approach to the characteristic polynomial p(λ),
applied in particular (§3: “The divisor Dowling arrangement”) to “divi-
sor Dowling” hyperplane arrangements” B(m) and certain interpolating
arrangements. [Let Φ = G1K1∪· · ·∪GnKn, where V (Ki) = {v1, . . . , vi}
and Zm = G1 ≥ · · · ≥ Gn. B(m) is the complex hyperplane represen-
tation of Φ•. Thus, pB(m)(λ) = χΦ•(λ), the chromatic polynomial. This
is computable via gain-graph coloring when G1 is any finite group. The
same is true for the other arrangements treated herein.] [Annot. 25
Apr 2009.] (gg: m: Geom, Invar)

1999a On flag vectors, the Dowling lattice, and braid arrangements. Discrete Comput.
Geom. 21 (1999), 389–403. MR 2000a:52037. Zbl 941.52021.

Canonical complex hyperplane representation of the Dowling lattice
of Zk. P. 395: an interesting EL-labelling of the Dowling lattice by
a [disguised lexicographic] ordering of atoms. Thm. 4.9 is a recursive
formula for its ab-index. Thm. 5.2: the c-2d-index of the face lattices in
case k = 1, 2, i.e., those of the real root system arrangements A∗n and B∗n.
§6 presents a combinatorial description of the face lattice of B∗n [which
it is interesting to compare with that in Zaslavsky (1991b)]. Dictionary:
very confusingly, “region” = face. (gg: Geom, Invar)

2000a The Dowling transform of subspace arrangements. J. Combin. Theory Ser. A
91 (2000), 322–333. MR 2001k:52038. Zbl 962.05005.

The group expansion of an ordinary graph is generalized to expan-
sion of an R×>0-gain graph by a finite cyclic subgroup of C×, with cor-
respondingly generalized formulas for the chromatic polynomial. The
computations are technically incorrect; they should be done by gain-
graph coloring. [Dictionary: “directed cycle” = circle (not directed).]
[Generalized in Koban (2004b).] (GG: Geom, Invar)

2009a Exponential Dowling structures. European J. Combin. 30 (2009), 311–326. MR
2460236 (2010a:06007). Zbl 1157.05002.

A generalization of Stanley’s exponential structures, based on the
partition lattice, to Dowling lattices. §2 defines Dowling lattices via
partial partitions (“zero block” = set of non-partitioned elements). §3
defines Dowling exponential structures and gives compositional iden-
tities via generating functions. §4: generating-function identities for
the Möbius invariant; structures with restricted block sizes—especially,
block sizes divisible by r with K non-partitioned elements where K ≥ k
and K ≡ k (mod r). (gg: m: Invar, Enum, Exp)

Andrzej Ehrenfeucht
See also A.H. Deutz.

Andrzej Ehrenfeucht, Jurriaan Hage, Tero Harju, and Grzegorz Rozenberg
2000a Complexity issues in switching classes of graphs. In: Hartmut Ehrig et al., eds.,

Theory and Applications of Graph Transformations (TAGT’98) (Proc. 6th Int.
Workshop, Paderborn, 1998), pp. 59–70. Lect. Notes in Computer Sci., Vol.
1764. Springer-Verlag, Berlin, 2000. MR 2001e:68013 (book). Zbl 958.68133.

(TG: Sw: Alg)

2000b Pancyclicity in switching classes. Inform. Proc. Letters 73 (2000), 153–156.
MR 2001c:05081.

Every switching class of graphs except that of the edgeless graph
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contains a pancyclic graph. Thus Hamiltonicity is polynomial-time for
graph switching classes. (TG: Sw, Alg)

2006a The embedding problem for switching classes of graphs. Special issue on ICGT
2004. Fund. Inform. 74 (2006), no. 1, 115–134. MR 2282895 (2007h:68104).
Zbl 1106.68053. (GG: Sw)

Andrzej Ehrenfeucht, Tero Harju, and Grzegorz Rozenberg
1996a Group based graph transformations and hierarchical representations of graphs.

In: J. Cuny, H. Ehrig, G. Engels and G. Rozenberg, eds., Graph Grammars and
Their Application to Computer Science (5th Int. Workshop, Williamsburg, Va.,
1994), pp. 502–520. Lect. Notes in Computer Sci., Vol. 1073. Springer-Verlag,
Berlin, 1996. MR 97h:68097.

The “heierarchical structure” of a switching class of skew gain graphs
based on Kn. (gg: KG: Sw)

1997a 2-Structures—A framework for decomposition and transformation of graphs.
In: Grzegorz Rozenberg, ed., Handbook of Graph Grammars and Computing
by Graph Transformation. Vol. 1: Foundations, Ch. 6, pp. 401–478. World
Scientific, Singapore, 1997. MR 99b:68006 (book). Zbl 908.68095 (book).

A tutorial (with some new proofs). The relevant sections, based
on papers of Ehrenfeucht and Rozenberg with and without Harju, are
those about dynamic labeled 2-structures, i.e., complete graphs with
twisted gains. §6.7: “Dynamic labeled 2-structures”. §6.8: “Dynamic
`2-structures with variable domains”. §6.9: “Quotients and plane trees”.
§6.10: “Invariants”, concerns certain switching invariants called “free in-
variants” when the gains are not twisted. (gg: KG: sw: Exp, Ref)

1997b Invariants of inversive 2-structures on groups of labels. Math. Structures Com-
puter Sci. 7 (1997), 303–327. MR 98g:20089. Zbl 882.05119.

Given a gain graph (Kn, ϕ,G), a word w in the oriented edges of
Kn has a gain ϕ(w); call this ψw(ϕ). A “free invariant” is a ψw that
is an invariant of switching classes. Thm.: There is a number d =
d(Kn,G) such that the group of free invariants is generated by ψw with
w = zd1 · · · zdku1 · · ·ul where wi are triangular cycles (directed!) and
ui are commutators. [The whole paper applies mutatis mutandis to
arbitrary graphs, the triangular cycles being replaced by any set of cycles
containing a fundamental system.] Dictionary: “Inversive 2-structure”
= gain graph based on Kn. (gg: KG: Sw, Invar)

1999a The Theory of 2-Structures: A Framework for Decomposition and Transfor-
mation of Graphs. World Scientific, Singapore, 1999. MR 2001i:05001. Zbl
981.05002. (gg: KG: sw: Exp, Ref)

2004a Transitivity of local complementation and switching on graphs. Discrete Math.
278 (2004), 45–60. MR 2005d:05074. Zbl 1033.05052.

Let antilocal complementation at v mean reversing the edges except
within the neighborhood of v. Let strictly antilocal complementation
mean reversing the edges except within the closed neighborhood of v.
Every simple graph of order n can be converted to every other one by
antilocal complementations, and also by stricly antilocal complementa-
tions. (TG)

Andrzej Ehrenfeucht and Grzegorz Rozenberg
1993a An introduction to dynamic labeled 2-structures. In: Andrzej M. Borzyszkowski
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and Stefan Soko lowski, eds., Mathematical Foundations of Computer Science
1993 (Proc., 18th Int. Sympos., MFCS ’93, Gdańsk, 1993), pp. 156–173. Lect.
Notes in Computer Sci., Vol. 711. Springer-Verlag, Berlin, 1993. MR 95j:68126.

Extended summary of (1994a). (GG(Gen): KG: Sw, Str)

1994a Dynamic labeled 2-structures. Math. Structures Comput. Sci. 4 (1994), 433–
455. MR 96j:68144. Zbl 829.68099.

They prove that a complicated definition of “reversible dynamic la-
beled 2-structure” G amounts to a complete graph with a set, closed
under switching, of twisted gains in a gain group ∆. The twist is a gain-
group automorphism α such that λ(e;x, y) = [αλ(e; y, x)]−1, λ being
the gain function. Dictionary: their “domain” D = vertex set, “label-
ing function” λ (or equivalently, g) = gain function, “alphabet” = gain

group, “involution” δ = α◦ inversion, “δ-selector” Ŝ = switching func-
tion, “transformation induced by Ŝ” = switching by Ŝ; a “single axiom”
d.l. 2-structure consists of a single switching class.

Further, they investigate “clans” of G. Given g (i.e., λ), deleting
identity-gain edges leaves isolated vertices (“horizons”) and forms con-
nected components, any union of which is a “clan” of g. A clan of G is
any clan of any g ∈ G. (GG(Gen): KG: Sw, Str)

1994b Dynamic labeled 2-structures with variable domains. In: J. Karhumäki, H.
Maurer, and G. Rozenberg, eds., Results and Trends in Theoretical Computer
Science (Proc. Colloq. in Honor of Arto Salomaa, Graz, 1994), pp. 97–123.
Lect. Notes in Computer Sci., Vol. 812. Springer-Verlag, Berlin, 1994. MR
95m:68128.

Combinations and decompositions of complete graphs with twisted
gains. (GG(Gen): KG: Str, Sw)

George C.M.A. Ehrhardt, Matteo Marsili, and Fernando Vega-Redondo
2005a On the rise and fall of networked societies. In: Joaquıın Marro, Pedro L.

Garrido, and Miguel A. Muñoz, eds., Modeling Cooperative Behavior in the
Social Sciences (Proc. 8th Granada Lect., Granada, Spain, 2005), pp. 96–
103. AIP Conf. Proc., Vol. 779. Amer. Inst. Physics, Melville, N.Y., 2005.
arxiv:physics/0505019.

§ III, “The effect of negative links”: A random model where positive
edges may appear, and may change to negative. Negative edges disap-
pear over time. [Annot. 12 Aug 2012.] (SG: PsS: Rand, Phys)

Kurt Eisemann
1964a The generalized stepping stone method for the machine loading model. Man-

agement Sci. 11 (1964/65), No. 1 (Sept., 1964), 154–176. Zbl 136, 139 (e:
136.13901). (GN: Incid, M(bases))

Joyce Elam, Fred Glover, and Darwin Klingman
1979a A strongly convergent primal simplex algorithm for generalized networks. Math.

Operations Res. 4 (1979), 39–59. MR 81g:90049. Zbl 422.90081.
(GN: M(bases), Incid)

David P. Ellerman
1984a Arbitrage theory: A mathematical introduction. SIAM Rev. 26 (1984), 241–

261. MR 85g:90024. Zbl 534.90014. (GG: Bal, Incid, Flows: Appl, Ref)

M.N. Ellingham
1991a Vertex-switching, isomorphism, and pseudosimilarity. J. Graph Theory 15
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(1991), 563–572. MR 92g:05136. Zbl 802.05057.
Main theorem (§2) characterizes, given two signings of Kn (where n

may be infinite) and a vertex set S, when switching S makes the signings
isomorphic. [Problem 1. Generalize to other underlying graphs. Problem
2. Prove an analog for bidirected Kn’s.] A corollary (§3) characterizes
when vertices u, v of Σ = (Kn, σ) satisfy Σ{u} ∼= Σ{v} and discusses when
in addition no automorphism of Σ moves u to v. All is done in terms
of Seidel (graph) switching (here called “vertex-switching”) of unsigned
simple graphs. (kg: sw, TG)

1996a Vertex-switching reconstruction and folded cubes. J. Combin. Theory Ser. B
66 (1966), 361–364. MR 96i:05120. Zbl 856.05071.

Deepens the folded-cube theory of Ellingham and Royle (1992a). Nicely
generalizing Stanley (1985a), the number of subgraphs of a signed Kn

that are isomorphic to a fixed signed Km is reconstructible from the
s-vertex switching deck if the Krawtchouk polynomial Kn

s (x) has no
even zeros between 0 and m. (Closely related to Krasikov and Roditty
(1992a), Theorems 5 and 6.) Remark 4: balance equations (Krasikov and
Roditty (1987a)) and Krawtchouk polynomials both reflect properties
of folded cubes. All is done in terms of Seidel switching of unsigned
simple graphs. [It seems clear that the folded cube appears because
it corresponds to the effect of switchings on signatures of Kn (or any
connected graph), since switching by X and Xc have the same effect.
For the bidirected case (Problem 2 under Stanley (1985a)), the unfolded
cube should play a similar role. Question. When treating a general
underlying graph Γ, will a polynomial influenced by Aut Γ replace the
Krawtchouk polynomial?] (kg: sw, TG)

M.N. Ellingham and Gordon F. Royle
1992a Vertex-switching reconstruction of subgraph numbers and triangle-free graphs.

J. Combin. Theory Ser. B 54 (1992), 167–177. MR 93d:05112. Zbl 695.05053
(748.05071).

Reconstruction of induced subgraph numbers of a signed Kn from the
s-vertex switching deck, dependent on linear transformation and thence
Krawtchouk polynomials as in Stanley (1985a). The role of those polyno-
mials is further developed. Done in terms of Seidel switching of unsigned
simple graphs, with the advantage of reconstructing arbitrary subgraph
numbers as well. A gap is noted in Krasikov and Roditty (1987a), proof
of Lemma 2.5. [Methods and results are closely related to Krasikov
(1988a) and Krasikov and Roditty (1987a, 1992a).] (kg: sw, TG)

Joanna A. Ellis-Monaghan and Iain Moffatt
20xxa Twisted duality for embedded graphs. Submitted. arXiv:0906.5557.

(sg: ori: Top, D)

20xxb A Penrose polynomial for embedded graphs. Submitted. (sg: Top, D)

20xxc The Tutte–Potts connection in the presence of an external magnetic field. Sub-
mitted. (sg: Top, D)

Joanna A. Ellis-Monaghan and Irasema Sarmiento
2011a A recipe theorem for the topological Tutte polynomial of Bollobás and Rior-

dan. European J. Combin. 32 (2011), no. 6, 782–794. Zbl 1223.05039. arXiv:
(sg: Top, D)
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Joanna Ellis-Monaghan and Lorenzo Traldi
2006a Parametrized Tutte polynomials of graphs and matroids. Combin. Probab.

Comput., 15 (2006), no. 6, 835–854. MR 2007j:05038. Zbl 1108.05024.
A variation on the multiplicative property of the parametrized Tutte

polynomial. (SGc: Gen: Invar)

D. Emanuel and A. Fiat
See also E. Demaine.

2003a Correlation clustering—Minimizing disagreements on arbitrary weighted graphs.
In: Algorithms—ESA 2003 (Budapest, 2003), pp. 208–220. Lect. Notes in
Computer Sci., Vol. 2832. Springer, Berlin, 2003. MR 2085454. Zbl pre05677126.

Conference version of Demaine, Emanuel, Fiat, and Immorlica (2006a).
[Annot. 13 Sept 2009.] (SG: WG: Clu: Alg)

G.A. Enciso
See also B. Dasgupta.

G.A. Enciso and E.D. Sontag
2008a Monotone bifurcation graphs. J. Biol. Dynamics 2 (2008), no. 2, 121–139. MR

2427522 (2009e:34092). Zbl 1141.92005. (SD, Biol)

Shin-ichi Endoh
See T. Nakamura.

Gernot M. Engel and Hans Schneider
1973a Cyclic and diagonal products on a matrix. Linear Algebra Appl. 7 (1973),

301–335. MR 48 #2160. Zbl 289.15006. (gg: Sw)

1975a Diagonal similarity and equivalence for matrices over groups with 0. Czechoslo-
vak Math. J. 25(100) (1975), 389–403. MR 53 #477. Zbl 329.15007. (gg: Sw)

1980a Matrices diagonally similar to a symmetric matrix. Linear Algebra Appl. 29
(1980), 131–138. MR 81k:15017. Zbl 432.15014. (gg: Sw)

Michael Engquist and Michael D. Chang
1985a New labeling procedures for the basis graph in generalized networks. Operations

Res. Letters 4 (1985), no. 4, 151–155.
Generalizing pure-network procedures to get fast computations. [An-

not. 4 Sept 2010.] (GN: M)

R.C. Entringer
1985a A short proof of Rubin’s block theorem. In: B.R. Alspach and C.D. Godsil, eds.,

Cycles in Graphs, pp. 367–368. Ann. Discrete Math., Vol. 27. North-Holland
Math. Stud., Vol. 115. North-Holland, Amsterdam, 1985. MR 87f:05144. Zbl
576.05037.

See Erdős, Rubin, and Taylor (1980a). (par: bal)

H. Era
See J. Akiyama.

Pál Erdős [Paul Erdös]
See also B. Bollobás and R.A. Duke.

1996a On some of my favourite theorems. In: D. Miklós, V.T. Sós and T. Szőnyi,
eds., Combinatorics, Paul Erdős is Eighty (Papers from the Int. Conf. on Com-
binatorics, Keszthely, 1993), Vol. 2, pp. 97–132. Bolyai Soc. Math. Studies,
2. János Bolyai Mathematical Society, Budapest, 1996. MR 97g:00002. Zbl
837.00020 (book).
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P. 119 mentions the theorem of Duke, Erdős, and Rödl (1991a) on even
circles.

Pp. 120–121 mention (amongst similar problems) a theorem of Erdős
and Hajnal (source not stated): Every all-negative signed graph with
chromatic number ℵ1 contains every finite bipartite graph [i.e., every
finite, balanced, all-negative signed graph]. [Problem. Find generaliza-
tions to signed graphs. For instance: Conjecture. Every signed graph
with chromatic number ℵ1, that does not become antibalanced upon
deletion of any finite vertex set, contains every finite, balanced signed
graph up to switching equivalence.]

[The MR review: “this is one of the best collections of problems that
Erdos has published.”] (par: bal: Exp, Ref)

P. Erdös, R.J. Faudree, A. Gyárfás, and R.H. Schelp
1991a Odd cycles in graphs of given minimum degree. In: Y. Alavi, G. Chartrand,

O.R. Oellermann, and A.J. Schwenk, eds., Graph Theory, Combinatorics, and
Applications (Proc. Sixth Quadrennial Int. Conf. Theory Appl. Graphs, Kala-
mazoo, Mich., 1988), Vol. 1, pp. 407–418. Wiley, New York, 1991. MR
93d:05085. Zbl 840.05050.

A large, nonbipartite, 2-connected graph with large minimum degree
contains a circle of given odd length or is one of a single type of excep-
tional graph. [Question. Can this be generalized to negative circles in
unbalanced signed graphs?] (par, sg: Circles, Xtreml)

P. Erdős, E. Győri, and M. Simonovits
1992a How many edges should be deleted to make a triangle-free graph bipartite? In:

G. Halász, L. Lovász, D. Miklós, and T. Szönyi, eds., Sets, Graphs and Numbers
(Proc., Budapest, 1991), pp. 239–263. Colloq. Math. Soc. János Bolyai, Vol.
60. János Bolyai Math. Soc., Budapest, and North-Holland, Amsterdam, 1992.
MR 94b:05104. Zbl 785.05052.

Assume |Σ| simple of order n and + a fixed graph ∆. Results on frus-
tration index l of antibalanced Σ if ∆ is 3-chromatic, esp. C3. Thm.: If
|E| > n2/5− o(n2), then l(Σ) < n2/25− o(n2). Conjecture (Erdős): For
∆ = C3 the hypothesis on |E| is unnecessary. [Question 1(a). Is the an-
swer different when Σ need not be antibalanced? Question 2(a). Exclude
a fixed signed graph whose signed chromatic number = 1. Question 3(a).
In particular, exclude−K3. Question 4(a). Exclude−Kl. Question 5(a).
Exclude an unbalanced Cl. Questions 1–5(b). Even if l(Σ) cannot be
estimated, is there always an extremal graph that is antibalanced—as
when no graph is excluded, by Petersdorf (1966a)?] (par: Xtreml)

P. Erdös and L. Pósa
1965a On independent circuits contained in a graph. Canad. J. Math. 17 (1965) 347–

352. MR 31 #86. Zbl 129.39904.
An upper bound on l0, the vertex frustration number, in terms of vertex

packing of unbalanced circles, in the contrabalanced case. Problem. Find
an analog for signed graphs and a generalization to biased graphs.

(gg: bal)

Paul Erdös, Arthur L. Rubin, and Herbert Taylor
1980a Choosability in graphs. In: Proceedings of the West Coast Conference on Com-

binatorics, Graph Theory and Computing (Arcata, Calif., 1979), pp. 125–157.
Congressus Numer., XXVI. Utilitas Math. Publ. Inc., Winnipeg, Man., 1980.
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MR 82f:05038. Zbl 469.05032.
Rubin’s block theorem (Thm. R, p. 136): a block graph, not com-

plete or an odd circle, contains an induced even circle with at most one
chord. [See also Entringer (1985a).] [Question. Does this generalize to
signed graphs, Rubin’s block theorem being the antibalanced case? Ru-
bin’s 2-choosability theorem, p. 132, is also tantalizingly reminiscent of
antibalanced graphs, but in reverse.] (par: Str, bal)

Carolyn A. Eschenbach
See also Z. Li and J. Stuart.

Carolyn A. Eschenbach, Frank J. Hall and Charles R. Johnson
1993a Self-inverse sign patterns. In: Richard A. Brualdi, Shmuel Friedland, and Vic-

tor Klee, eds., Combinatorial and Graph-Theoretical Problems in Linear Algebra
(IMA Workshop, Minneapolis, 1991), pp. 245–256. IMA Volumes in Mathemat-
ics and its Applications, 50. Springer-Verlag, New York, 1993. MR 1240969
(94e:15004). Zbl 792.15008.

Sign matrices whose sign patterns are self-inverse are essentially ad-
jacency matrices of signed graphs and are very few. [Annot. 13 Apr
2009.] (sg, QM)

Carolyn A. Eschenbach, Frank J. Hall, Charles R. Johnson, and Zhongshan
Li

1997a The graphs of the unambiguous entries in the product of two (+,−)-sign pattern
matrices. Linear Algebra Appl. 260 (1997), 95–118. MR 1448352 (98e:05075).
Zbl 881.05089.

A,B are nowhere-zero sign-pattern matrices. (AB)ij may be necessar-
ily +, −, or ambiguous [Abelson and Rosenberg (1958a)’s p, n, a]. Let
R = set of rows, C = set of columns. The graph G(A,B) ⊆ KR(A),C(B)

has an edge ij for each unambigous entry in AB. The digraph D(A2) has
an arc (i, j) for each unambiguous entry in A2. Thm. 3.2: Γ is a G(A,B)
iff it is the disjoint union of bicliques and isolated vertices. Character-
izing D(A2) seems hard. Results on special cases. [D and G are signed
by p, n. Thm. 5.11: D(A2), if a circle, is balanced iff the circle is pos-
itive. §6, “Characterization of permutation graphs in Dn”, i.e., D(A2)
that are permutation graphs. [Problem. Investigate D(A2) and G(A,B)
signed by p, n. Problem. Generalize to allow 0 entries (thus working
over Abelson–Rosenberg’s algebra {p, n, a, o}.)] Dictionary: “signature
similarity” of matrices = switching of digraph, “negative matching” =
entry n in AB = negative edge in G(A,B). [Annot. 4 Nov 2011.]

(QM: sd, sw)

Carolyn A. Eschenbach, Frank J. Hall and Zhongshan Li
1998a From real to complex sign pattern matrices. Bull. Austral. Math. Soc. 5 (1998),

159–172. MR 1623848 (99d:15003). Zbl 951.15021.
S := {α + iβ : α, β = 0,±}, the set of complex signs. A complex

sign pattern matrix has complex signs as entries. If it is square it has a
digraph D(A) with complex signs as gains. §3, “Cyclic nonnegativity”:
Cycles with gain ±. Switching (via matrices) by ±,±i. Cor. 3.2: D(A)
is balanced iff it switches to all +. Thm. 3.3: iff D is balanced and
D(A + A∗) switches to all +. §4, “Stability”: Lem. 4.1: If A is sign
stable, every digon has real or purely imaginary gain. Lem. 4.2: If A
is sign stable it is sign nonsingular. Thm. 4.4 (generalizing Quirk and
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Ruppert (1965a) and Maybee and Quirk (1969a)): Assume every vertex
has a negative loop. Then A is sign stable iff all digons are negative and
no longer cycles exist. Thm. 5.2: Similar, for ray stability. Dictionary:
“cyclically nonnegative” = all cycle gains are +; “cyclically positive” =
cyclically nonnegative and no zeros. [Annot. 4 Nov 2011.]

(QM: Gen; gg, sw; QSta)

Carolyn A. Eschenbach and Zhongshan Li
1999a Potentially nilpotent sign pattern matrices. Linear Algebra Appl. 299 (1999).

81–99. MR 1723710 (2000i:15043). Zbl 941.15012.
Matrices with tree digraph. Cycle sign = sign product, p. 82. 2-cycle

signs in Thms. 5.3 (proof), 5.5, 5.7 (proof). [Annot. 5 Nov 2011.]
(QM: sd, sw)

Ernesto Estrada and Naomichi Hatano
2008a Communicability in complex networks. Phys. Rev. E (3) 77 (2008), article

036111. MR 2495430 (2010i:91171). (SG: KG)

Ernesto Estrada, Desmond J. Higham, and Naomichi Hatano
2008a Communicability and multipartite structures in complex networks at negative

absolute temperatures. Phys. Rev. E 78 (2008), article 026102. (SG: KG: clu)

Ernesto Estrada and Juan A. Rodŕıguez-Velázquez
2005a Spectral measures of bipartivity in complex networks. Phys. Rev. E (3) 72

(2005), no. 4, article 046105, 6 pp. MR 2202758 (2006i:94124). (par: Fr, Adj)

Patricia A. Evans
See D.D. Doan.

Cloyd L. Ezell
1979a Observations on the construction of covers using permutation voltage assign-

ments. Discrete Math. 28 (1979), 7–20. MR 81a:05040. Zbl 413.05005.
(GG: Top, Cov, sw)

Ulrich Faigle and Rainer Schrader
1990a Orders and graphs. In: G. Tinhofer, E. Mayr, H. Noltemeier and M.M. Sys lo,

eds., Computational Graph Theory. Computing Supplementum, 7. Springer-
Verlag, Vienna, 1990. MR 1059927 (91d:05085). Zbl 725.05045.

An example is threshold signed graphs (cf. Benzaken, Hammer, and de
Werra 1985a). [Annot. 16 Jan 2012.] (SG)

M. Falcioni, E. Marinari, M.L. Paciello, G. Parisi, and B. Taglienti
1981a Phase transition analysis in Z2 and U(1) lattice gauge theories. Phys. Lett. B

105 (1981), no. 1, 51–54. (SG: Phys)

Shaun Fallat and Yi-Zheng Fan
2012a Bipartiteness and the least eigenvalue of signless Laplacian of graphs. Linear

Algebra Appl. 436 (2012), no. 9, 3254–3267.
“Bipartiteness” of Γ [also known as biparticity] is b(−Γ). “Alge-

braic bipartiteness” is the smallest eigenvalue λ1(K(−Γ)). Rephrased
in terms of antibalanced signed graphs: Thm. 2.1. If −Γ is unbal-
anced, λ1 ≤ l0(−Γ), the vertex frustration number. Thm. 2.4. (1)

SpecK(−̃Γ) = SpecK(Γ) ∪ SpecK(−Γ). [A special case of Bilu and

Linial (2006a), Lemma.] (2–4) Elementary properties of −̃Γ [found in Za-

slavsky (1982a)]. (4) If −Γ is connected and unbalanced, λ2(K(−̃Γ)) =
min{λ1, λ2(Γ)} > 0.



the electronic journal of combinatorics #DS8 102

ψ̄(−Γ) := minS[2l(−Γ : S) + |E(S, Sc)|]/|S| (S 6= ∅, V ) (cf. Desai
and Rao (1994a).) Thm. 2.6. If Γ is connected, ∆ := max degree,
λ1 ≥ ∆ −

√
∆2 − ψ̄2. Thm. 2.7. λ1 ≤ 2ψ̄ ≤ 4l(−Γ)/n. (Strengthens

Tan and Fan (2008a).) [Conjecture. The results must generalize to all
(Γ, σ).] [Annot. 20 Jan 2012.] (Par: Adj, Cov)

Yi-Zheng Fan
See also L. Cui, S.C. Gong, B.S. Tam, Y.Y. Tan, Y. Wang, M.L. Ye, and
J. Zhou.

2003a On spectral integral variations of mixed graphs. Linear Algebra Appl. 374
(2003), 307–316. MR 2008794 (2005h:05133). Zbl 1026.05076.

The signed graphs (not necessarily simple) for which adding an edge
changes only one eigenvalue of the Laplacian (Kirchhoff) matrix K(Σ)
and increases that by an integer. [Dictionary: “mixed graph” = bidi-
rected graph B where all negative edges are extraverted, in effect the
signed graph −ΣB; “quasibipartite” = balanced; “ec” = e with reversed
sign. The article’s sign sgn(e) equals −σB(e). The entire article is really
about signed graphs Σ and uses signed-graph matrices and methods.]
Thm. 1: This eigenvalue property holds iff the column x(e) of e in H(Σ)
is an eigenvector of K [i.e., H(Σ)x(e) = λx(e)]. Corollaries give other
criteria and identify the change in the one eigenvalue. Lemma 5: K is
singular iff Σ is balanced [special case of Zaslavsky (1982a), Theorem
8A.4]. [Annot. 13 Apr 2009, rev 10 Feb 2012.] (SG: incid, Adj)

2004a On structure of eigenvectors of mixed graphs. Sixth Int. Conf. Matrix Theory
Appl. in China. Heilongjiang Daxue Ziran Kexue Xuebao (J. Nat. Sci. Hei-
longjiang Univ.) 21 (2004), no. 4, 50–54. MR 2129072 (no rev). Zbl 1077.05061.

The “mixed graphs” are signed graphs; see (2003a). Graphs are simple.
The eigenvalues are those of the Laplacian, K(Σ). (sg: Adj)

2004b Largest eigenvalue of a unicyclic mixed graph. Appl. Math. J. Chinese Univ.
Ser. B 19 (2004), no. 2, 140–148. MR 2063313 (no rev).

The “mixed graphs” are signed graphs; see (2003a). Graphs are simple.
The eigenvalues are those of the Laplacian K(Σ). Prop. 2.2: Laplacian
spectrum of negative circle. [The first such proof. Equivalent to the
adjacency spectrum because Cn is regular.] Thm. 2.8: The signed 1-
trees with max and min λ1(K(Σ)). Thm. 2.9: Those with λ1 = n. Thm.
2.10: Those with λ1 > n. (N.B. Lem. 2.4: λ1 ≤ n+ 1 from Hou, Li, and
Pan (2003a), Thm. 3.5(1), or X.D. Zhang and Li (2002a).) [Annot. 10
Feb 2012.] (SG: incid, Adj)

2005a On the least eigenvalue of a unicyclic mixed graph. Linear Multilinear Algebra
53 (2005), no. 2, 97–113. MR 2133313 (2005m:05145). Zbl 1062.05090.

The “mixed graphs” are signed graphs; see (2003a). Graphs are simple.
The eigenvalues are those of K(Σ). (sg: Adj)

2007a On eigenvectors of mixed graphs with exactly one nonsingular cycle. Czechoslo-
vak Math. J. 57 (2007), no. 4, 1215–1222. MR 2357587 (2008i:05117). Zbl
1174.05075.

The “mixed graphs” are signed graphs; see (2003a). Graphs are simple.
The eigenvalues are those of K(Σ). (sg: Adj)
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Yi-Zheng Fan, Shi-Cai Gong, Yi Wang, and Yu-Bin Gao
2009a First eigenvalue and first eigenvectors of a nonsingular unicyclic mixed graph.

Discrete Math. 309 (2009), no. 8, 2479–2487. MR 2512565 (2010g:05212). Zbl
1182.05081.

The “mixed graphs” are signed graphs; see Fan (2003a). Graphs are
simple. The eigenvalues are those of K(Σ). (sg: Adj)

Yi-Zheng Fan, Shi-Cai Gong, Jun Zhou, Ying-Ying Tan, and Yi Wang
2007a Nonsingular mixed graphs with few eigenvalues greater than two. European

J. Combin. 28 (2007), no. 6, 1694–1702. MR 2339495 (2008f:05115). Zbl
1122.05058.

The “mixed graphs” are signed graphs. Assume Σ is connected. m :=
number of eigenvalues > 2. Thm. 2.2: d := longest path length, µ :=
matching number. (i) m ≥ bd/2c, (ii) m ≥ µ if n > 2µ, (iii) m ≥ µ−1 if
n = 2µ. Now assume Σ is unbalanced. Thm. 3.4. If n ≥ 7, then m = 2
iff |Σ| is one of two general types and Σ has a certain negative triangle.
Thm. 3.5. If n ≥ 6, then m = 1 iff Σ ∼ −K4 or an unbalanced subgraph.
Dictionary: See Bapat, Grossman, and Kulkarni (1999a). [Annot. 13
Jan 2012.] (sg: Adj)

Yi-Zheng Fan, Hai-Yan Hong, Shi-Cai Gong, and Yi Wang
2007a Order unicyclic mixed graphs by spectral radius. Australas. J. Combin. 37

(2007), 305–316. MR 2284395 (2007j:05137). Zbl 1122.05059. (sg: Adj)

Yi-Zheng Fan, Bit-Shun Tam, and Jun Zhou
2008a Maximizing spectral radius of unoriented Laplacian matrix over bicyclic graphs

of a given order. Linear Multilinear Algebra 56 (2008), no. 4, 381–397. MR
2434109 (2009e:15070). Zbl 1146.05032.

The maximal graphs are K4\e with n−4 pendant edges at one trivalent
vertex. [Annot. 9 Sept 2010.] (par: Incid, Adj)

Yi-Zheng Fan, Yue Wang, and Yi Wang
20xxa The nullity of unicyclic signed graphs. Submitted. arXiv:1107.0400.

The nullity ν is that of A(Σ). ν ≤ n − 2. The cases where ν ≥ n − 5
are characterized. [Annot. 17 Dec 2011.] (SG: Adj)

Yi-Zheng Fan and Dan Yang
2009a The signless Laplacian spectral radius of graphs with given number of pendant

vertices. Graphs Combin. 25 (2009), no. 3, 291–298. MR 2534887 (2010j:05233).
Zbl 1194.05085.

See Cvetković, Rowlinson, and Simić (2007a). (Par: Adj)

Thomas J. Fararo
See N.P. Hummon.

Miriam Farber
See A. Berman.

Arthur M. Farley and Andrzey Proskurowski
1981a Computing the line index of balance of signed outerplanar graphs. Proc.

Twelfth Southeastern Conf. on Combinatorics, Graph Theory and Comput-
ing (Baton Rouge, 1981), Vol. I. Congressus Numer. 32 (1981), 323–332. MR
83m:68119. Zbl 489.68065.

Calculating frustration index is NP-complete, since it is more general
than max-cut. However, for signed outerplanar graphs with bounded
size of bounded faces, it is solvable in linear time. [It is quickly solvable
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for signed planar graphs. See Katai and Iwai (1978a), Barahona (1981a,
1982a), and more.] (SG: Fr)

M. Farzan
1978a Automorphisms of double covers of a graph. In: Problemes Combinatoires et

Theorie des Graphes (Colloq. Int., Orsay, 1976), pp. 137–138. Colloques Int. du
CNRS, 260. Editions du C.N.R.S., Paris, 1978. MR 81a:05063. Zbl 413.05064.

A “double cover of a graph” means the double cover of a signing of a
simple graph. (sg: Cov, Aut)

R.J. Faudree
See P. Erdős.

Katherine Faust
See S. Wasserman.

Siamak Fayyaz Shahandashti, Mahmoud Salmasizadeh, and Javad Mohajeri
2005a A provably secure short transitive signature scheme from bilinear group pairs.

In: C. Blundo and S. Cimato, eds., Security in Communication Networks (4th
Int. Conf., SCN 2004, Amalfi), pp. 60–76. Lect. Notes in Computer Sci., Vol.
3352. Springer-Verlag, Berlin, 2005. Zbl 1116.94320.

Edges have “signatures” for encryption. No edge signs! [Irresistible.]
[Annot. 5 Mar 2011.] (None)

N.T. Feather
1971a Organization and discrepancy in cognitive structures. Psychological Rev. 78

(1971), 355–379.
A suggestion for defining balance in weighted digraphs: pp. 367–369.

(PsS: Bal: Exp)(WD: Bal)

Martin Feinberg
See G. Craciun.

Paul Fendley and Vyacheslav Krushkal
2010a Link invariants, the chromatic polynomial and the Potts model. Adv. Theor.

Math. Phys. 14 (2010), no. 2, 507–540. MR 2721654 (2011k:57015). Zbl
1207.82007. arXiv:0806.3484.

The Potts model treats a graph as all negative (“antiferromagnetic”;
see the low-temperature expansion in §3). [Annot. 12 Jan 2012.]

(par: Invar)

Lihua Feng
2010a The signless Laplacian spectral radius for bicyclic graphs with k pendant ver-

tices. Kyungpook Math. J. 50 (2010), no. 1, 109–116. MR 2609079 (2011d:05221).
Zbl 1205.05140.

See Cvetković, Rowlinson, and Simić (2007a). (Par: Adj)

Lihua Feng and Guihai Yu
2009a On three conjectures involving the signless Laplacian spectral radius of graphs.

Publ. Inst. Math. (Beograd) (N.S.) 85(99) (2009), 35–38. MR 2536687 (2010i:-
05204).

See Cvetković, Rowlinson, and Simić (2007a). (Par: Adj)

2009b The signless Laplacian spectral radius of unicyclic graphs with graph con-
straints. Kyungpook Math. J. 49 (2009), no. 1, 123–131. MR 2527378 (2011b:-
05148). Zbl 1201.05056.

See Cvetković, Rowlinson, and Simić (2007a). (Par: Adj)
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2010a The signless Laplacian spectral radius of graphs with given diameter. Utilitas
Math. 83 (2010), 265–276. MR 2742294 (2011i:05129).

The graphs with maximum spectral radius. [Annot. 19 Nov 2011.]
(Par: Adj)

Lihua Feng, Guihai Yu, and Aleksandar Ilić
2010a The Laplacian spectral radius for unicyclic graphs with given independence

number. Linear Algebra Appl. 433 (2010), 934–944. MR 2658644 (2011f:05175).
Zbl 1215.05102. (Par: Adj)

Lin Feng, Yan Hong Yao, Ji Ming Guo, and Shang Wang Tan
2011a The signless Laplacian spectral radius of unicyclic graphs with fixed girth. (In

Chinese.) Appl. Math. J. Chinese Univ. Ser. A 26 (2011), no. 1, 121–126. MR
2807616 (no rev). (Par: Adj)

Anuška Ferligoj
See P. Doreian.

Lori Fern [Lori Koban]
See also L. Koban.

Lori Fern, Gary Gordon, Jason Leasure, and Sharon Pronchik
2000a Matroid automorphisms and symmetry groups. Combin. Probab. Comput. 9

(2000), 105–123. MR 2001g:05034. Zbl 960.05055.
Consider a subgroup W of the hyperoctahedral group Ocn that is

generated by reflections. Let M(W ) be the vector matroid of the vectors
corresponding to reflections in W . The possible direct factors of any
automorphism group of M(W ) are Sk, Ock, and Oc+

k . The proof is
stricly combinatorial, via signed graphs. (SG: M: Aut, Geom)

Rosário Fernandes
2010a Location of the eigenvalues of weighted graphs with a cut edge. Linear Mul-

tilinear Algebra 58 (2010), no. 3, 305–322. MR 2663432 (2011d:15014). Zbl
1203.05092.

The “weights” are skew gains [cf. J. Hage (1999a) et al.] in C×; the
anti-involution is conjugation. Identities satisfied by the eigenvalues.
[Annot. 11 Jan 2012.] (GG: Gen: Adj)

L.A. Fernández, V. Martin-Mayor, G. Parisi, and B. Seoane
2010a Spin glasses on the hypercube. Phys. Rev. B 81 (2010), #134403, 14 pp.

Average behavior of random signed subhypercubes (Γ, σ), with span-
ning Γ ⊆ QD, with random spins ζ : V → {+1,−1}. Each (Γ, σ, ζ) is a
“sample”. To avoid irregularities Γ is z-regular (“connectivity z”) for a
fixed z (here, 6). [Annot. 19 Jun 2012.] (Phys, SG: Fr)

Daniela Ferrero
2008a Product line sigraphs. In: The International Symposium on Parallel Architec-

tures, Algorithms, and Networks (i-span 2008), pp. 141–145. IEEE Computer
Soc., 2008.

The product line graph [= Λ×(Σ) in M. Acharya (2009a)] is bal-
anced. [Immediate from Harary’s (1953a) balance theorem or Sam-
pathkumar’s (1972a, 1984a) similar theorem.] [Annot. 2008, 20 Dec
2010.] (SG: LG, Bal)

A. Fiat
See E. Demaine and D. Emanuel.
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Miroslav Fiedler
1957a Uber qualitative Winkeleigenschaften der Simplexe. Czechoslovak Math. J.

7(82) (1957), 463–478. MR 20 #1252. Zbl 93, 336 (e: 093.33602).
(SG: Geom)

1957b Einige Satze aus der metrischen Geometrie der Simplexe in euklidischen Rau-
men. Schr. Forschungsinst. Math. 1 (1957), 157. MR 19, 303. Zbl 89, 167 (e:
089.16706). (SG: Geom)

1961a Uber die qualitative Lage des Mittelpunktes der ungeschriebenen Hyperkugel
im n-Simplex. Comment. Math. Univ. Carolin. 2, No. 1 (1961), 1–51. Zbl 101,
132 (e: 101.13205). (SG: Geom)

1964a Some applications of the theory of graphs in matrix theory and geometry. In:
Theory of Graphs and Its Applications (Proc. Sympos., Smolenice, 1963), pp.
37–41. Publ. House Czechoslovak Acad. Sci., Prague, 1964. MR 30 #5294. Zbl
(e: 163.45605). (SG: Geom)

1967a Graphs and linear algebra. In: Theory of Graphs: International Symposium
(Rome, 1966), pp. 131–134. Gordon and Breach, New York; Dunod, Paris,
1967. MR 36 #6313. Zbl 263.05124. (SG: Geom)

1969a Signed distance graphs. J. Combin. Theory 7 (1969), 136–149. MR 39 #4034.
Zbl 181, 260 (e: 181.26001). (SG: Geom)

1970a Poznámka o distancnich grafech [A remark on distance graphs] (in Czech). In:
Matematika (geometrie a teorie grafu) [Mathematics (Geometry and Graph
Theory)], pp. 85–88. Univ. Karlova, Prague, 1970. MR 43 #3143. Zbl
215.50203. (SG: Geom)

1975a Eigenvectors of acyclic matrices. Czechoslovak Math. J. 25(100) (1975), 607–
618. MR 52 #8151. Zbl 325.15014. (sg: Trees: Adj)

1985a Signed bigraphs of monotone matrices. In: Horst Sachs, ed., Graphs, Hyper-
graphs and Applications (Proc. Int. Conf., Eyba, 1984), pp. 36–40. Teubner-
Texte zur Math., B. 73. B.G. Teubner, Leipzig, 1985. MR 87m:05121. Zbl
626.05023.

(SG: Adj: Exp)

1993a A geometric approach to the Laplacian matrix of a graph. In: Richard A.
Brualdi, Shmuel Friedland, and Victor Klee, eds., Combinatorial and Graph-
Theoretical Problems in Linear Algebra, pp. 73–98. IMA Vols. Math. Appl., 50.
Springer-Verlag, New York, 1993. MR 1240957 (94g:05055). Zbl 791.05073.

The signed bipartite graph of a normalized Gram matrix (pp. 85–86).
This is applied to study the types of angles in a geometric simplex. Dic-
tionary: Γ(A) = the signed bipartite graph of a symmetric real matrix.

(SG)

1998a Additive compound graphs. Discrete Math. 187 (1998), 97–108. MR 99c:05131.
Zbl 958.05091. (SG)

Miroslav Fiedler and Vlastimil Ptak
1967a Diagonally dominant matrices. Czechoslovak Math. J. 17(92) (1967), 420–433.

MR 35 #6704. Zbl (e: 178.03402). (GG: Sw, bal)

1969a Cyclic products and an inequality for determinants. Czechoslovak Math. J.
19(94) (1969), 428–451. MR 40 #1409. Zbl 281.15014. (gg: Sw)
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Rosa M.V. Figueiredo, Martine Labbé, and Cid C. de Souza
2011a An exact approach to the problem of extracting an embedded network ma-

trix. Computers Operations Res. 38 (2011), no. 11, 1483–1492. MR 2781542
(2012f:90223) (q.v.). Zbl 1210.90038. (SG: Incid)

Joseph Fiksel
1980a Dynamic evolution in societal networks. J. Math. Sociology 7 (1980), 27–46.

MR 81g:92023(q.v.). Zbl 434.92022. (SG: Clu, VS)

Samuel Fiorini, Nadia Hardy, Bruce Reed, and Adrian Vetta
2005a Approximate min-max relations for odd cycles in planar graphs. In: M. Jünger

and V. Kaibel, eds., Integer Programming and Combinatorial Optimization
(11th Int. IPCO Conf., IPCO 2005, Berlin), pp. 35–50. Lect. Notes in Com-
puter Sci., Vol. 3509. Springer, Berlin, 2005. MR 2210011 (2006j:90108). Zbl
1119.90360.

See (2007a). (SG: Fr)

2007a Approximate min-max relations for odd cycles in planar graphs. Math. Pro-
gramming, Ser. B 110 (2007), no. 1, 71–91. MR 2306131 (2008b:05087). Zbl
1113.05054.

τ := minimum number of negative circles whose vertex deletion leaves
a balanced signed graph. ν := maximum number of vertex-disjoint neg-
ative circles. ρ := minimum size of a transversal of negative face bound-
aries. Let τ ′, ν ′ be the edge analogs. Thm. 3 (Král and Voss 2004a):
τ ′ ≤ 2ν ′. (A shorter proof.) Thm. 4: For an unbalanced signed plane
graph, τ ≤ 7ν+ 3ρ− 8. Cor. 2: τ ≤ 10ν. Dictionary: “odd” = negative,
“even” = positive. [Annot. 6 Feb 2011.] (SG: Fr)

E. Fischer, J.A. Makowsky, and E.V. Ravve
2008a Counting truth assignments of formulas of bounded tree-width or clique-width.

Discrete Appl. Math. 156 (2008), no. 4, 511–529. MR 2379082 (2009k:68090).
Zbl 1131.68093.

The incidence graph of clauses is a signed bipartite graph. [Annot. 16
Jan 2012.] (SG)

Ilse Fischer and C.H.C. Little
2004a Even circuits of prescribed clockwise parity. Electronic J. Combin. 10 (2003),

Research Paper 45, 20 pp. MR 2004h:05071. Zbl 1031.05073. (SG)

K.H. Fischer and J.A. Hertz
1991a Spin Glasses. Cambridge Studies in Magnetism, Vol. 1. Cambridge Univ. Press,

Cambridge, Eng., 1991. MR 93m:82019.
An excellent introduction to many aspects of physics (mainly theoret-

ical) that often seem to be signed graph theory or to generalize it, e.g.,
by randomly weighting the edges. (Phys: sg: fr: Exp, Ref)
§2.5, “Frustration”, discusses the spin glass Ising model (essentially,

signed graphs) in square and cubical lattices, including the “Mattis
model” (a switching of all positive signs), as well as a vector analog, the
“XY” model (planar spins) and (p. 46) even a general gain-graph model
with switching-invariant Hamiltonian. (Phys: SG: Fr, Sw: Exp, Ref)

Ch. 3 concerns the Ising and Potts models. In §3.7: “The Potts glass”,
the Hamiltonian (without edge weights) is H = −1

2

∑
σ(eij)(kδ(si, sj)−

1). [It is not clear that the authors intend to permit negative edges. If
they are allowed, H is rather like Doreian and Mrvar’s (1996a) P (π).
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Question. Is there a worthwhile generalized signed and weighted Potts
model with Hamiltonian that specializes both to this form of H and to
P?] [Also cf. Welsh (1993a) on the Ashkin–Teller–Potts model.]

(Phys: sg, clu: Exp)

Steven D. Fischer
1993a Signed Poset Homology and q-Analog Möbius Functions. Ph.D. thesis, Univ. of

Michigan, 1993.
§1.2: “Signed posets”. Definition of signed poset: a positively closed

subset of the root system Bn whose intersection with its negative is
empty. (Following Reiner (1990).) Equivalent to a partial ordering of
±[n] in which negation is a self-duality and each dual pair of elements
is comparable. [This is really a special type of signed poset. The latter
restriction does not hold in general.]
Relevant contents: Ch. 2: “Cohen-Macaulay signed posets”, §2.2: “EL-

labelings of posets and signed posets”, and shellability. Ch. 3: “Euler
characteristics”, and a fixed-point theorem. §5.1: “The homology of the
signed posets SΠ” (a particular example). App. A: “Open problems”,
several concerning signed posets.

[Partially summarized by Hanlon (1996a).]
(Sgnd: sg, ori, Geom, Invar)

P.C. Fishburn and N.J.A. Sloane
1989a The solution to Berlekamp’s switching game. Discrete Math. 74 (1989), 263–

290. MR 90e:90151. Zbl 664.94024.
The maximum frustration index of a signed Kt,t, which equals the

covering radius of the Gale–Berlekamp code, is evaluated for t ≤ 10,
thereby extending results of Brown and Spencer (1971a). See Table 1.
[Corrected and extended by Carlson and Stolarski (2004a).] (sg: Fr)

Michael E. Fisher and Rajiv R.P. Singh
1990a Critical points, large-dimensionality expansions, and the Ising spin glass. In:

G.R. Grimmett and D.J.A. Welsh, eds., Disorder in Physical Systems: A Vol-
ume in Honour of John M. Hammersley on the Occasion of His 70th Birthday,
pp. 87–111. Clarendon Press, Oxford, 1990.

Physics questions, e.g., phase transitions and high-temperature ex-
pansions, for signed lattice graphs (±J spins) and with random weights
(Gaussian edge weights). [Annot. 24 Aug 2012.] (sg: Phys: Fr: Exp)

Claude Flament
1958a L’étude mathématique des structures psycho-sociales. L’Année Psychologique

58 (1958), 119–131.
Signed graphs are treated on pp. 126–129. (SG: Bal, PsS: Exp)

1963a Applications of Graph Theory to Group Structure. Prentice-Hall, Englewood
Cliffs, N.J., 1963. MR 28 #1014. Zbl 141, 363 (e: 141.36301).

English edition of (1965a). Ch. 3: “Balancing processes.”
(SG: KG: Bal, Alg: Exp)

1965a Théorie des graphes et structures sociales. Math. et sci. de l’homme, Vol. 2.
Mouton and Gauthier-Villars, Paris, 1965. MR 36 #5018. Zbl 169, 266 (e:
169.26603).

Ch. III: “Processus d’équilibration.” (SG: KG: Bal, Alg: Exp)
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1970a Equilibre d’un graphe, quelques resultats algebriques. Math. Sci. Humaines,
No. 30 (1970), 5–10. MR 43 #4704. Zbl 222.05124.

1979a Independent generalizations of balance. In: Paul W. Holland and Samuel Lein-
hardt, eds., Perspectives on Social Network Research (Proc. Sympos., Dart-
mouth Coll., Hanover, N.H., 1975), Ch. 10, pp. 187–200. Academic Press, New
York, 1979. (SG: Bal, PsS: Exp)

Erica Flapan
1995a Intrinsic chirality. Journal of Molecular Structure (Theochem) 336 (1995), 157–

164.
Intrinsic chirality means the graph cannot be embedded in 3-space

without a twist. [Question. Can this be interpreted in terms of signed
graphs?] See also Flapan (1998a), Flapan and Weaver (1996a), Hu and
Qiu (2009a). [Annot. 4 Nov 2010.] (sg: Top: Chem)

1998a Knots and graphs in chemistry. Chaos, Solitons & Fractals 9 (415) (1998),
547–560. MR 1628741 (99c:57017). Zbl 933.57002.

A survey of chirality of 3-space embeddings. See Flapan (1995a). [An-
not. 4 Nov 2010.] (sg: Top: Chem: Exp)

Erica Flapan and Nikolai Weaver
1996a Intrinsic chirality of 3-connected graphs. J. Combinatorial Theory Ser. B 68

(1996), 223–232. MR 1417798 (97k:05058). Zbl 861.05023.
See Flapan (1995a). [Annot. 4 Nov 2010.] (sg: Top)

Rigoberto Flórez
2005a Four Studies in the Geometry of Biased Graphs. Doctoral dissertation, State

Univ. of New York at Binghamton, 2005. MR 2707450.
Published as (2006a, 2009a), Flórez and Forge (2007a), and (not yet)

Flórez and Zaslavsky (20xxa). (GG: M, Geom)

2006a Lindström’s conjecture on a class of algebraically non-representable matroids.
European J. Combin. 27 (2006), no. 6, 896–905. MR 2006m:05048. Zbl 1090.-
05010.

Lindström conjectured that a certain matroid M(n) is algebraically
nonrepresentable if n is nonprime. Proved by showing that M(n) ex-
tends by harmonic conjugation to L0(ZnK3), which in turn extends to a
contradiction if n is composite. (gg: M)

2009a Harmonic conjugation in harmonic matroids. Discrete Math. 309 (2009), no. 8,
2365–2372. MR 2510362 (2010f:05038). Zbl 1207.05027.

In a harmonic matroid H, harmonic conjugates exist and are unique. If
L0(GK3) ⊆ H and G = Z or Zp, then the closure of L0 under harmonic
conjugation is a projective plane over Q or GF(p), as appropriate.

(gg: M)

Rigoberto Flórez and David Forge
2007a Minimal non-orientable matroids in a projective plane. J. Combin. Theory Ser.

A 114 (2007), no. 1, 175–183. MR 2007h:05031. Zbl 1120.52012.
The minimal matroids are contained in lift matroids of ZnK3. (gg: M)

Rigoberto Flórez and Thomas Zaslavsky
20xxa Biased graphs. VI. Synthetic geometry. In preparation. (GG: M, Geom)
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Joel Foisy
See Y. Duong.

Wungkum Fong
2000a Triangulations and Combinatorial Properties of Convex Polytopes. Doctoral

dissertation, Massachusetts Inst. of Technology, 2000.
A configuration consists of the vectors representing an acyclic orienta-

tion of a complete signed graph. The volume of the pyramid over the
configuration with apex at the origin. [See Ohsugi and Hibi (2003a).
Question. Is there a connection with the chromatic polynomial?] [An-
not. 11 Apr 2011.] (sg: Geom: Invar)

Carlos M. da Fonseca
See M. And́elić.

G. Forgacs
See also S.T. Chui and B.W. Southern.

1980a Ground-state correlations and universality in two-dimensional fully frustrated
systems. Phys. Rev. B (3) 22 (1980), no. 9, 4473–4480. MR 590596 (81i:82066).

Dictionary: “fully frustrated Ising model on a square lattice” = signed
grid (square lattice) graph in which every quadrilateral is negative; “pla-
quette” = “square” = region boundary = quadrilateral. (Phys: sg)

G. Forgacs and E. Fradkin
1981a Anisotropy and marginality in the two-dimensional fully frustrated Ising model.

Phys. Rev. B 23 (3) (1981), no. 7, 3442–3447. MR 607834 (82c:82094).
(Phys: sg)

David Forge
See also P. Berthomé and R. Flórez.

David Forge and Thomas Zaslavsky
2007a Lattice point counts for the Shi arrangement and other affinographic hyperplane

arrangements. J. Combin. Theory Ser. A 114 (2007), no. 1, 97–109. MR 2007i:-
52026. Zbl 1105.52014.

The number of proper integral m-colorings of a rooted integral gain
graph (root v0 and a function h : V → Z such that there are root edges
ge0i for all g ∈ (−∞, hi]; otherwise the gain graph is finite).

(GG: Geom, Invar, M)

20xxb Colorations, orthotopes, and a huge polynomial Tutte invariant of weighted
gain graphs. Submitted.

A weighted gain graph has lattice-ordered gain group and has vertex
weights from an abelian semigroup acted upon by the gain group. The
total dichromatic polynomial is a Tutte invariant (satisfying deletion-
contraction and multiplicativity) with possibly uncountably many vari-
ables, but is not the universal one. Problem. Find the universal Tutte
invariant. With integral gain group and integral weights, the integral
chromatic function of (2007a) is an evaluation of the polynomial. An-
other special case is the polynomial of S.D. Noble and D.J.A. Welsh,
A weighted graph polynomial from chromatic invariants of knots [Sym-
posium à la Mémoire de François Jaeger (Grenoble, 1998). Ann. Inst.
Fourier (Grenoble) 49 (1999), no. 3, 1057–1087]. (GG: Invar, M)

C.M. Fortuin and P.W. Kasteleyn
1972a On the random cluster model. I. Introduction and relation to other models.

Physica 57 (1972), 536–564. MR 50 #12107.
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Most of the paper recasts classical physical and other models (perco-
lation, ferromagnetic Ising, Potts, graph coloring, linear resistance) in a
common form that is generalized in §7, “Random cluster model”. The
“cluster (generating) polynomial” Z(Γ; p, κ), where p ∈ RE and κ ∈ R,
is a 1-variable specialization of the general parametrized dichromatic
polynomial. In the notation of Zaslavsky (1992b) it equals QΓ(q, p;κ, 1),
where qe = 1 − pe. Thus it partially anticipates the general polynomi-
als of Przytycka and Przytycki (1988a), Traldi (1989a), and Zaslavsky
(1992b) that were based on Kauffman’s (1989a) sign-colored Tutte poly-
nomial. A spanning-tree expansion is given only for the resistance model.
A feature [that seems not to have been taken up by subsequent workers]
is the differentiation relation (7.7) connecting ∂ lnZ/∂qe with [I think!]
the expectation that the endpoints of e are disconnected in a subgraph.
[Grimmett (1994a) summarizes subsequent work in the probabilistic di-
rection.] (sgc: Gen: Invar, Phys)

J.-L. Fouquet
See C. Berge.

J.-C. Fournier
1979a Introduction à la notion de matröıde (géométrie combinatoire). Publ. Math.

d’Orsay, [No.] 79-03. Univ. Paris-Sud, Dép. Math., Orsay, 1979. MR 81a:05027.
Zbl 424.05018.

[Ch.] 3.12: “Matröıdes de Dowling” (p. 52). Definition by partial
G-partitions and the linear representability theorem. (gg: M: Exp)

E. Fradkin
See G. Forgacs.

Aviezri S. Fraenkel and Peter L. Hammer
1984a Pseudo-Boolean functions and their graphs. In: Convexity and graph the-

ory (Jerusalem, 1981), pp. 137–146. North-Holland Math. Stud., 87. North-
Holland, Amsterdam, 1984. MR 87b:90147. Zbl 557.94019. (sh: lg)

András Frank
1990a Packing paths, circuits, and cuts – a survey. In: B. Korte, L. Lovász, H.J. Prö-

mel, and A. Schrijver, eds., Paths, Flows, and VLSI-Layout, pp. 47–100. Algo-
rithms and Combinatorics, Vol. 9. Springer-Verlag, Berlin, 1990. MR 1083377
(91i:68116). Zbl 741.05042.

Pp. 89–91: Additively sign-weighted bipartite graphs. Thms. 8.1′, 8.5′:
Criteria for negative circuit. [Questions. Is there a generalization to an-
tibalanced signed graphs with additive sign-weights? Does the existence
of minors help?] Thms. 8.1′w, 8.1′′: Similar, for Z+-weighted or Q+-
weighted graphs, not necessarily bipartite. Pp. 91–92 mention Gerards
(1990a) and graphs with a bipartizing vertex. [Annot. 11 Jun 2012.]

(SGw, GGw: OG)

1996a A survey on T -joins, T -cuts, and conservative weightings. In: D. Miklós, V.T.
Sós, and T. Szőnyi, eds., Combinatorics, Paul Erdős is Eighty, Vol. 2, pp. 213–
252. Bolyai Soc. Math. Stud., 2. János Bolyai Math. Soc., Budapest, 1996.
MR 97c:05115. Zbl 846.05062.

A “conservative ±1-weighting” of G is an edge labelling by +1’s and
−1’s so that in every circle the sum of edge weights is nonnegative. It
is a tool in several theorems. [Related: Ageev, Kostochka, and Szigeti
(1995a), Sebö (1990a).] (SGw: Str, Alg: Exp, Ref)
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Howard Frank and Ivan T. Frisch
1971a Communication, Transmission, and Transportation Networks. Addison-Wesley,

Reading, Mass., 1971. MR 49 #12063. Zbl 281.94012.
§6.12: “Graphs with gains,” pp. 277–288. (GN: Exp)

Ove Frank and Frank Harary
1979a Balance in stochastic signed graphs. Social Networks 2 (1979/80), 155–163.

MR 81e:05116.
An edge is present with probability α and positive with probability p.

They compute the expected values of two kinds of measures of imbalance:
the number of balanced triangles (whose variance is also given), and the
number of induced subgraphs of order 3 having specified numbers of
positive and negative edges. [Related: Škoviera (1992a), A.T. White
(1994a).] (SG: Rand, Fr)

Giancarlo Franzese
1996a Cluster analysis for percolation on a two-dimensional fully frustrated system.

J. Phys. A 29 (1996), 7367–7375. Zbl 904.60081.
The “fully frustrated” square lattice: alternate verticals are negative.

Extending Kandel, Ben-Av, and Domany (1990a) by studying cluster
properties in simulations, e.g., percolating clusters (that connect oppo-
site sides of the lattice). Illuminating diagrams. [Annot. 18 Jun 2012.]

(Phys, SG: Clu)

Maria Aguieiras A. de Freitas, Nair M.M. de Abreu, Renata R. Del-Vecchio,
and Samuel Jurkiewicz

2010a Infinite families of Q-integral graphs. Linear Algebra Appl. 432 (2010), no. 9,
2352–2360. MR 2599865 (2011b:05150). Zbl 1219.05158.

See Cvetković, Rowlinson, and Simić (2007a). (Par: Adj)

Maria Aguieiras A. de Freitas, Renata R. Del-Vecchio, Nair M.M. de Abreu,
and Steve Kirkland

2009a On Q-spectral integral variation. LAGOS’09—V Latin-Amer. Algor. Graphs
Optim. Sympos. Electron. Notes Discrete Math. 35 (2009), 203–208. MR
2579431.

See Cvetković, Rowlinson, and Simić (2007a). (Par: Adj)

Christian Fremuth-Paeger and Dieter Jungnickel
1999a Balanced network flows. I: A unifying framework for design and analysis of

matching algorithms. Networks 33 (1999), no. 1, 1–28. MR 1652254 (2000f:-
90005). Zbl 999.90005. (sg: par: Flows, cov)

1999b Balanced network flows. II: Simple augmentation algorithms. Networks 33
(1999), no. 1, 29–41. MR 1652258 (2000g:90010). Zbl 999.90006.

(sg: par: Flows, cov)

1999c Balanced network flows. III: Strongly polynomial augmentation algorithms.
Networks 33 (1999), no. 1, 43–56. MR 1652262 (2000g:90011). Zbl 999.90007.

(sg: par: Flows, cov)

2001a Balanced network flows. IV: Duality and structure theory. Networks 37 (2001),
no. 4, 194–201. MR 1837197 (2002k:90010). Zbl 1038.90007.

(sg: par: Flows, cov)

2001b Balanced network flows. V: Cycle-canceling algorithms. Networks 37 (2001),
no. 4, 202–209. MR 1837198 (2002k:90011). Zbl 1038.90008.

(sg: par: Flows, cov)
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2001c Balanced network flows. VI: Polyhedral descriptions. Networks 37 (2001), no.
4, 210–218. MR 1837199 (2002k:90012). Zbl 1040.90002. (sg: par: Flows, cov)

2002a Balanced network flows. VII: Primal-dual algorithms. Networks 37 (2002), no.
1, 35–42. MR 1871705 (2003d:90007). Zbl 1040.90003. (sg: par: Flows, cov)

2002b An introduction to balanced network flows. In: K.T. Arasu and Á. Seress, eds.,
Codes and Designs (Columbus, Ohio, 2000), pp. 125–144. Ohio State Univ.
Math. Res. Inst. Publ., 10. Walter de Gruyter, Berlin, 2002. MR 1948139
(2004b:05160). Zbl 1009.05113. (sg: par: Flows, cov)

2003a Balanced network flows. VIII: A revised theory of phase-ordered algorithms and
the O(

√
nm log(n2/m)/ log n) bound for the nonbipartite cardinality matching

problem. Networks 37 (2003), no. 3, 137–142. MR 1970119 (2004f:90015). Zbl
1106.90013. (sg: par: Flows, cov)

Ivan T. Frisch
See H. Frank.

Toshio Fujisawa
1963a Maximal flow in a lossy network. In: J.B. Cruz, Jr., and John C. Hofer, eds.,

Proceedings, First Annual Allerton Conference on Circuit and System Theory
(Monticello, Ill., 1963), pp. 385–393. Dept. of Electrical Eng. and Coordinated
Sci. Lab., Univ. of Illinois, Urbana, Ill., [1963]. (GN: M(bases))

Satoru Fujishige
See K. Ando.

D.R. Fulkerson, A.J. Hoffman, and M.H. McAndrew
1965a Some properties of graphs with multiple edges. Canad. J. Math. 17 (1965),

166–177. MR 177908 (31 #2166). Zbl 132.21002.
The “odd-cycle condition” is that any two odd circles without a com-

mon vertex are joined by an edge. Assuming it, certain conditions are
necessary and sufficient for a degree sequence to be realized by a sub-
multigraph of Kn with prescribed multiplicities. The incidence matrix
of −Kn is employed in the geometrical proof. [Problem. Generalize to
signed graphs.] [Annot. 30 May 2011.] (sg: Par: incid)

Martin J. Funk
See M. Abreu.

H.N. Gabow
1983a An efficient reduction technique for degree-constrained subgraph and bidirected

network flow problems. In: Proceedings of the Fifteenth Annual ACM Sympo-
sium on Theory of Computing (Boston, 1983), pp. 448–456. Assoc. for Com-
puting Machinery, New York, 1983. MR 0842673 (87g:68004) (book).

O(m3/2) algorithm for max integral flow. [See Babenko (2006b) for
improved time.] [Annot. 9 Sept 2010.] (sg: Ori: Alg)

Stephen M. Gagola
1999a Solution to Problem 10606. Amer. Math. Monthly 106 (June–July, 1999), no.

6, 590–591.
Proposed by Zaslavsky (1997c), q.v. for statement of the problem and

significance. (gg)

Anah́ı Gajardo
See M. Montalva.
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David Gale
See also A.J. Hoffman.

David Gale and A.J. Hoffman
1982a Two remarks on the Mendelsohn–Dulmage theorem. In: Eric Mendelsohn, ed.,

Algebraic and Geometric Combinatorics, pp. 171–177. North-Holland Math.
Stud., 65. Ann. Discrete Math., 15. North-Holland, Amsterdam, 1982. MR
85m:05054. Zbl 501.05049. (sg: Incid, Bal)

Joseph A. Gallian
2009a A dynamic survey of graph labeling. Electronic J. Combin. Dynamic Surveys

in Combinatorics, # DS6.
http://www.combinatorics.org/ojs/index.php/eljc/article/view/ds6
MR 1668059 (99m:05141). Zbl 953.05067.

§3.7, “Cordial labelings”; §3.8, “The friendly index–balance index”.
From f : V → Z2 obtain balanced edge gains f ∗(uv) = f(u) + f(v). f is
“friendly” if it has essentially equal numbers of each label, i.e., equal or
differing by 1. f is “cordial” if f and f ∗ have essentially equal numbers
of each label. A great many references. [(Γ, f) is like a balanced multiply
signed graph but the questions are not gain-graphic.] [Annot. 9 Oct
2010.] (vs: Exp, Ref)

Anna Galluccio, Martin Loebl, and Jan Vondrák
See also J. Lukic.

2000a New algorithm for the Ising problem: Partition function for finite lattice graphs.
Phys. Rev. Lett. 84 (2000), no. 26, 5924–5927.

Describes (2001a), emphasizing signed toroidal lattice graphs, i.e.,
toroidal lattice Ising models. [Annot. 18 Aug 2012.]

(SG, Phys: Fr: Alg)

2001a Optimization via enumeration: a new algorithm for the Max Cut Problem.
Math. Programming Ser. A 90 (2001), 273–290. MR 1824075 (2002b:90057).
Zbl 989.90127.

An algorithm for the generating function of weighted cuts (= partition

function of Ising model), hence for
∑

ζ x
E−(Σζ) and frustration index

l(Σ), in polynomial time for graphs of bounded genus. [Annot. 18 Aug
2012.] (SG: Fr: Alg, Phys)

Yu-Bin Gao
See also Y.Z. Fan, L.F. Huo, and Y.L. Shao.

Yubin Gao, Yihua Huang and Yanling Shao
2009a Bases of primitive non-powerful signed symmetric digraphs with loops. Ars

Combin. 90 (2009), 383–388. MR 2489540 (2010c:05049). Zbl 1224.05208.
(SD, QM)

Yubin Gao, Yanling Shao, and Jian Shen
2009a Bounds on the local bases of primitive nonpowerful nearly reducible sign pat-

terns. Linear Multilinear Algebra 57 (2009), no. 2, 205–215. MR 2492103
(2010b:05103). Zbl 1166.15008. (SD, QM)

Marianne L. Gardner [Marianne Lepp]
See R. Shull.

T. Garel and J.M. Maillard
1983a Study of a two-dimensional fully frustrated model. J. Phys. A 16 (1983), 2257–

2265. MR 713188 (85b:82069).

http://www.combinatorics.org/ojs/index.php/eljc/article/view/ds6
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Physics approach. Generalizes Southern, Chui, and Forgacs’s (1980a)
square-lattice Ising model to four edge weights, symmetrically located,
and reduces it to an all-positive graph with two weights. §3, “Application
to the Villain model”: All weights equal [hence a signed graph]; further
results on Villain (1977a). [Annot. 16 Jun 2012.] (Phys: sg: wg)

Pravin Garg
See D. Sinha.

Michael Gargano and Louis V. Quintas
1985a A digraph generalization of balanced signed graphs. Congressus Numerantium

48 (1985), 133–143. MR 87m:05095. Zbl 622.05027.
Characterizes balance in abelian gain graphs. [See Harary, Lindström,

and Zetterström (1982a).] Very simple results on existence, for a given
graph, of balanced nowhere-zero gains from a given abelian group. [Ele-
mentary, if one notes that such gains exist iff the graph is |G|-colorable,
G being the gain group]. Comparison with the approach of Sampathku-
mar and Bhave (1973a). Dictionary: “Symmetric G-weighted digraph”
= gain graph with gains in the (abelian) group G. “Weight” = gain.
“Non-trivial” (of the gain function) = nowhere zero. (GG: Bal)

Michael L. Gargano, John W. Kennedy, and Louis V. Quintas
1998a Group weighted balanced digraphs and their duals. Proc. Twenty-ninth South-

eastern Int. Conf. on Combinatorics, Graph Theory and Computing (Boca Ra-
ton, Fla., 1998). Congressus Numer. 131 (1998), 161–167. MR 99j:05080. Zbl
951.05045.

An abelian gain graph Φ is cobalanced (here called “cut-balanced”)
if the sum of gains on the edges of each coherently oriented cutset is
0. [This generalizes Kabell (1985a).] Given Φ with ‖Φ‖ embedded in a
surface, the surface dual graph is given gains by a right-rotation rule,
thus forming a surface dual Φ∗ of Φ. [This appears to require that the
surface be orientable. Note that cobalance generalizes to nonabelian
gains on orientably embedded graphs, since the order of multiplication
for the gain product on a cutset is given by the embedding.] Thm. 3.2:
For a plane embedding of Φ, Φ is cobalanced iff Φ∗ is balanced. Thm. 3.4
restates as criteria for cobalance of Φ the standard criteria for balance
of Φ∗, as in Gargano and Quintas (1985a). More interesting are “well-
balanced” graphs, which are both balanced and cobalanced. Problem.
Characterize them. Dictionary (also see Gargano and Quintas 1985a):
Balance is called “cycle balance”. (GG: Bal(D))

Gilles Gastou and Ellis L. Johnson
1986a Binary group and Chinese postman polyhedra. Math. Programming 34 (1986),

1–33. MR 88e:90060. Zbl 589.52004.
§10 introduces the co-postman and “odd circuit” problems, treated

more thoroughly in Johnson and Mosterts (1987a) (q.v). “Odd” edges
and circuits are precisely negative edges and circles in an edge signing.
The “odd circuit matrix” represents L(Σ) (p. 30). The “odd circuit
problem” is to find a shortest negative circle; a simple algorithm uses
the signed covering graph (pp. 30–31). The “Fulkerson property” may
be related to planarity and K5 minors [which suggests comparison with
Barahona (1990a), §5]. (SG: Fr(Gen), Incid, M(Bases), cov, Alg)
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Heather Gavlas [Heather Jordon]
See G. Chartrand, D. Hoffman, and H. Jordon.

Premiys law Gawroński
See also K. Ku lakowski.

P. Gawroński, P. Gronek, and K. Ku lakowski
2005a The Heider balance and social distance. Acta Phys. Polonica B 36 (2005), no.

8, 2549–2558.

P. Gawroński and K. Ku lakowski
2005a Heider balance in human networks. In: Joaquıın Marro, Pedro L. Garrido, and

Miguel A. Muñoz, eds., Modeling Cooperative Behavior in the Social Sciences
(Proc. 8th Granada Lect., Granada, Spain, 2005), pp. 93–95. AIP Conf. Proc.,
Vol. 779. Amer. Inst. Physics, Melville, N.Y., 2005.

2007a A numerical trip to social psychology: long-living states of cognitive dissonance.
In: Y. Shi et al., eds., Computational Science – ICCS 2007 (7th Int. Conf.,
Beijing, 2007), Part IV, pp. 43–50. Lect. Notes in Computer Sci., Vol. 4490.
Springer, Berlin, 2007.

Jim [James F.] Geelen
See also M. Chudnovsky.

2008a Some open problems on excluding a uniform matroid. Adv. Appl. Math. 41
(2008), 628–637. MR 2459453 (2009k:05050).

Spikes G(2Cn,B) are important (see p. 630). [Annot. 29 Apr 2012.]
(gg: M)

James F. [Jim] Geelen and A.M.H. [Bert] Gerards
2005a Regular matroid decomposition via signed-graphs. J. Graph Theory 48 (2005),

no. 1, 74–84. MR 2005h:05037. Zbl 1055.05024.
The lift matroid. (SG: M: Str)

2009a Excluding a group-labelled graph. J. Combin. Theory Ser. B 99 (2009), 247–
253. MR 2467829 (2009k:05169). Zbl 1226.05213.

Given finite, abelian G and G′ ≤ G, and a G-gain graph Φ with a minor
Ψ ∼= G′K4t where t = 8n|G|2. Thm. 1.3: Either ∃ X ⊆ V with |X| < t
such that in Φ \X the block containing most of Ψ is G′-balanced, or Ψ
has a minor ∼= G′′Kn where G′ < G′′ ≤ G. t may not be best possible.
Thm. 1.4: ∀ n, ∃ l(n) such that ‖Φ‖ has a Kl(n) minor =⇒ Φ has a 0Kn

minor. Dictionary: “Group-labelled graph” = gain graph; Γ means G;
G means Φ; G̃ means ‖Φ‖; “shifting” means “switching”; G′-balanced
means switchable so all gains are in G′. (GG: Str)

Jim Geelen, Bert Gerards, Bruce Reed, Paul Seymour, and Adrian Vetta
2009a On the odd-minor variant of Hadwiger’s conjecture. J. Combin. Theory Ser. B

99 (2009), no. 1, 20–29. MR 2467815 (2010f:05149). Zbl 1213.05079.

Jim Geelen, Bert Gerards, and Geoff Whittle
2006a Matroid T -connectivity. SIAM J. Discrete Math. 20 (2006), no. 3, 588–596.

MR 2007j:05040. Zbl 1122.05023.
The full bicircular matroid G(Γ•,∅) appears on p. 589. (gg: bic)

2006b Towards a structure theory for matrices and matroids. In: Marta Sanz-Solé et
al., eds., Proceedings of the International Congress of Mathematicians (ICM,
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Madrid, 2006), Vol. III: Invited Lectures, pp. 827–842. European Mathematical
Society, Zürich, 2006. MR 2275708 (2008a:05045). Zbl 1100.05016.

See (2007a). (gg: M: Exp)

2007a Towards a matroid-minor structure theory. In: Geoffrey Grimmett et al., eds.,
Combinatorics, Complexity, and Chance: A Tribute to Dominic Welsh, pp. 72–
82. Oxford Lect. Ser. Math. Appl., Vol. 34. Oxford Univ. Press, Oxford, 2007.
MR 2008d:05037 (q.v.). Zbl 1130.05015.

Conjecture. A minor-closed proper subclass of all GF q-representable
matroids is essentially constructible from frame matroids and their duals.
Dictionary: “Dowling matroid” = simple frame matroid, i.e., submatroid
of Dowling’s (1973a, 1973b) matroids G(GK•n), for G = H×q . [Annot.
25 May 2009.] (gg: M: Exp)

James F. Geelen and Bertrand Guenin
2002a Packing odd circuits in Eulerian graphs. J. Combin. Theory Ser. B 86 (2002),

no. 2, 280–295. MR 2004g:05129. Zbl 1023.05091.
Adds to Guenin’s theorem (2001a): Thm.: If Σ has no −K5 minor,

then the dual linear program has a half-integral minimum (assuming f
has nonnegative coefficients). (SG: Geom, Str)

Jim Geelen and Tony Huynh
2006a Colouring graphs with no odd-Kn minor. Manuscript, 2002, 2006. http://

www.math.uwaterloo.ca/~jfgeelen/publications/colour.pdf (SG, Col)

James Geelen, James Oxley, Dirk Vertigan, and Geoff Whittle
2002a Totally free expansions of matroids. J. Combin. Theory Ser. B 84 (2002), no.

1, 130–179. MR 1877906 (2002j:05035). Zbl 1048.05020.
A rank-r swirl is G(2Cr,∅). Free spikes and rank-r swirls, also the

latter with one unbalanced loop, are important. Conjecture: The 3-
connected, rank-k matroids, representable over GF(q) and having no
L(2Ck,∅) or G(2Ck,∅) minor, have a bounded number of inequivalent
GF(q)-representations. [Annot. 25 May 2009, 29 Apr 2012.] (gg: M)

2004a A short proof of non-GF(5)-representability of matroids. J. Combin. Theory
Ser. B 91 (2004), 105–121. MR 2047534 (2005b:05055). Zbl 1050.05024.

The “free swirl” ∆r is G(2Ck,∅). The “free spike” Λr is L(2Ck,∅).
They play a main role re large totally free matroids (Thm. 3.4). [Annot.
8 Mar 2011.] (gg: M)

M.C. Geetha
See P. Siva Kota Reddy.

Xianya Geng, Shuchao Li, and Slobodan K. Simić
2010a On the spectral radius of quasi-k-cyclic graphs. Linear Algebra Appl. 433

(2010), no. 8-10, 1561–1572. MR 2718221 (2011f:05178). Zbl 1211.05074.
§2 mentions K(−Γ). Quasi-k-cyclic means ∃ v such that Γ \ v has

cyclomatic number k. For k ≤ 2, Thm. 3.2 describes all −Γ maximizing
the largest eigenvalue of K(−Γ). [Annot. 21 Jan 2012.] (Par: Adj)

A.M.H. Gerards
See also M. Chudnovsky, M. Conforti, and J. Geelen.

1988a Homomorphisms of graphs into odd cycles. J. Graph Theory 12 (1988), 73–83.
MR 89h:05045. Zbl 691.05013.

http://www.math.uwaterloo.ca/~jfgeelen/publications/colour.pdf
http://www.math.uwaterloo.ca/~jfgeelen/publications/colour.pdf
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If an antibalanced, unbalanced signed graph has no homomorphism into
its shortest negative circle, then it contains a subdivision of −K4 or of
a loose ±C3 (here called an “odd K4” and an “odd K2

3”). (A loose ±Cn
consists of n negative digons in circular order, each adjacent pair joined
either at a common vertex or by a link.) [Question. Do the theorem and
proof carry over to any unbalanced signed graph?] Other results about
antibalanced signed graphs are corollaries. Several interesting results
about signed graphs are lemmas. (Par, SG: Str)

1989a A min-max relation for stable sets in graphs with no odd-K4. J. Combin.
Theory Ser. B 47 (1989), 330–348. MR 91c:05143. Zbl 691.05021.

Let Σ be antibalanced and without isolated vertices and contain no
subdivision of −K4. Then max. stable set size = min. cost of a cover by
edges and negative circles. Also, min. vertex-cover size = max. profit of a
packing of edges and negative circles. Also, weighted analogs. [Question.
Do the theorem and proof extend to any Σ?] (par, sg: Str)

1989b A short proof of Tutte’s characterization of totally unimodular matrices. Linear
Algebra Appl. 114/115 (1989), 207–212. MR 90b:05033. Zbl 676.05028.

The proof of Lemma 3 uses a signed graph. (SG: Bal)

††1990a Graphs and polyhedra: Binary spaces and cutting planes. CWI Tract, 73. Cen-
trum voor Wiskunde en Informatica, Amsterdam, 1990. MR 1106635 (92f:-
52027). Zbl 727.90044.

(Very incomplete annotation.) Thm.: Given Σ, the set {x ∈ Rn : d1 ≤
x ≤ d2, b1 ≤ H(Σ)Tx ≤ b2} has Chvatal rank ≤ 1 for all integral vectors
d1, d2, b1, b2, iff Σ contains no subdivided −K4.

(SG: Incid, Geom, Bal, Str)

1992a On shortest T -joins and packing T -cuts. J. Combin. Theory Ser. B 55 (1992),
73–82. MR 93d:05093. Zbl 810.05056. (SG: Str)

1992b Odd paths and circuits in planar graphs with two odd faces. CWI Report
BS-R9218, September 1992.

1994a An orientation theorem for graphs. J. Combin. Theory Ser. B 62 (1994), 199–
212. MR 96d:05051. Zbl 807.05020. (par, sg: M, Ori)

1995a On Tutte’s characterization of graphic matroids—a graphic proof. J. Graph
Theory 20 (1995), 351–359. MR 96h:05038. Zbl 836.05017.

Signed graphs used to prove Tutte’s theorem. The signed-graph ma-
troid employed is the extended lift matroid L0(Σ) (“extended even cycle
matroid”). The main theorem (Thm. 2): Let Σ be a signed graph with
no −K4, ±K3, −Pr3, or Σ4 link minor; then Σ can be converted by
Whitney 2-isomorphism operations (“breaking” = splitting a compo-
nent in two at a cut vertex, “glueing” = reverse, “switching” = twisting
across a vertex 2-separation) to a signed graph that has a balancing
vertex (“blocknode”). Here Σ4 consists of +K4 with a 2-edge matching
doubled by negative edges and one other edge made negative.
More translation: His “Σ” is our E−. “Even, odd” = positive, negative

(for edges and circles). “Bipartite” = balanced; “almost bipartite” =
has a balancing vertex. (SG: M, Str, Incid)

1995b Matching. In: M.O. Ball, T.L. Magnanti, C.L. Monma, and G.L. Nemhauser,
eds., Network Models, Ch. 3, pp. 135–224. Handbooks Oper. Res. Management
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Sci., Vol. 7. North-Holland, Amsterdam, 1995. MR 1420868. Zbl 839.90131.
§7.2.2, “Network flows and bidirected graphs”. Generalized matchings

in bidirected graphs. [Annot. 9 June 2011.] (sg: Ori: Incid)

A.M.H. Gerards and M. Laurent
1995a A characterization of box 1

d
-integral binary clutters. J. Combin. Theory Ser. B

65 (1995), 186–207. MR 96k:90052. Zbl 835.05017.
Thm. 5.1: The collection of negative circles of Σ is box 1

d
-integral for

some/any integer d ≥ 2 iff it does not contain −K4 as a link minor.
(SG: Circles, Geom)

A.M.H. Gerards, L. Lovász, A. Schrijver, P.D. Seymour, C.-S. Shi, and K.
Truemper
†1990a Manuscript in preparation, 1990.

Extension of Gerards and Schrijver (1986b). [Same comments apply.
The proliferating authorship may prevent this major contribution from
ever being published—though one hopes not! See Seymour (1995a) for
description of two main theorems.] (SG: Str, M, Top)

A.M.H. Gerards and A. Schrijver
1986b Signed graph – regular matroids – grafts. Research Memorandum, Faculteit

der Economische Wetenschappen, Tilburg Univ., 1986.
Essential, major theorems. The (extended) lift matroid of a signed

graph is one of the objects studied. Some of this material is published
in Gerards (1990a). This paper is in the process of becoming Gerards,
Lovász, et al. (1990a). (SG: Str, M)

1986a Matrices with the Edmonds–Johnson property. Combinatorica 6 (1986), 365–
379. MR 879340 (88g:05087). Zbl (565.90048), 641.05039.

A subsidiary result: If −Γ contains no subdivided −K4, then Γ is
t-perfect. (sg: Par: Geom, Str)

A.M.H. Gerards and F.B. Shepherd
1998a Strong orientations without even directed circuits. Discrete Math. 188 (1998),

111–125. MR 99i:05091. Zbl 957.05048.
1998b The graphs with all subgraphs t-perfect. SIAM J. Discrete Math. 11 (1998),

524–545. MR 2000e:05074. Zbl 980.38493.
Extension of Gerards (1989a). An “odd-K4” is a graph whose all-

negative signing is a subdivided −K4. A “bad-K4” is an odd-K4 which
does not consist of exactly two undivided K4 edges that are nonadjacent
while the other edges are replaced by even paths. Thm. 1: A graph that
contains no bad-K4 as a subgraph is t-perfect. Thm. 2 characterizes
the graphs that are subdivisions of 3-connected graphs and contain an
odd-K4 but no bad-K4. [The fact that ‘badness’ is not strictly a parity
property weighs against the possibility that Gerards (1989a) extends
well to signed graphs.] (par, sg: Str, Alg)

K.A. Germina
See also S. Hameed K.

K.A. Germina and Shahul Hameed K
2010a On signed paths, signed cycles and their energies. Appl. Math. Sci. (Ruse) 4

(2010), no. 70, 3455–3466. MR 2769200 (no rev).
Eigenvalues and energies of A(Σ) and Laplacian (Kirchhoff) matrices

K(Σ) of signed paths and circles; also recurrences for the characteristic
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polynomials. Energy of A :=
∑
|λi(A)|; energy of K :=

∑
|λi(K) − d̄

where d̄ := average degree. [Annot. 14 Nov 2010.]
(SG: Adj: Paths, Circles)

K.A. Germina, Shahul Hameed K, and Thomas Zaslavsky
2011a On products and line graphs of signed graphs, their eigenvalues and energy.

Linear Algebra Appl. 435 (2011), no. 10, 2432–2450. MR 2811128 (2012j:05254).
Zbl 1222.05223. arXiv:1010.3884.

Adjacency matrixA and eigenvalues and energy for the general “Cvetković
product” NEPS(Σ1, . . . ,Σk;B) and for a line graph Λ(Σ) (as in Za-
slavsky (2010b, 20xxa, 20xxb)). Kirchhoff (“Laplacian”) matrix K(Σ);
K(+Γ) = “Laplacian” of a graph Γ; K(−Γ) = “signless Laplacian”) and
its eigenvalues and energy for Cartesian product Σ1 × · · · × Σr. Also,
A(Λ(Σ)). Thm. The Cartesian product is balanced iff all Σi are bal-
anced. Examples: Planar, cylindrical, and toroidal grids with product
signatures; line graphs of those grids and of +Kn and −Kn. [Annot.
19 Oct 2010.] (SG: Bal, Adj, LG)

Anna Maria Ghirlanda
See L. Muracchini.

Ebrahim Ghorbani
See S. Akbari.

A. Ghouila-Houri
See C. Berge.

Rick Giles
1982a Optimum matching forests. I: Special weights. II: General weights. III: Facets

of matching forest polyhedra. Math. Programming 22 (1982), 1–11, 12–38,
39–51. MR 82m:05075a,b,c. Zbl 468.90053, 468.90054, 468.90055.

In the author’s “mixed” graphs, the undirected edges are really extro-
verted bidirected edges. (sg: ori)

Mukhtiar Kaur Gill [Mukti Acharya]
See also B.D. Acharya.

1981a A graph theoretical recurrence formula for computing the characteristic poly-
nomial of a matrix. In: S.B. Rao, ed., Combinatorics and Graph Theory
(Proc. Sympos., Calcutta, 1980), pp. 261–265. Lect. Notes in Math., Vol. 885.
Springer-Verlag, Berlin, 1981. MR 655622 (83f:05047). Zbl 479.05030.

Introduces “quasicospectrality” of graphs or digraphs, i.e., they have
cospectral signatures. See B.D. Acharya, Gill, and Pathwardhan (1984a)
and M. Acharya (20xxa). [Annot. 3 Feb 2012.] (SG, SD: Adj)

1981b A note concerning Acharya’s conjecture on a spectral measure of structural
balance in a social system. In: S.B. Rao, ed., Combinatorics and Graph Theory
(Proc. Sympos., Calcutta, 1980), pp. 266–271. Lect. Notes in Math., Vol. 885.
Springer-Verlag, Berlin, 1981. MR 655623 (84d:05121). Zbl 476.05073.

Assume |Σ1| = |Σ2|. If Σ1 and Σ2 have the same value of B.D. Acharya’s
(1980a) measure of imbalance, A(Σ1) and A(Σ2) may have different spec-
tra. [Not surprisingly.] (SG: Bal, Adj)

1982a Contributions to Some Topics in Graph Theory and Its Applications. Ph.D.
thesis, Dept. of Mathematics, Indian Institute of Technology, Bombay, 1982.

Most of the results herein have been published separately. See Gill
(1981a, 1981b), Gill and Patwardhan (1981a, 1983a, 1986a), M. Acharya
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(2009a). (SG, SD: Bal, LG, Adj)

M.K. Gill and B.D. Acharya
1980a A recurrence formula for computing the characteristic polynomial of a sigraph.

J. Combin. Inform. System Sci. 5 (1980), 68–72. MR 586322 (81m:05097). Zbl
448.05048. (SG: Adj)

1980b A new property of two dimensional Sperner systems. Bull. Calcutta Math. Soc.
72 (1980), 165–168. MR 669580 (83m:05121). Zbl 531.05058.

(SG: Bal, Geom)

M.K. Gill and G.A. Patwardhan
1981a A characterization of sigraphs which are switching equivalent to their line

sigraphs. J. Math. Phys. Sci. 15 (1981), 567–571. MR 650430 (84h:05106).
Zbl 488.05054.

The line graph is that of Behzad and Chartrand (1969a). (SG: LG)

1982a A characterization of sigraphs which are switching equivalent to their iterated
line sigraphs. J. Combin. Inform. System. Sci. 7 (1982), 287–296. MR 724371
(86a:05103). Zbl 538.05060.

The line graph is that of Behzad and Chartrand (1969a). (SG: LG)

1986a Switching invariant two-path signed graphs. Discrete Math. 61 (1986), 189–196.
MR 855324 (87j:05138). Zbl 594.05059.

The k-path signed graph of Σ [I write Dk(Σ)] is the distance-k graph
on V with signs σk(uv) = − iff every length-k path is all negative. The
equation Σ ' D2(Σ) is solved. [Annot. 29 Apr 2009.] (SG, Sw)

Robert Gill
1998a The number of elements in a generalized partition semilattice. Discrete Math.

186 (1998), 125–134. MR 1623892 (99e:52014). Zbl 956.52009.
The semilattice is the intersection semilattice of a affinographic hyper-

plane arrangement representing [−k, k]Kn [and is therefore isomorphic
to the geometric semilattice of all k-composed partitions of a set; see,
e.g., Zaslavsky (2002a), Ex. 10.5]. The rank and the Whitney num-
bers of the first kind are calculated. See Kerr (1999a) for homology.
(gg: m: Geom, Invar)

2000a The action of the symmetric group on a generalized partition semilattice. Elec-
tronic J. Combin. 7 (2000), Research Paper 23, 20 pp. MR 1755612 (2001g:-
05107). Zbl 947.06001.

See (1998a). (gg: m: Geom, Invar, Aut)

John Gimbel
1988a Abelian group labels on graphs. Ars Combinatoria 25 (1988), 87–92. MR

89k:05046. Zbl 655.05034.
The topic is “induced” edge labellings, that is, w(euv) = f(u)f(v)

for some f : V → A. The number of f that induce a given induced
labelling, the number of induced labellings, and a characterization of
induced labellings. All involve the 2-torsion subgroup of A, unless Γ is
bipartite. The inspiration is dualizing magic graphs. [Somewhat dual to
Edelman and Saks (1979a).] (par: incid)(VS(Gen): Enum)

Omer Giménez, Anna de Mier, and Marc Noy
2005a On the number of bases of bicircular matroids. Ann. Combin. 9 (2005), no. 1,

35–45. MR 2005m:05049. Zbl 1059.05030.
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The number of bases is bounded above by Cn·(number of spanning
trees) in a simple graph but not in a multigraph. More precise results
for Kn and Kn,m. [See Neudauer, Meyers, and Stevens (2001a) and
Neudauer and Stevens (2001a).] (Bic: Incid)

Omer Giménez and Marc Noy
2006a On the complexity of computing the Tutte polynomial of bicircular matroids.

Combin. Probab. Comput. 15 (2006), no. 3, 385–395. MR 2007a:05029. Zbl
1094.05013.

Known NP-hardness results for transversal matroids apply to their
proper subclass, bicircular matroids, with a few possible exceptions.

(Bic: Incid: Alg)

Ioannis Giotis and Venkatesan Guruswami
2006a Correlation clustering with a fixed number of clusters. In: Proceedings of the

Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1167–
1176. ACM, New York, 2006. MR 2373844 (2009f:62098). Zbl 1194.62087.

(SG: WG: Clu: Alg)

2006b Correlation clustering with a fixed number of clusters. Theory Comput. 2
(2006), 249–266. MR 2322880 (2009e:68118). (SG: WG: Clu: Alg)

Roland Glantz and Marcello Pelillo
2006a Graph polynomials from principal pivoting. Discrete Math. 306(2006), no. 24,

3253–3266. MR 2279060 (2008d:05112) (q.v.). Zbl 1125.05073. (GG: Invar)

Terry C. Gleason
See also D. Cartwright.

Terry C. Gleason and Dorwin Cartwright
1967a A note on a matrix criterion for unique colorability of a signed graph. Psy-

chometrika 32 (1967), 291–296. MR 35 #989. Zbl 184, 492 (e: 184.49202).
“Colorable” = clusterable. The adjacency matrices of Σ+ and Σ− are

employed separately. The arithmetic is mostly “Boolean”, i.e., 1+1 = 0.
A certain integral matrix T shows whether or not Σ is clusterable. [An-
not. 11 Nov 2008.] (SG: Clu, Adj)

Fred Glover
See also J. Elam.

F. Glover, J. Hultz, D. Klingman, and J. Stutz
1978a Generalized networks: A fundamental computer-based planning tool. Manage-

ment Sci. 24 (1978), 1209–1220. (GN: Alg, M(bases): Exp, Ref)

Fred Glover and D. Klingman
1973a On the equivalence of some generalized network problems to pure network prob-

lems. Math. Programming 4 (1973), 269–278. MR 47 #6393. Zbl 259.90012.
(GN: Bal, Incid)

1973b A note on computational simplifications in solving generalized transportation
problems. Transportation Sci. 7 (1973), 351–361. MR 54 #6502.

(GN: M(bases), geom)

Fred Glover, Darwin Klingman, and Nancy V. Phillips
1992a Network Models in Optimization and Their Applications in Practice. Wiley-

Interscience, New York, 1992.
Textbook. See especially Ch. 5: “Generalized networks.”

(GN: Alg: Exp)
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F. Glover, D. Klingman, and J. Stutz
1973a Extensions of the augmented predecessor index method to generalized network

problems. Transportation Sci. 7 (1973), 377–384. (GN: M(bases), m)

Wayne Goddard
See F.R.K. Chung.

Luis Goddyn
See M. Chudnovsky.

C.D. Godsil
1985a Inverses of trees. Combinatorica 5 (1985), 33–39. MR 86k:05084. Zbl 578.05049.

If T is a tree with a perfect matching, then A(T )−1 = A(Σ) where Σ
is balanced and |Σ| ⊇ Γ. Question. When does |Σ| = Γ? [Solved by
Simion and Cao (1989a).] [Cf. Buckley, Doty, and Harary (1984a) and,
for a different notion, Greenberg, Lundgren, and Maybee (1984b).]

(sg: Adj, Bal)

Chris Godsil and Gordon Royle
2001a Algebraic Graph Theory. Graduate Texts in Math., Vol. 207. Springer-Verlag,

New York, 2001. MR 2002f:05002. Zbl 968.05002.
Ch. 11, “Two-graphs”: Equiangular lines (van Lint and Seidel 1966a,

Lemmens and Seidel 1973a), graph switching (van Lint and Seidel 1966a,
Seidel 1976a), regular two-graphs (Taylor 1977a).

(TG: Adj, Geom, Sw)
Ch. 12, “Line graphs and eigenvalues”: Based on Cameron, Goethals,

Seidel, and Shult (1976a). (LG: sg: Adj, Geom, Sw)
§15.3, “Signed matroids”: Sign-colored matroids and graphs. Rank gen-

erating polynomial (see Kauffman 1989a). §16.3, “Signed plane graphs”,
§16.5, “Reidemeister invariants”, §16.6, “The Kauffman bracket”, §16.8,
“Connectivity”: Properties of Kauffman’s (1989a) “signed-graph” (re-
ally sign-colored graph) Tutte polynomial. §16.7, “The Jones polyno-
mial” of a knot. (Sc, SGc: Adj, Incid, Top)

J.M. Goethals
See also P.J. Cameron.

J.M. Goethals and J.J. Seidel
1970a Strongly regular graphs derived from combinatorial designs. Canad. J. Math.

22 (1970) 597–614. MR 44 #106. Zbl 198.29301.
A symmetric Hadamard matrix H with constant diagonal can be put

in the form A(Kn, σ) ± I for some signed Kn that represents a regular
two-graph [see D.E. Taylor (1977a)] of order 4s2 (Thm. 4.1). (tg: Adj)

Andrew V. Goldberg and Alexander V. Karzanov
1994a Path problems in skew-symmetric graphs. In: Proceedings of the 5th an-

nual ACM-SIAM symposium on discrete algorithms (Arlington, Va., 1994), pp.
526–535. New York, Assoc. Comput. Machinery (ACM), 1994. MR 1285193
(95c:05074). Zbl 867.90118. (sd: Flows, Cov)

1996a Path problems in skew-symmetric graphs. Combinatorica 16 (1996), no. 3,
353–382. MR 1417346 (97h:05099). Zbl 867.05037. (sd: Flows, Cov)

2004a Maximum skew-symmetric flows and matchings. Math. Program., Ser. A 100
(2004), no. 3, 537–568. MR 2129927 (2005m:90142). Zbl 1070.90090.
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Techniques for digraph flows are extended to bidirected flows, treated
via the double covering digraph (cf. Tutte 1967a). [Annot. 9 Sept 2010.]

(sg: Ori: Flows, Cov)

Andrew V. Goldberg, Éva Tardos, and Robert E. Tarjan
1990a Network flow algorithms. In: B. Korte, L. Lovász, H.J. Prömel, and A. Schrij-

ver, eds., Paths, Flows, and VLSI-Layout, pp. 101–164. Algorithms and Com-
binatorics, Vol. 9. Springer-Verlag, Berlin, 1990. MR 1083378 (92i:90043). Zbl
728.90035.

§1.5, “The generalized flow problem”: Max flow, conservative except at
the source, in networks with (real, positive) gains; generalized augment-
ing paths. §1.6, “The restricted problem”: Flows with gains, conserva-
tive except at source and sink, whose residual flow has no gainy cycles
that avoid the source. §1.7, “Decomposition theorems” for flows with
or without gains. §6, “The generalized flow problem”: Combinatorial
algorithms; connections between flow problems with and without gains
[Annot. 11 Jun 2012.] (GN: Alg)

Jay R. Goldman and Louis H. Kauffman
1993a Knots, tangles, and electrical networks. Adv. Appl. Math. 14 (1993), 267–

306. MR 94m:57013. Zbl 806.57002. Repr. in Louis H. Kauffman, Knots and
Physics, 2nd edn., pp. 684–723. Ser. Knots Everything, Vol. 1. World Scientific,
Singapore, 1993. MR 95i:57010. Zbl 868.57001.

The parametrized Tutte polynomial [as in Zaslavsky (1992b) et al.] of
an R×-weighted graph is used to define a two-terminal “conductance”.
Interpreting weights as crossing signs (±1) in a planar link diagram with
two blocked regions yields invariants of tunnel links. [Also see Kauffman
(1997a).] (SGw: Gen: Invar, Knot, Phys)

Richard Z. Goldstein and Edward C. Turner
1979a Applications of topological graph theory to group theory. Math. Z. 165 (1979),

1–10. MR 80g:20050. Zbl 377.20027, (387.20034). (SG: Top)

Eric Goles
See J. Aracena.

Harry F. Gollub
1974a The subject-verb-object approach to social cognition. Psychological Rev. 81

(1974), 286–321. (PsS: vs)

Martin Charles Golumbic
1979a A generalization of Dirac’s theorem on triangulated graphs. In: Allan Gewirtz

and Louis V. Quintas, eds., Second Int. Conf. on Combinatorial Mathemat-
ics (New York, 1978). Ann. New York Acad. Sci. 319 (1979), 242–246. MR
81c:05077. Zbl 479.05055.

Further results on chordal bipartite graphs. Their properties imply
standard properties of ordinary chordal graphs. [See (1980a) for more.]
(The “only if” portion of Thm. 4 is false, according to (1980a), p. 267.)

(sg: bal, cov)

1980a Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York,
1980. MR 81e:68081. Zbl 541.05054.

§12.3: “Perfect elimination bipartite graphs,” and §12.4: “Chordal
bipartite graphs,” expound perfect elimination and chordality for bi-
partite graphs from Golumbic and Goss (1978a) and Golumbic (1979a).
In particular, Cor. 12.11: A bipartite graph is chordal bipartite iff ev-
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ery induced subgraph has perfect edge elimination scheme. [Problem.
Guided by these results, find a signed-graph generalization of chordality
that corresponds to supersolvability and perfect vertex elimination (cf.
Zaslavsky (2001a)).] (sg: bal, cov)

Martin Charles Golumbic and Clinton F. Goss
1978a Perfect elimination and chordal bipartite graphs. J. Graph Theory 2 (1978),

155–163. MR 80d:05037. Zbl 411.05060.
A perfect edge elimination scheme is a bipartite analog of a perfect ver-

tex elimination scheme. A chordal bipartite graph is a bipartite graph in
which every circle longer than 4 edges has a chord. Analogs of properties
of chordal graphs, e.g., Dirac’s separator theorem, are proved. In par-
ticular, a chordal bipartite graph has a perfect edge elimination scheme.
[See Golumbic (1980a) for more.] (sg: bal)

Sergio Gómez, Pablo Jensen, and Alex Arenas
2009a Analysis of community structure in networks of correlated data. Phys. Rev. E

80 (2009), no. 1, 016114. arXiv:0812.3030.
Cf. Bansal, Blum, and Chawla (2004a), et al. (SG, WG: Clu)

Shicai Gong, Hangen Duan, and Yizheng Fan
2006a On eigenvalues distribution of mixed graphs. J. Math. Study 39 (2006), no. 2,

124–128. MR 2248100 (2007b:05136). Zbl 1104.05045. (sg: Adj)

Shi-Cai Gong and Yi-Zheng Fan
2007a Nonsingular unicyclic mixed graphs with at most three eigenvalues greater than

two. Discuss. Math. Graph Theory 27 (2007), no. 1, 69–82. MR 2321423
(2008b:05102). Zbl 1139.05033.

Dictionary: See X.-D. Zhang and Li (2002a). [Annot. 23 Mar 2009.]
(sg: incid, Adj)

Shi-Cai Gong and Guang-Hui Xu
2012a The characteristic polynomial and the matchings polynomial of a weighted

oriented graph. Linear Algebra Appl. 436 (2012), no. 9, 3597–3607.
A “weighted oriented graph” is an R+-gain graph. The “skew adjacency

matrix” is the gain-graphic adjacency matrix. [Annot. 7 Feb 2012.]
(gg: CAdj)

Mauricio González
See J. Aracena.

Gary Gordon
See also L. Fern.

1997a Hyperplane arrangements, hypercubes and mixed graphs. Proc. Twenty-eighth
Southeastern Int. Conf. on Combinatorics, Graph Theory and Computing (Boca
Raton, Fla., 1997). Congressus Numer. 126 (1997), 65–72. MR 98j:05038. Zbl
901.05055.

An explicit bijection between the regions of the real hyperplane ar-
rangement corresponding to ±K◦n and the set of “good signed [complete]
mixed graphs” Ga of order n. The latter are a notational variant of the
acyclic orientations τ of ±K◦n [and are therefore in bijective correspon-
dence with the regions, by Zaslavsky (1991b), Thm. 4.4]; the dictionary
is: a directed edge in Ga is an oriented positive edge in τ , while a positive
or negative undirected edge in Ga is an introverted or extroverted nega-
tive edge of τ . The main result, Thm. 1, is an interesting and significant



the electronic journal of combinatorics #DS8 126

explicit description of the acyclic orientations of ±K◦n. Namely, one or-
ders the vertices and directs all positive edges upward; then one steps
inward randomly from both ends of the ordered vertex set, one vertex at
a time, at each new vertex orienting all previously unoriented negative
edges to be introverted if the vertex was approached from below, ex-
troverted if from above in the vertex ordering. [This clearly guarantees
acyclicity.] [Problem. Generalize to arbitrary signed graphs.]

Lemma 2, “a standard exercise”, is that an orientation of ±K◦n (with
the loops replaced by half edges) is acyclic iff the magnitudes of its net
degrees are a permutation of {1, 3, . . . , 2n − 1]}. [Similarly, an orienta-
tion of ±K◦n is acyclic iff its net degree vector is a signed permutation
of {2, 4, . . . , 2n} (Zaslavsky (1991b), p. 369, but possibly known before-
hand in other terminology). Both follow easily from Zaslavsky (1991b),
Cor. 5.3: an acyclic orientation has a vertex that is a source or sink.]
(SG: ori: incid, Geom)

1999a The answer is 2n · n! What’s the question? Amer. Math. Monthly 106 (Aug.–
Sept., 1999), no. 7, 636–645. MR 2000j:05050. Zbl 982.05052.

§5 presents the signed-graph question: an appealing presentation of
material from (1997a). (SG: ori, Incid, Geom, N: Exp)

Y. Gordon and H.S. Witsenhausen
1972a On extensions of the Gale–Berlekamp switching problem and constants of lp-

spaces. Israel J. Math. 11 (1972), 216–229. MR 46 #3213. Zbl 238.46009.
Asymptotic estimates of l(Kr,s), the maximum frustration index of

signatures of Kr,s, improving the bounds of Brown and Spencer (1971a).
(sg: Fr)

Clinton F. Goss
See M.C. Golumbic.

Eric Gottlieb
2003a On the homology of the h, k-equal Dowling lattice. SIAM J. Discrete Math. 17

(2003), no. 1, 50–71. MR 2004k:05209. Zbl 1033.05098.
The lattice is the subposet of LatG(GKn) consisting of the flats whose

nontrivial balanced components have order ≥ k and whose unbalanced
component, if any, has order ≥ h. If |G| = 2 and h ≤ k we have the
lattice of Björner and Sagan (1996a). (gg: M: Invar)

Eric Gottlieb and Michelle L. Wachs
2000a Cohomology of Dowling lattices and Lie (super)algebras. Adv. in Appl. Math.

24 (2000), no. 4, 301–336. MR 2001i:05161. Zbl 1026.05104.
Two monomorphisms of the cohomology of the order complex of the lat-

tice of flats of Qn(G), upon which Sn oG acts as operators, into envelop-
ing algebras of certain Lie algebras and Lie superalgebras. (gg: M: In-
var)

Ian P. Goulden, Jin Ho Kwak, and Jaeun Lee
2005a Enumerating branched orientable surface coverings over a non-orientable sur-

face. Discrete Math. 303 (2005), 42–55. MR 2181041 (2006i:05089). Zbl
1079.05025. (SG: Cov, Top, gg)

R.L. Graham and N.J.A. Sloane
1985a On the covering radius of codes. IEEE Trans. Inform. Theory IT-31 (1985),

385–401. MR 87c:94048. Zbl 585.94012.
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See Example b, p. 396 (the Gale–Berlekamp code). (sg: Fr)

Ante Graovac, Ivan Gutman, and Nenad Trinajstić
1977a Topological Approach to the Chemistry of Conjugated Molecules. Lect. Notes

in Chem., Vol. 4. Springer-Verlag, Berlin, 1977. Zbl 385.05032.
§2.7. “Extension of graph-theoretical considerations to Mobius sys-

tems.” (SG: Adj, Chem)

A. Graovac and N. Trinajstić
1975a Mobius molecules and graphs. Croatica Chemica Acta (Zagreb) 47 (1975), 95–

104. (SG: Adj, Chem)

1976a Graphical description of Möbius molecules. J. Molecular Structure 30 (1976),
416–420.

The “Möbius graph” (i.e., signed graph of a suitably twisted ring
hydrocarbon) is introduced with examples of the adjacency matrix and
characteristic polynomial. (Chem: SG: Adj)

John G. del Greco
See del Greco (under ‘D’).

F. Green
1987a More about NP-completeness in the frustration model. OR Spektrum 9 (1987),

161–165. MR 88m:90053. Zbl 625.90070.
Proves polynomial time for the reduction employed in Bachas (1984a)

and improves the theorem to: The frustration-index decision problem on
signed (3-dimensional) cubic lattice graphs with 9 layers is NP-complete.
[2 layers, in Barahona (1982a).] (SG: Fr: Alg)

Jan Green-Krótki
See J. Aráoz.

Harvey J. Greenberg, J. Richard Lundgren, and John S. Maybee
1983a Rectangular matrices and signed graphs. SIAM J. Algebraic Discrete Methods

4 (1983), 50–61. MR 84m:05052. Zbl 525.05045.
From a matrix B, with row set R and column set C, form the “signed

bipartite graph” BG+ with vertex set R ∪ C and an edge rick signed
sgn bik whenever bik 6= 0. The “signed row graph” RG+ is the two-
step signed graph of BG+ on vertex set R: that is, rirj is an edge if

distBG
+

(ri, rj) = 2 and its sign is the sign of any shortest rirj-path. If
some edge has ill-defined sign, RG+ is undefined. The “signed column
graph” CG+ is similar. The paper develops simple criteria for existence
and balance of these graphs and the connection to matrix properties. It
examines simple special forms of B. (QM: SG, Bal, Appl)

1984a Signed graphs of netforms. Proc. Fifteenth Southeastern Conf. on Combina-
torics, Graph Theory and Computing. Congressus Numer. 44 (1984), 105–115.
MR 87c:05085. Zbl 557.05048.

Application of (1983a, 1984b). “Netform” = incidence matrix of a
positive real gain graph (neglecting a minor technicality). Thm. 1: B
is a netform iff RG+(B) exists and is all negative. (Then CG+(B) also
exists.) Thm. 2: If the row set partitions so that all negative elements
are in some rows and all positives are in the other rows, then RG+(B)
is all negative and balanced. Thm. 3: If Σ is all negative and balanced,
then B exists as in Thm. 2 with RG+(B) = Σ. [Equivalent to theorem
of Hoffman and Gale (1956a).] B is an “inverse” of Σ. Thm. 4 concerns
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“inverting” −Γ in a minimal way. Then B will be (essentially) the
incidence matrix of +Γ. (SG, gg: incid, Bal, VS, Exp, Appl)

1984b Inverting signed graphs. SIAM J. Algebraic Discrete Methods 5 (1984), 216–
223. MR 86d:05085. Zbl 581.05052.

See (1983a). “Inversion” means, given a signed graph ΣR, or ΣR and
ΣC , finding a matrix B such that ΣR = RG+(B), or ΣR = RG+(B) and
ΣC = CG+(B). The elementary solution is in terms of coverings of ΣR by
balanced cliques. It may be desirable to minimize the size of the balanced
clique cover; this difficult problem is not tackled. (QM: SG, VS, Bal)

Harvey J. Greenberg and John S. Maybee, eds.
1981a Computer-Assisted Analysis and Model Simplification (Proc. First Sympos.,

Univ. of Colorado, Boulder, Col., 1980). Academic Press, New York, 1981.
MR 82g:00016. Zbl 495.93001.

Several articles relevant to signed (di)graphs. (QM)(SD, SG: Bal)

Curtis Greene and Thomas Zaslavsky
1983a On the interpretation of Whitney numbers through arrangements of hyper-

planes, zonotopes, non-Radon partitions, and orientations of graphs. Trans.
Amer. Math. Soc. 280 (1983), 97–126. MR 84k:05032. Zbl 539.05024.

§9: “Acyclic orientations of signed graphs.” Continuation of Zaslavsky
(1991b), counting acyclic orientations with specified unique source; also,
with edge e having specified orientation and with no termini except at
the ends of e. The proof is geometric. (SG: M, Ori, Geom, Invar)

David A. Gregory, Kevin N. Vandermeulen, and Bryan L. Shader
1996a Rank decompositions and signed bigraphs. Linear Multilinear Algebra 40 (1996),

283–301. MR 1384648 (97a:05147). Zbl 866.05042.
For bipartite Σ,M := class of matrices with weak sign pattern Σ. Every
A ∈M is the sum of rkA rank-1 matrices inM iff (*) σ(C) = −(−1)|C|/2

for every circle with |C| ≥ 6. Thm. 3.2: Σ has (*) for every circle iff it is a
spanning subgraph of a signed 4-cockade. Thm. 3.7. Σ has (*) for circles
with |C| ≥ 6 iff, after switching, it is obtained by three constructions
from a negative C4, a subgraph of +K3,n, or a signed graph Rn. [Annot.
6 Mar 2011.] (SG: QM, Circles)

Gary S. Grest
See also D. Blankschtein.

1985a Fully and partially frustrated simple cubic Ising models: a Monte Carlo study.
J. Phys. C 18 (1985), 6239–6246.

Simulation of the cubic signed graph of Blankschtein, M. Ma, and A.
Nihat Berker (1984a). [Annot. 18 Jun 2012.] (Phys, SG: Fr)

G. Grimmett
1994a The random-cluster model. In: F.P. Kelly, ed., Probability, Statistics and Op-

timisation, Ch. 3, pp. 49–63. Wiley, Chichester, 1994. MR 96d:60154. Zbl
858.60093.

Reviews Fortuin and Kasteleyn (1972a) and subsequent developments
esp. in multidimensional lattices. The viewpoint is mainly probabilis-
tic and asymptotic. §3.7, “Historical observations,” reports Kasteleyn’s
account of the origin of the model. (sgc: Gen: Invar, Phys: Exp)

Ya.R. Grinberg and A.M. Rappoport
2011a Configuration and minimal coloring of disbalanced graphs. (In Russian.) Dok-
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lady Akad. Nauk 439 (2011), no. 6, 743–745. Zbl 1238.05118.
See (2011b). (SG: Fr, Clu)

2011b Configuration and minimal coloring of disbalanced graphs. Doklady Math. 84
(2011), no. 1, 579–581. Zbl 1238.05118.

Contrabalanced signed graphs are characterized. [Easy.] Dictionary:
“disbalance” = contrabalance, “junction” = cutpoint, “cyclically split-
table” = every block is a circle, “p-groupable” = p-clusterable. [Annot.
9 Jun 2012.] (SG: Fr, Clu)

Richard C. Grinold
1973a Calculating maximal flows in a network with positive gains. Operations Res.

21 (1973), 528–541. MR 50 #3900. Zbl 304.90043.
Objective: to find the maximum output for given input. Basic solutions

correspond to bases of G(Φ′), Φ′ being the underlying gain graph Φ
together with an unbalanced loop adjoined to the sink. Onaga (1967a)
also treats this problem. (GN: M(bases), Alg)

Heinz Gröflin and Thomas M. Liebling
1981a Connected and alternating vectors: polyhedra and algorithms. Math. Program-

ming 20 (1981), 233–244. MR 83k:90061. Zbl 448.90035. (sg, Geom)

Piotr Gronek
See P. Gawroński and K. Ku lakowski.

Jonathan L. Gross
See also J. Chen.

1974a Voltage graphs. Discrete Math. 9 (1974), 239–246. MR 50 #153. Zbl 286.05106.
(GG: Top, Cov)

Jonathan L. Gross and Thomas W. Tucker
1977a Generating all graph coverings by permutation voltage assignments. Discrete

Math. 18 (1977), 273–283. MR 57 #5803. Zbl 375.55001. (GG: Top, Cov)

1979a Fast computations in voltage graph theory. In: Allan Gewirtz and Louis V.
Quintas, eds., Second Int. Conf. on Combinatorial Mathematics (New York,
1978). Ann. New York Acad. Sci. 319 (1979), 247–253. MR 80m:94111. Zbl
486.05027.

(GG: Top, Cov, Sw)

1987a Topological Graph Theory. Wiley, New York, 1987. MR 88h:05034. Zbl
621.05013. Repr. with minor additions: Dover Publications, Mineola, N.Y.,
2001. MR 1855951. Zbl 991.05001.

Ch. 2: “Voltage graphs and covering spaces.” Ch. 4: “Imbedded voltage
graphs and current graphs.” (GG: Top, Cov)
§3.2.2: “Orientability.” §3.2.3: “Rotation systems.” §4.4.5: “Nonori-

entable current graphs”, discusses how to deduce, from the signs on a
current graph, the signs of the “derived” graph of the dual voltage graph.
[The same rule gives the signs on the surface dual of any orientation-
embedded signed graph.] (The sign group here is Z2.) (SG: Top)

Jerrold W. Grossman
See also R.B. Bapat.

Jerrold W. Grossman and Roland Häggkvist
1983a Alternating cycles in edge-partitioned graphs. J. Combin. Theory Ser. B 34

(1983), 77–81. MR 84h:05044. Zbl 491.05039, (506.05040).
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They prove the special case in which B is all negative of the following
generalization, which is an immediate consequence of their result. [The-
orem. If B is a bidirected graph such that for each vertex v there is a
block of B in which v is neither a source nor a sink, then B contains
a coherent circle. (“Coherent” means that at each vertex, one edge is
directed inward and the other outward.)] (par: ori)

Jerrold W. Grossman, Devadatta M. Kulkarni, and Irwin E. Schochetman
1994a Algebraic graph theory without orientation. Linear Algebra Appl. 212/213

(1994), 289–307. MR 96b:05111. Zbl 817.05047.
Topics: The unoriented incidence matrix of Γ [which equals the in-

cidence matrix H(−Γ)], the Kirchoff or “Laplacian” matrix of −Γ, the
even-cycle (“even circuit”) matroid G(−Γ), a partial all-minors matrix-
tree theorem [completed in Bapat, Grossman, and Kulkarni (1999a)].
[This part is not new. See van Nuffelen (1973a) for rank(H(−Γ)); Za-
slavsky (1982a), §8 for both matrices; Tutte (1981a), Doob (1973a), and
Simões-Pereira (1973a) for the matroid; Chaiken (1982a) for the whole
matrix-tree theorem.]
§§4, 5: Vector spaces associated with G(−Γ) and its dual, expressed

both combinatorially in terms of vectors associated with matroid circuits
and cocircuits (of two kinds) and as null and row spaces of H(−Γ) and
H(−Γ)T. E.g., in §5 is the all-negative case of: A basis for Nul H(Σ)T

consists of one switching function positivizing each balanced component
of Σ. [The viewpoint, going from matroids to vector spaces over fields,
usually with characteristic 6= 2, contrasts sharply with that of Tutte
(1981a), who starts with integral chain groups (Z-modules) and ends
with chain-group properties and matroids. This is the only thorough
development I know of vector spaces of a signed graph before Chen
and Wang (2009a), despite some aspects’ having appeared e.g. in Bolker
(1977a, 1979a) and Tutte (1981a). It will be still more valuable if it is
extended to R×-gain graphs and to F×-gain graphs for any field F .]

Dictionary: M = H(−Γ); “k-reduced spanning substructure” ∼= inde-
pendent set of rank n− k in G(−Γ); “quasi edge cut” = balancing set;
“quasibond” = minimal balancing set; “even circuit” = positive closed
walk; “bowtie” = contrabalanced handcuff; “marimba stick” = half edge.

(EC, par: Incid, Bal, D)

1995a On the minors of an incidence matrix and its Smith normal form. Linear
Algebra Appl. 218 (1995), 213–224. MR 95m:15020. Zbl 819.05043.

Rank of the unoriented incidence matrix of Γ (which equals H(−Γ))
[as in van Nuffelen (1973a)]. Finds all possible values of determinants of
minors of H(−Γ) [repeating and refining Zaslavsky (1982a), §8A] and of
maximal nonsingular minors. Consequences are the Smith normal form
of H(−Γ) (§3) and the total integrality of some integer programs with
H(−Γ) as coefficient matrix. ( par: Incid, ec, Geom)

Martin Grötschel
See also F. Barahona.

M. Grötschel, M. Jünger, and G. Reinelt
1987a Calculating exact ground states of spin glasses: a polyhedral approach. In:

J.L. van Hemmen and I. Morgenstern, eds., Heidelberg Colloquium on Glassy
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Dynamics (Proc., 1986), pp. 325–353. Lect. Notes in Physics, Vol. 275. Springer-
Verlag, Berlin, 1987. MR 88g:82002 (book).

§2, “The spin glass model”: finding the weighted frustration index in
a weighted signed graph (Σ, w), or finding a ground state in the cor-
responding Ising model, is equivalent to the weighted max-cut problem
in (−Σ, w). This article concerns finding the exact weighted frustration
index. §3, “Complexity”, describes previous results on NP-completeness
and polynomial-time solvability. §4, “Exact methods”, discusses previ-
ous solution methods. §5, “Polyhedral combinatorics”, shows that find-
ing weighted frustration index is a linear program on the cut polytope;
also expounds related work. The remainder of the paper concerns a spe-
cific cutting-plane method suggested by the polyhedral combinatorics.

(sg: fr(gen): Alg, G, Ref)(Phys, Ref: Exp)

Martin Grötschel, László Lovász, and Alexander Schrijver
1988a Geometric Algorithms and Combinatorial Optimization. Algorithms and Com-

bin. Vol. 2. Springer-Verlag, Berlin, 1988. MR 89m:90135. Zbl 634.05001.
Ch. 8, “Combinatorial optimization: A tour d’horizon”: Topics men-

tioned include odd cycles, maximum-gain flow, odd cuts.
(par, gg: Cycles, Alg)

1993a Geometric Algorithms and Combinatorial Optimization. Second corrected ed.
Algorithms and Combin., Vol. 2. Springer-Verlag, Berlin, 1993. MR 95e:90001.
Zbl 837.05001.

Essentially the same as (1988a). (par, gg: Cycles, Alg)

M. Grötschel and W.R. Pulleyblank
1981a Weakly bipartite graphs and the max-cut problem. Operations Res. Letters 1

(1981/82), 23–27. MR 83e:05048. Zbl 478.05039, 494.90078.
Includes a polynomial-time algorithm, which they attribute to “Water-

loo folklore”, for shortest (more generally, min-weight) even or odd path,
hence (in an obvious way) odd or even circle. [Attributed by Thomassen
(1985a) to Edmonds (unpublished). Adapts to signed graphs by the
negative subdivision trick: Subdivide each positive edge of Σ into two
negative edges, each with half the weight. The min-weight algorithm
applied to the subdivision finds a min-weight (e.g., a shortest) negative
circle of Σ.] [This paper is very easy to understand. It is one of the best
written I know.] [Weakly bipartite graphs are certain signed graphs.
Further work: Barahona, Grötschel, and Mahjoub (1985a), Polyak and
Tuza (1995a), and esp. Guenin (1998a, 2001a).]

(par: Alg, Geom, Paths, Circles)(sg: Geom)

Victor Guba and Mark Sapir
1997a Diagram Groups. Mem. Amer. Math. Soc., vol. 130 (1997), no. 620. MR

98f:20013. Zbl 930.20033.
The “labelled oriented graph” (pp. 12–13) is a gain graph with a gain

semigroup (instead of group) which is the semigroup generated by an
alphabet and its inverse. (gg: Gen)

Bertrand Guenin
See also G. Cornuéjols and J.F. Geelen.

1998a On Packing and Covering Polyhedra. Ph.D. dissertation, Grad. Sch. Industrial
Engin., Carnegie–Mellon Univ., 1998. (SG: Geom)(Sgnd(M): Geom)
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1998b A characterization of weakly bipartite graphs. In: Robert E. Bixby, E. Andrew
Boyd, and Roger Z. Ŕıos-Mercado, eds., Integer Programming and Combinato-
rial Optimization (6th Int. IPCO Conf., Houston, 1998, Proc.), pp. 9–22. Lect.
Notes in Computer Sci., Vol. 1412. Springer, Berlin, 1998. MR 2000i:05158.
Zbl 909.90264.

Outline of (2001a). (SG: Geom)

†2001a A characterization of weakly bipartite graphs. J. Combin. Theory Ser. B 83
(2001), 112–168. MR 2002h:05145. Zbl 1030.05103.

Σ is “weakly bipartite” (Grötschel and Pulleyblank 1981a) if its clut-
ter of negative circles is ideal (i.e., has the “weak MFMC” property of
Seymour 1977a). [This is a polyhedral property that can be equivalently
stated: Define a “negative circle cover” to be an edge multiset that in-
tersects every negative circle, and a “weighted negative circle cover” to
be an edge weighting by nonnegative real numbers such that the to-
tal weight of each negative circle is at least 1. Weak biparticity means
that, for every linear functional f : E → R, the minimum value over
all weighted negative circle covers is attained by a negative circle cover.]
Thm.: Σ is weakly bipartite iff it has no −K5 minor. This proves part
of Seymour’s conjecture (1981a) (see Cornuéjols 2001a). [Short proof:
Schrijver (2002a).] Dictionary: “odd” = negative, “even” = positive.

(SG: Geom, Str)

2001b Integral polyhedra related to even cycle and even cut matroids. In: Karen
Aardal, ed., Integer Programming and Combinatorial Optimization (8th Int.
IPCO Conf., Utrecht, 2001). Lect. Notes in Computer Sci., Vol. 2081, 196–209.
Springer, Berlin, 2001. MR 1939172 (2003j:90090). Zbl 1010.90088.

(sg: Par: M, Geom)

2002a Integral polyhedra related to even-cycle and even-cut matroids. Math. Opera-
tions Res. 27 (2002), no. 4, 693–710. MR 2003j:90090. Zbl 1082.90584.

In Σ distinguish a negative link est. An “unbalanced port” is C \ est
where C is an unbalanced circuit of L(Σ) that contains est. Replace
”negative circle” by ”negative port” in the definition of (2001a). Thm.:
The minimum value over all weighted unbalanced port covers is attained
by an unbalanced port cover, iff Σ has no −K5 minor and L(Σ) has no
F ∗7 minor. [The latter can be replaced by: Σ has no (±C4 \ edge) minor,
by Zaslavsky (1990a).] Dictionary: “odd st-walk” = unbalanced port.

(SG: Geom, Str)

Bertrand Guenin, Irene Pivotto, and Paul Wollan
20xxa Isomorphism for even cycle matroids – I. Submitted. arXiv:1109.2978.

(sg: Par: M)

N. Gülpinar, G. Gutin, G. Mitra, and A. Zverovitch
2004a Extracting pure network submatrices in linear programs using signed graphs.

Discrete Appl. Math. 137 (2004), no. 3, 359–372. MR 2004k:90145. Zbl 1095.-
90112.

Problem: Finding a largest embedded network matrix (up to “re-
flection” = row negation). Given a 0,±1-matrix AS, let Σ have for
vertices the rows of A, with an edge εeij iff sgn(aikajk) = −ε in the
k-th column for some k. Let α := maximum size of a stable set in a
graph. Thm.: The maximum height of a reflected network submatrix of
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A equals maxη α((ΣX)−) over all switchings of Σ. This implies a heuris-
tic algorithm for finding a large embedded network matrix. [Annot. 30
Sept 2009.] (SG: incid: Bal, Alg)f

Ji Ming Guo
See L. Feng, S.W. Tan, and X.L. Wu.

Jiong Guo, Hannes Moser, and Rolf Niedermeier
2009a Iterative compression for exactly solving NP-hard minimization problems. In:

J. Lerner, D. Wagner, and K.A. Zweig, eds., Algorithmics of Large and Com-
plex Networks: Design, Analysis, and Simulation, pp. 65–80. Lect. Notes in
Computer Sci., Vol. 5515. Springer, Berlin, 2009.

Iterative compression results in vast speed-up for, e.g., Graph Bipar-
tization and Signed Graph Balancing (§3.1). Cf. Hüffner, Betzler, and
Niedermeier (2007a). [Annot. 6 Feb 2011.] (SG: Fr: Alg)

G. Gupta
See F. Harary.

Venkatesan Guruswami
See M. Charikar and I. Giotis.

Gregory Gutin
See also J. Bang-Jensen and N. Gülpinar.

G. Gutin and D. Karapetyan
2009a A selection of useful theoretical tools for the design and analysis of optimization

heuristics. Memetic Computing 1 (2009), 25–34.
§2.1, “Preprocessing in linear programming”: Exposition of Gülpinar,

Gutin, Mitra, and Zverovitch (2004a). [Annot. 30 Sept 2009.]
(SG: incid, Bal, Alg: Exp)

Gregory Gutin, Daniel Karapetyan, and Igor Razgon
2009a Fixed-parameter algorithms in analysis of heuristics for extracting networks in

linear programs. In: J. Chen and F.V. Fomin, eds., Parameterized and Exact
Computation (4th Int. Workshop, IWPEC 2009, Copenhagen), pp. 222–233.
Lect. Notes in Computer Sci., Vol. 5917. Springer, Berlin, 2009. MR 2773945.

(SG: Fr, Sw, Alg)

Gregory Gutin, Benjamin Sudakov, and Anders Yeo
1998a Note on alternating directed cycles. Discrete Math. 191 (1998), 101–107. MR

99d:05050. Zbl 956.05060.
Existence of a coherent circle with alternating colors in a digraph

with an edge 2-coloring is NP-complete. However, if the minimum in-
and out-degrees of both colors are sufficiently large, such a cycle exists.
[This problem generalizes the undirected, edge-2-colored alternating-
circle problem, which is a special case of the existence of a bidirected
coherent circle—see Bang-Jensen and Gutin (1997a). Question. Is this
alternating cycle problem also signed-graphic?]

(par: ori: Circles: Gen)

Ivan Gutman
See also N.M.M. Abreu, D.M. Cvetković, A. Graovac, and S.-L. Lee.

1978a Electronic properties of Möbius systems. Z. Naturforsch. 33a (1978), 214–216.
MR 58 #8800. (SG: Adj, Chem)

1988a Topological analysis of eigenvalues of the adjacency matrices in graph theory:
A difficulty with the concept of internal connectivity. Chem. Phys. Letters 148



the electronic journal of combinatorics #DS8 134

(1988), 93–94.
Points out an ambiguity in the definitions of Lee, Lucchese, and Chu

(1987a) in the case of multiple eigenvalues. [See Lee and Gutman (1989a)
for the repair.] (VS, SGw)

Ivan Gutman, Dariush Kiani, Maryam Mirzakhah, and Bo Zhou
2009a On incidence energy of a graph. Linear Algebra Appl. 431 (2009), no. 8, 1223–

1233. MR 2547906 (2010k:05174). Zbl 1175.05084.
See Cvetković, Rowlinson, and Simić (2007a). (Par: Adj)

Ivan Gutman, Shyi-Long Lee, Yeung-Long Luo, and Yeong-Nan Yeh
1994a Net signs of molecular graphs: dependence of molecular structure. Int. J.

Quantum Chem. 49 (1994), 87–95.
How to compute the balanced signing of Γ that corresponds to eigen-

value λi (see Lee, Lucchese, and Chu (1987a)), without computing the
eigenvector Xi. Theorem: If vrvs ∈ E, then XirXis =

∑
P f(P ;λi),

where f(P ;λ) := ϕ(G− V (P );λ)/ϕ′(G;λ), ϕ(G;λ) is the characteristic
polynomial, and the sum is over all paths connecting vr and vs. Hence
σi(vrvs) = sgn(XirXis) is determined. [An interesting theorem. Ques-
tions. Does it generalize if one replaces Γ by a signed graph, this being
the balanced (all-positive) case? In such a generalization. if any, how
will σ enter in—by restricting the sum to positive paths, perhaps? What
about graphs with real gains, or weights?] (VS, SGw)

Ivan Gutman, Shyi-Long Lee, Jeng-Horng Sheu, and Chiuping Li
1995a Predicting the nodal properties of molecular orbitals by means of signed graphs.

Bull. Inst. Chem., Academica Sinica No. 42 (1995), 25–31.
Points out some difficulties with the method of Lee and Li (1994a).

(VS, SGw, Chem)

Ivan Gutman, Shyi-Long Lee, and Yeong-Nan Yeh
1992a Net signs and eigenvalues of molecular graphs: some analogies. Chem. Phys.

Letters 191 (1992), 87–91.
A connected graph Γ has n eigenvalues and n corresponding balanced

signings (see Lee, Lucchese, and Chu (1987a)). Let S1 ≥ S2 ≥ · · · ≥ Sn
be the net signs of these signings and m = |E|. The net signs satisfy
analogs of properties of eigenvalues. (A) If ∆ ⊂ Γ, then S1(∆) < S1.
(B) S1 = m ≥ S2 + 2. (C, D) For bipartite Γ, Sn = −m. Otherwise,
Sn ≥ −m + 2. From (B, C, D) we have |Si| ≤ m − 2 for all i 6= 1 and,
if Γ is bipartite, i 6= n. (E, F) If Γ is bipartite, then Si = −Sn+1−i
and at least a − b net signs equal 0, where a ≥ b are the numbers
of vertices in the two color classes. The analogy is imperfect, since
S1 + S2 + · · ·+ Sn ≥ 0, while equality holds for eigenvalues. [Questions.
Some of these conclusions require Γ to be bipartite. Does that mean that
they will generalize to an arbitrary balanced signed graph Σ in place of
the bipartite Γ, the eigenvectors being those of Σ? Will the other results
generalize with Γ replaced by any signed graph? How about real gains,
or weights?] (VS, SGw)

Ivan Gutman, Maŕıa Robbiano, Enide Andrade Martins, Domingos M. Car-
doso, Luis Medina, and Oscar Rojo

2010a Energy of line graphs. Linear Algebra Appl. 433 (2010), no. 7, 1312–1323. MR
2680258 (2012a:05188). Zbl 1194.05137.
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See Cvetković, Rowlinson, and Simić (2007a). (Par: Adj, Incid, LG)

Ivan Gutman and Oskar E. Polansky
1986a Mathematical Concepts in Organic Chemistry. Springer-Verlag, Berlin, 1986.

MR 861119 (87m:92102). Zbl 657.92024.
See pp. 54–55 for eigenvalues of adjacency matrices of positive and

negative circles. [Annot. 4 Nov 2010.] (Chem: Exp: SG: Adj)

Pavol Gvozdjak and Jozef Širáň
1993a Regular maps from voltage assignments. In: Neil Robertson and Paul Seymour,

eds., Graph Structure Theory (Proc., Seattle, 1991), pp. 441–454. Contemp.
Math., Vol. 147. Amer. Math. Soc., Providence, R.I., 1993. MR 1224722
(94j:05047).

§3, “Voltage assignments and derived maps”, defines gain graph and
covering graph (and map). §4, “Lifting map automorphisms”: A map
automorphism lifts iff it preserves the class of identity-gain walks. [Initi-
ates method developed in Nedela and Škoviera (1997b), Malnič, Nedela,
and Škoviera (2000a, 2002a), et al.] Dictionary: “voltage” = gain, “de-
rived graph” = gain covering graph, “map” = combinatorial definition
of embedded graph, “local group” (at a vertex) = fundamental group
(at the vertex). [Annot. 11 Jun 2012.] (GG: Aut, Cov, Top)

A. Gyárfás
See P. Erdős.

Ervin Győri
See also P. Erdős.

Ervin Györi, Alexandr V. Kostochka, and Tomasz  Luczak
1997a Graphs without short odd cycles are nearly bipartite. Discrete Math. 163

(1997), 279–284. MR 97g:05203. Zbl 871.05040.
Given all-negative Σ and positive ρ, suppose every odd circle has length
≥ n/ρ. Then Σ has frustration index ≤ 200ρ2(ln(10ρ))2 (best possible
up to a constant factor) and vertex deletion number ≤ 15ρ ln(10ρ) (best
possible up to a logarithmic factor). The proof is based on an interesting,
refining lemma. [Problem. Generalize to arbitrary Σ.] (sg: Par: Fr)

M. Hachimori and M. Nakamura
2007a A factorization theorem of characteristic polynomials of convex geometries.

Ann. Combin. 11 (2007), 39–46. MR 2311929 (2008b:52001). Zbl 1110.06006 .
Signed graph coloring is mentioned as an example. [Annot. 10 Mar

2011.] (SG: Invar: Exp)

Willem H. Haemers
See also A.E. Brouwer and E.R. van Dam.

W.H. Haemers and G.R. Omidi
2011a Universal adjacency matrices with two eigenvalues. Linear Algebra Appl. 435

(2011), no. 10, 2520–2529. MR 2811135 (2012e:05230). Zbl 1221.05233.
(sg: Par: Adj)

Willem H. Haemers and Edward Spence
2004a Enumeration of cospectral graphs. European J. Combin. 25 (2004), 199–211.

MR 2070541 (2005d:05102). Zbl 1033.05070.
“Sign-less Laplacian” Q(Γ) := Kirchhoff matrix K(−Γ) = D(Γ)+A(Γ).
K(−Γ) seems (n ≤ 11) to allow fewer cospectral graphs than do A(Γ)
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or K(Γ). [Annot. Sept 2010.] (sg: Par: Adj)

Jurriaan Hage
See also A. Ehrenfeucht.

1999a The membership problem for switching classes with skew gains. Fund. Inform.
39 (1999), 375–387. MR 1823982 (2002b:05071). Zbl 944.68144.

An algorithm to decide whether two skew gain graphs are switching
equivalent. (GG(Gen): Sw, Alg)

2001a Structural Aspects of Switching Classes. Doctoral dissertation, Universiteit Lei-
den, 2001. IPA Dissertation Ser., UL.2001-8. [Instituut voor Programmatu-
urkunde en Algoritmiek, 2001.]

Contains the material of the following papers, along with updates and
improved results: Ehrenfeucht, Hage, Harju, and Rozenberg (2000a,b,
2006a), Hage (1999a), Hage and Harju (1998a, 2000a, 2004a).

Errata and a downloadable corrected version at
http://www.cs.uu.nl/people/jur/2s.html (1/2002).

(TG: Sw, Alg)(GG(Gen): Sw, Alg)

20xxa Subgroup switching of skew gain graphs. Fund. Inform. 116 (2012), 111–122.
Skew gains reverse by an involutory antiautomorphism of the gain group

(Hage and Harju 2000a). Here switching is restricted by prescribing for
each vertex a subgroup from which the switching value may be taken.
Properties of ordinary switching generalize, or become more complicated,
or become too difficult. Further research is needed. [Annot. 17 Dec, 5
Jan 2011–12.] (GG: Gen: Sw: Gen)

Jurriaan Hage and Tero Harju
1998a Acyclicity of switching classes. European J. Combin. 19 (1998), 321–327. MR

99d:05051. Zbl 905.05057.
Classifies the switching-equivalent pairs of forests. Thm. 2.2: In a Seidel

switching class of graphs there is at most one isomorphism type of tree;
and there is at most one tree, with exceptions that are completely classi-
fied. Thms. 3.1 and 4.1: In a switching class that contains a disconnected
forest there are at most 3 forests (not necessarily isomorphic); the cases
in which there are 2 or 3 forests are completely classified. (Almost all are
trees plus isolated vertices.) [Question. Regarding these results as con-
cerning the negative subgraphs of switchings of signed complete graphs,
to what extent do they generalize to switchings of arbitrary signed sim-
ple graphs?] [B.D. Acharya (1981a) asked which simple graphs switch
to forests, with partial results.] (TG: Sw)

2000a The size of switching classes with skew gains. Discrete Math. 215 (2000), 81–92.
MR 1746450 (2001d:05074). Zbl 949.05039.

Introducing “skew gain graphs”, which generalize gain graphs (see
Zaslavsky (1989a)) to incorporate dynamic labelled 2-structures (see
Ehrenfeucht and Rozenberg). Inversion is replaced by a gain-group an-
tiautomorphism δ of period at most 2. Thus ϕ(e−1) = δ(ϕ(e)), while
in switching by τ , one defines ϕτ (e; v, w) = δ(τ(v))ϕ(e; v, w)τ(w). The
authors find the size of a switching class [ϕ] in terms of the centraliz-
ers and/or δ-centralizers of various parts of the image of ϕT , that is, ϕ
switched to be the identity on a spanning tree T . The exact formulas de-
pend on whether Γ is complete, or bipartite, or general, and on the choice

http://www.cs.uu.nl/people/jur/2s.html
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of T (the case where T ∼= K1,n−1 being simplest). (GG(Gen): Sw)

2004a A characterization of acyclic switching classes of graphs using forbidden sub-
graphs. SIAM J. Discrete Math. 18 (2004), no. 1, 159–176. MR 2005k:05205.
Zbl 1071.05063.

Solves the problem raised by B.D. Acharya (1981a). (TG: Sw)

2007a Towards a characterization of bipartite switching classes by means of forbid-
den subgraphs. Discuss. Math. Graph Theory 27 (2007), no. 3, 471–483. MR
2412359 (2009b:05126). Zbl 1142.05042.

Partial results on the forbidden induced subgraphs for graph switching
classes with no bipartite member. [Annot. 9 Sept 2010.] (TG: Sw)

Jurriaan Hage, Tero Harju, and Elmo Welzl
2002a Euler graphs, triangle-free graphs and bipartite graphs in switching classes.

In: Graph Transformation (Proc. First Int. Conf., Rome, 2002), pp. 148–160.
Lect. Notes in Computer Sci., vol. 2505. Springer-Verlag, London, 2002. MR
2049362. Zbl 1028.68101.

Preliminary version of (2003a). [Annot. 9 Sept 2010.] (TG: Sw)

2003a Euler graphs, triangle-free graphs and bipartite graphs in switching classes.
Special issue on ICGT 2002. Fund. Inform. 58 (2003), no. 1, 23–37. MR
2056589 (2005b:05206). Zbl 1054.05092.

Polynomial-time algorithms for whether a graph switching class con-
tains a triangle-free, or bipartite, or Eulerian, member. (TG: Sw)

Per Hage
1979a Graph theory as a structural model in cultural anthropology. Annual Rev.

Anthropology 8 (1979), 115–136.
“Signed graphs”, pp. 120–124. “Structural duality”, pp. 132–133.

Other examples. [Annot. 2 Aug 2010.] (SG, PsS: Bal, Fr, Clu: Exp)

Per Hage and Frank Harary
1983a Structural Models in Anthropology. Cambridge Univ. Press, Cambridge, Eng.,

1983. MR 86e:92002.
Signed graphs are treated in Ch. 3 and 6, marked graphs in Ch. 6.

[Reviewed in Doreian (1985a).] (SG, PsS: Bal: Exp)(VS: Exp)

1986a Some genuine graph models in anthropology. J. Graph Theory 10 (1986), no.
3, 353–361. MR 856121 (87i:92061). Zbl 605.05042. [Annot. 9 Sept 2010.]

(PsS, SG: Exp)

1987a Exchange in Oceania. Routledge and Kegan Paul, London, 1987. (PsS)

Roland Häggkvist
See J.W. Grossman.

F.D.M. Haldane
See J. Vannimenus.

Frank J. Hall
See also C.A. Eschenbach.

Frank J. Hall and Zhongshan Li
2007a Sign pattern matrices. In: Leslie Hogben, ed., Handbook of Linear Algebra, pp.

33-1–33-21. Discrete Math. Appl. Chapman & Hall/CRC Press, Boca Raton,
2007. MR 2279160 (2007j:15001) (book). Zbl 1122.15001. (QM: sd)

Peter Hall
See B. Xiao.
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Shahul Hameed K
See also K.A. Germina.

Shahul Hameed K and K.A. Germina
2012a Balance in gain graphs – A spectral analysis. Linear Algebra Appl. 436 (2012),

no. 5, 1114–1121. Zbl 1236.05096. (GG: Adj, Bal)

2012b On composition of signed graphs. Discuss. Math. Graph Theory 32 (2012), no.
3, 507–516. (SG: Adj)

20xxc Balance in certain gain graph products. Int. Workshop on Set-Valuations,
Signed Graphs, Geometry and Their Appl. (IWSSG-2011, Mananthavady, Ker-
ala, 2011). J. Combin. Inform. Syst. Sci., to appear. (GG, Bal)

Hasti Hamidzade and Dariush Kiani
2010a Erratum to ”The lollipop graph is determined by its Q-spectrum” . Discrete

Math. 310 (2010), no. 10-11, 1649. MR 2601277 (2011c:05194). Zbl 1210.05080.
Corrected proof of Y.P. Zhang, Liu, Zhang, and Yong (2009a), Thm.

3.3. [Annot. 16 Oct 2011.] (Par: Adj)

Peter L. Hammer
See also E. Balas, C. Benzaken, E. Boros, J.-M. Bourjolly, Y. Crama, and
A. Fraenkel.

1974a Boolean procedures for bivalent programming. In: P.L. Hammer and G. Zou-
tendijk, eds., Mathematical Programming in Theory and Practice (Proc. NATO
Adv. Study Inst., Figueira da Foz, Portugal, 1972), pp. 311–363. North-
Holland, Amsterdam, and American Elsevier, New York, 1974. MR 57 #18817.
Zbl 335.90034 (book).

1977a Pseudo-Boolean remarks on balanced graphs. In: L. Collatz, G. Meinardus, and
W. Wetterling, eds., Numerische Methoden bei Optimierungsaufgaben, Band 3:
Optimierung bei graphentheoretischen und ganzzahligen Problemen (Tagung,
Oberwolfach, 1976), pp. 69–78. Int. Ser. Numer. Math., Vol. 36. Birkhäuser,
Basel, 1977. MR 57 #5833. Zbl 405.05054. (SG: Bal)

P.L. Hammer, C. Benzaken, and B. Simeone
1980a Graphes de conflit des fonctions pseudo-booleennes quadratiques. In: P. Hansen

and D. de Werra, eds., Regards sur la Theorie des Graphes (Actes du Col-
loq., Cerisy, 1980), pp. 165–170. Presses Polytechniques Romandes, Lausanne,
Switz., 1980. MR 82d:05054 (book).

P.L. Hammer, T. Ibaraki, and U. Peled
1980a Threshold numbers and threshold completions. In: M. Deza and I.G. Rosen-

berg, eds., Combinatorics 79 (Proc. Colloq., Montreal, 1979), Part II. Ann.
Discrete Math. 9 (1980), 103–106. MR 81k:05092. Zbl 443.05064. (par: ori)

1981a Threshold numbers and threshold completions. In: Pierre Hansen, ed., Studies
on Graphs and Discrete Programming (Proc. Workshop, Brussels, 1979), pp.
125–145. North-Holland Math. Studies, 59. Ann. Discrete Math., 11. North-
Holland, Amsterdam, 1981. MR 83m:90062. Zbl 465.00007 (book).

See description of Thm. 8.5.2 in Mahadev and Peled (1995a). (par: ori)

P.L. Hammer and N.V.R. Mahadev
1985a Bithreshold graphs. SIAM J. Algebraic Discrete Methods 6 (1985), 497–506.

MR 86h:05093. Zbl 579.05052.
See description of §8.3 of Mahadev and Peled (1995a).

(SG: Bal: Appl)
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P.L. Hammer, N.V.R. Mahadev, and U.N. Peled
1989a Some properties of 2-threshold graphs. Networks 19 (1989), 17–23. MR 89m:-

05096. Zbl 671.05059.
A restricted line graph with signed edges is a proof tool. (SG, LG)

Peter L. Hammer and Sang Nguyen
1979a A partial order in the solution space of bivalent programs. In: Nicos Christofides,

Aristide Mingozzi, Paolo Toth, and Claudio Sandi, eds., Combinatorial Opti-
mization, Ch. 4, pp. 93–106. Wiley, Chichester, 1979. MR 82a:90099 (book).
Zbl 414.90063. (sg: ori)

J. Hammann
See E. Vincent.

Miaomiao Han
See X.Y. Yuan.

Wei Han
See S.Y. Wang.

Phil Hanlon
1984a The characters of the wreath product group acting on the homology groups

of the Dowling lattices. J. Algebra 91 (1984), 430–463. MR 86j:05046. Zbl
557.20009. (gg: M: Aut)

1988a A combinatorial construction of posets that intertwine the independence ma-
troids of Bn and Dn. Manuscript, 1988.

Computes the Möbius functions of posets obtained from LatG(±K◦n)
by discarding those flats with unbalanced vertex set in a given lower-

hereditary list. Examples include LatG(±K(k)
n ), the exponent denoting

the addition of k negative loops. Generalized and superseded by Hanlon
and Zaslavsky (1998a). (sg: M: Gen: Invar)

1991a The generalized Dowling lattices. Trans. Amer. Math. Soc. 325 (1991), 1–37.
MR 91h:06011. Zbl 748.05043.

The lattices are based on a rank, n, a group, and a meet sublattice of
the lattice of subgroups of the group. The Dowling lattices are a special
case. (gg: M: Gen: Invar)

1996a A note on the homology of signed posets. J. Algebraic Combin. 5 (1996), 245–
250. MR 97f:05194. Zbl 854.06004.

Partial summary of Fischer (1993a). (Sgnd)

Phil Hanlon and Thomas Zaslavsky
1998a Tractable partially ordered sets derived from root systems and biased graphs.

Order 14 (1997–98), 229–257. MR 2000a:06016. Zbl 990.03811.
Computes the characteristic polynomials (Thm. 4.1) and hence the

Möbius functions (Cor. 4.4) of posets obtained from LatG(Ω), Ω a bi-
ased graph, by discarding those flats with unbalanced vertex set in a

given lower-hereditary list. Examples include LatG(GK
(k)
n ) where G is

a finite group, the exponent denoting the addition of k unbalanced loops.
The interval structure, existence of a rank function, covering pairs, and
other properties of these posets are investigated. There are many open
problems. (GG: M, Gen: Invar, Str, Col)

Pierre Hansen
See also M. Aouchiche and C.S. Oliveira.
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1978a Labelling algorithms for balance in signed graphs. In: Problèmes Combinatoires
et Theorie des Graphes (Colloq. Int., Orsay, 1976), pp. 215–217. Colloques
Int. du CNRS, 260. Editions du C.N.R.S., Paris, 1978. MR 80m:68057. Zbl
413.05060.

§1: Algorithm 1 labels vertices of a signed graph to detect imbal-
ance and a negative circle if one exists. [It is equivalent to switching
a maximal forest to all positive and looking for negative edges. Inde-
pendently discovered by Harary and Kabell (1980a).] §2: Algorithm 2
is the unweighted case of the algorithm of (1984a). Path balance in a
signed digraph is discussed. §3: The frustration index of a signed graph
is bounded below by the negative-circle packing number, which can be
crudely bounded by Alg. 1. (SG, SD: Bal, Fr: Alg, sw)

1979a Methods of nonlinear 0–1 programming. In: P.L. Hammer, E.L. Johnson, and
B.H. Korte, eds., Discrete Optimization II (Proc., Banff and Vancouver, 1977),
pp. 53–70. Ann. Discrete Math., Vol. 5. North-Holland, Amsterdam, 1979.
MR 84h:90034 (book). Zbl 426.90063.

See pp. 58–59. (SG: Bal: Exp)

1983a Recognizing sign solvable graphs. Discrete Appl. Math. 6 (1983), 237–241. MR
84i:68112. Zbl 524.05048.

Improves the characterization by Maybee (1981a) of sign-solvable di-
graphs with an eye to more effective algorithmic recognition. Thm. 2.2:
A signed digraph D is sign solvable iff its positive subdigraph is acyclic
and each strongly connected component has a vertex that is the termi-
nus of no negative, simple directed path. §3: “An algorithm for sign
solvability” in time O(|V | |E|). (SD: QSol: Alg)

1984a Shortest paths in signed graphs. In: A. Burkard et al., eds., Algebraic Methods
in Operations Research, pp. 201–214. North-Holland Math. Stud., 95. Ann.
of Discrete Math., 19. North-Holland, Amsterdam, 1984. MR 86i:05086. Zbl
567.05032.

Algorithm to find shortest walks of each sign from vertex x1 to each
other vertex, in a signed digraph with positive integral(?) weights (i.e.,
lengths) on the edges. Applied to digraphs with signed vertices and
edges; N -balance in signed graphs; sign solvability. The problem for
(simple) paths is discussed [which is solvable by any min-weight parity
path algorithm; see the notes on Grötschel and Pulleyblank (1981a)].

(SD, WD: Paths, VS, Bal, QSol: Alg)

Pierre Hansen and Claire Lucas
2009a An inequality for the signless Laplacian index of a graph using the chromatic

number. Graph Theory Notes N.Y. 57 (2009), 39–42. MR 2666279 (2011c:05195).
See Cvetković, Rowlinson, and Simić (2007a). (Par: Adj)

2010a Bounds and conjectures for the signless Laplacian index of graphs. Linear
Algebra Appl. 432 (2010), no. 12, 3319–3336. MR 2639286 (2011m:05173). Zbl
1214.05079.

See Cvetković, Rowlinson, and Simić (2007a). (Par: Adj)

Pierre Hansen and Bruno Simeone
1986a Unimodular functions. Discrete Appl. Math. 14 (1986), 269–281. MR 88a:90138.

Zbl 597.90058.
Three types of relatively easily maximizable pseudo-Boolean func-

tion (“unimodular” and two others) are defined. For quadratic pseudo-
Boolean functions f , the three types coincide; f is unimodular iff an
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associated signed graph is balanced (Thm. 3). Thus one can quickly rec-
ognize unimodular quadratic functions, although not unimodular func-
tions in general. If the graph is a tree, the function can be maximized
in linear time. (SG: Bal, Alg)

Christopher R.H. Hanusa
See S. Chaiken.

Rong Xia Hao and Yan Pei Liu
2010a Auxiliary graphs of projective planar signed graphs. (In Chinese.) J. Systems

Sci. Math. Sci. 30 (2010), no. 9, 1251–1258. MR 2785248 (2012c:05093).
Σ is projective planar iff an auxiliary graph is balanced. [The auxiliary

graph may be a tree. It may have order linear in that of Σ.] [Annot.
25 Apr 2012.] (SG: Top)

Xiao Hui Hao and Bao Feng Li
2008a The quasi-Laplacian spectral radius of a graph. (In Chinese.) Math. Practice

Theory 38 (2008), no. 4, 158–160. MR 2435555 (no rev). Zbl 1174.05438.
(Par: Adj)

Xiao Hui Hao and Li Jun Zhang
2009a The largest eigenvalue of the quasi-Laplacian matrix of a connected graph. (In

Chinese.) Math. Pract. Theory 39 (2009), no. 7, 178–181. MR 2553871 (no
rev). Zbl 1212.05154. (Par: Adj)

Frank Harary
See also L.W. Beineke, A. Blass, F. Buckley, D. Cartwright, G. Chartrand,
O. Frank, and P. Hage.

††1953a On the notion of balance of a signed graph. Michigan Math. J. 2 (1953–
1954), 143–146 and addendum preceding p. 1. MR 16, 733. Zbl 56, 421c
(e: 056.42103).

Σ The main theorem (Thm. 3) characterizes balanced signings as those
for which there is a bipartition of the vertex set such that an edge is
positive iff it lies within a part [I call this a Harary bipartition]. Thm. 2:
A signing of a simple [or a loop-free] graph is balanced iff, for each pair
of vertices, every path joining them has the same sign. The generating
function for counting nonisomorphic signed simple graphs with n vertices
by numbers of positive and negative edges is gn(x+y) where gn(x) is the
g.f. of nonisomorphic simple graphs. [The birth of signed graph theory.
Although Thm. 3 was anticipated by König (1936a) (Thm. X.11, for
finite and infinite graphs) without the terminology of signs, here is the
first recognition of the crucial fact that labelling edges by elements of a
group—specifically, the sign group—can lead to a general theory.] [An-
not. ca. 1977. Rev. 20 Jan 2010.] [See also Whiteley (1991a).] [Annot.
12 Jun 2012.] (SG: Bal, Enum)

1955a On local balance and N -balance in signed graphs. Michigan Math. J. 3 (1955–
1956), 37–41. MR 17, 394. Zbl 70, 185 (e: 070.18502).

Σ is (locally) balanced at a vertex v if every circle on v is positive; then
Thm. 3′: Σ is balanced at v iff every block containing v is balanced. Σ
is N -balanced if every circle of length ≤ N is positive; Thm. 2 concerns
characterizing N -balance. Lemma 3: For each circle basis, Σ is balanced
iff every circle in the basis is positive. [For finite graphs this strengthens
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König (1936a) Thm. 13.] (SG: Bal)

1957a Structural duality. Behavioral Sci. 2 (1957), 255–265. MR 24B #B851.
“Antithetical duality” (pp. 260–261) introduces antibalance. Remarks

on signed and vertex-signed graphs are scattered about the succeeding
pages. (SG: Bal, Par)

1958a On the number of bi-colored graphs. Pacific J. Math. 8 (1958), 743–755. MR
21 #2598. Zbl 84, 194 (e: 084.19402).

§6: “Balanced signed graphs”. (SG: Bal: Enum)

1959a Graph theoretic methods in the management sciences. Management Sci. 5
(1959), 387–403. MR 21 #7103. Repr. in: Samuel Leinhardt, ed., Social Net-
works: A Developing Paradigm, pp. 371–387. Academic Press, New York, 1977.

Pp. 400–401: List of characterizations of balance. (SG: Bal: Exp)

1959b On the measurement of structural balance. Behavioral Sci. 4 (1959), 316–323.
MR 22 #3696.

Proposes to measure imbalance by (i) β(Σ), the proportion of posi-
tive circles (“degree of balance”) from Cartwright and Harary (1956a),
(ii) the frustration index l(Σ) (“line index”) [cf. Abelson and Rosenberg
(1958a)], i.e., the smallest number of edges whose deletion or equiva-
lently (Thm. 7) negation results in balance, and (iii) the vertex frus-
tration number l0(Σ) (“point index”). For β of unbalanced blocks with
cyclomatic number ξ: Thm. 4: min β ≤ (ξ − 1)/(ξ − 1 + 2ξ−1). Thm. 5:
max β ≥ 1−2/(ξ+1) (e.g., a ladder with ξ+1 rungs and one rung nega-
tive). Cors.: min β → 0, max β → 1 as ξ →∞. Conjecture. The bounds
are best possible. [I know of no work on this.] Thm. 6 (contributed by
J. Riordan): Asymptotically, β(−Kn)− 1

2
∼ 1

2
(−1/e)n. [Annot. ≤1980.

Rev. 20 Jan 2010.] (SG: Fr)

1960a A matrix criterion for structural balance. Naval Res. Logistics Quarterly 7, No.
2 (June, 1960), 195–199. Zbl 91, 159 (e: 091.15904).

First explicit appearance of the incidence matrix H(Σ), called J . Thm.
2 (Heller and Tompkins 1956a, Gale and Hoffman 1956a): Σ is balanced
iff H(Σ) is totally unimodular. Cor.: The unoriented incidence matrix
of Γ is totally unimodular iff Γ is bipartite. [Annot. 10 Nov 2008.]

(SG: Bal, Incid: Exp)
Thm. 3: A necessary and sufficient condition that a subdeterminant

is 0 in H(Σ), provided Σ is balanced. [Zaslavsky (1981a) §8A evaluates
subdeterminants for any Σ.] [Annot. 20 Jan 2010.] (SG: Bal, Incid)

1970a Graph theory as a structural model in the social sciences. In: Bernard Harris,
ed., Graph Theory and Its Applications, pp. 1–16. Academic Press, New York,
1970. MR 41 #8277. Zbl 224.05129.

1971a Demiarcs: An atomistic approach to relational systems and group dynamics.
J. Math. Sociology 1 (1971), 195–205. MR 371738 (51 #7955).

Signed, oriented half edges, applied to represent interpersonal relations.
(PsS: SD)

1979a Independent discoveries in graph theory. In: Frank Harary, ed., Topics in Graph
Theory (Proc. Conf., New York, 1977). Ann. New York Acad. Sci. 328 (1979),
1–4. MR 81a:05001. Zbl 465.05026.
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1980a Some theorems about graphs from social sciences. In: Proceedings of the West
Coast Conference on Combinatorics, Graph Theory and Computing (Arcata,
Calif., 1979), pp. 41–47. Congressus Numerantium, XXVI. Utilitas Math. Publ.
Inc., Winnipeg, Man., 1980. MR 81m:05118. Zbl 442.92027.

(SG: Bal: History, Exp)

1981a Structural models and graph theory. In: Harvey J. Greenberg and John S. May-
bee, eds., Computer-Assisted Analysis and Model Simplification (Proc. Sym-
pos., Boulder, Col., 1980), pp. 31–58. Discussion, pp. 103–111. Academic
Press, New York, 1981. MR 82g:00016 (book). Zbl 495.93001 (book).

See remarks of Bixby (p. 111). (SG, VS, SD: Bal, Alg: Exp)

1983a Consistency theory is alive and well. Personality and Social Psychology Bull. 9
(1983), 60–64.

Historical remarks. E.g., it was Osgood and Tannenbaum (1955a) that
inspired Harary to study vertex signings (Beineke and Harary 1978a,b).

(PsS, SG: Exp)

1985a The reconstruction conjecture for balanced signed graphs. In: B.R. Alspach
and C.D. Godsil, eds., Cycles in Graphs, pp. 439–442. Ann. Discrete Math.,
Vol. 27. North-Holland Math. Stud., Vol. 115. North-Holland, Amsterdam,
1985. MR 87d:05122. Zbl 572.05048.

Reconstruction from the multiset of vertex-deleted subgraphs. Σ+ is
reconstructible if Σ is connected and balanced and not all positive or all
negative. (SG: Bal)

F. Harary and G. Gupta
1997a Dynamic graph models. Math. Computer Modelling 25 (1997), no. 7, 79–87.

MR 98b:05092. Zbl 879.68085.
§3.9, “Signed graphs”, mentions that deletion index = frustration index

(Harary (1959b)). (SG: Fr: Exp)

Frank Harary and Jerald A. Kabell
1980a A simple algorithm to detect balance in signed graphs. Math. Social Sci. 1

(1980/81), 131–136. MR 81j:05098. Zbl 497.05056.
Equivalent to switching so a spanning tree is all positive, then searching

for a negative edge. [Independently discovered by Hansen (1978a).]
(SG: Bal, Alg)

1981a Counting balanced signed graphs using marked graphs. Proc. Edinburgh Math.
Soc. (2) 24 (1981), 99–104. MR 83a:05072. Zbl 476.05043. (SG, VS: Enum)

Frank Harary and Helene J. Kommel
1978a Matrix measures for transitivity and balance. J. Math. Sociology 6 (1978/79),

199–210. MR 81a:05056. Zbl 408.05028.
§2, “Balance measures in signed graphs”: Imbalance in Σ is measured

by the proportion of negative triangles, or quadrilaterals, as computed
from small powers of A(Σ). §3, “Balance in signed digraphs”: Similar
measures for a signed digraph using digons or triangles. [Annot. 10
Nov 2008.] (SG: Fr, Adj)

1979a The graphs with only self-dual signings. Discrete Math. 26 (1979), 235–241.
MR 80h:05047. Zbl 408.05045. (SG, VS: Aut)

Frank Harary, Meng-Hiot Lim, Amit Agarwal, and Donald C. Wunsch
2004a Algorithms for derivation of structurally stable Hamiltonian signed graphs. Int.
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J. Computer Math. 81 (2004), no. 11, 1349–1356. MR 2172923 (no rev). Zbl
1065.05049.

Thm. 1: The sizes of cuts in Kn. Thm. 2: A subgraph of a balanced
signed graph is balanced. [Annot. 12 Sept 2009.] (SG: Bal)

Frank Harary, Meng-Hiot Lim, and Donald C. Wunsch
2002a Signed graphs for portfolio analysis in risk management. IMA J. Management

Math. 13 (2002), no. 3, 201–210. Zbl 1065.91025.
“Assets” (vertices) have positive or negative correlation (edges of Kn).

Balance is automatic. Switching is a means of hedging risk, which is
highest with all positive edges. Imbalance indicates unpredictability;
measured by the proportion of positive triangles. §5: “Balance analysis
case study”. [Annot. 10 Sept 2009.] (SG: KG: Appl: Bal, Sw, Exp)

Frank Harary and Bernt Lindström
1981a On balance in signed matroids. J. Combin. Inform. System. Sci. 6 (1981),

123–128. MR 83i:05024. Zbl 474.05021.
Thm. 1: The number of balanced signings of matroid M is ≤ 2rk(M),

with equality iff M is binary. Thm. 3: Minimal deletion and negation
sets coincide for all signings of M iff M is binary. Thm. 5: For connected
binary M , a signing is balanced iff every circuit containing a fixed point
is balanced. (Sgnd: M: Bal, Fr)

Frank Harary, Bernt Lindström, and Hans-Olov Zetterström
1982a On balance in group graphs. Networks 12 (1982), 317–321. MR 84a:05055. Zbl

496.05052.
Implicitly characterizes balance and balancing sets in a gain graph Φ by

switching (proof of Thm. 1). [For balance, see also Acharya and Acharya
(1986a), Zaslavsky (1977a) and (1989a), Lemma 5.3. For abelian gains,
see also Gargano and Quintas (1985a). In retrospect we can see that the
characterization of balanced gains is as the 1-coboundaries with values
in a group, which for abelian groups is essentially classical.] Thm. 1:
The number of balanced gain functions. Thm. 2: Any minimal deletion
set is an alteration set. Thm. 3: l(Φ) ≤ m(1− |G|−1). Thm. 4: l(Σ) ≤
1
2
(m− n−1

2
), with strict inequality if not all degrees are even. [Compare

with Akiyama, Avis, Chvátal, and Era (1981a), Thm. 1.]
(GG, SG: sw(Bal), Enum(Bal), Fr)

Frank Harary, J. Richard Lundgren, and John S. Maybee
1985a On signed digraphs with all cycles negative. Discrete Appl. Math. 12 (1985),

155–164. MR 87g:05108. Zbl 586.05019.
Which digraphs D can be signed so that every cycle is negative? Three

types of example. Type 1: The vertices can be numbered 1, 2, . . . , n so
that the downward arcs are just (2, 1), (3, 2), . . . , (n, n−1). (Strong “up-
per” digraphs; Thm. 2.) Type 2: No cycle is covered by the remaining
cycles (“free cyclic” digraphs). This type includes arc-minimal strong
digraphs. Type 3: A symmetric digraph, iff the underlying graph Γ is bi-
partite and no two points on a common circle and in the same color class
are joined by a path outside the cycle (Thm. 10; proved by signing Γ via
Zaslavsky (1981b)). [Further work in Chaty (1988a).] (SD: Bal, SG)

Frank Harary, Robert Z. Norman, and Dorwin Cartwright
1965a Structural Models: An Introduction to the Theory of Directed Graphs. Wiley,

New York, 1965. MR 32 #2345. Zbl 139, 415 (e: 139.41503).
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In Ch. 10, “Acyclic digraphs”: “Gradable digraphs”, pp. 275–280.
That means a digraph whose vertices can be labelled by integers so that
f(w) = f(v) + 1 for every arc (v, w). [Equivalently, the Hasse diagram
of a graded poset.] [Characterized by Topp and Ulatowski (1987a).]
(GD: bal, Exr)

Ch. 13: “Balance in structures”. “Criteria for balance”, pp. 340–
346 (cf. Harary (1953a)); local balance (Harary (1955a)). “Measures of
structural balance”, pp. 346–352: “degree of balance” (proportion of bal-
anced circles; Cartwright and Harary (1956a)); “line-index for balance”
[frustration index] (Abelson and Rosenberg (1958a), Harary (1959b)).

“Limited balance”, pp. 352–355. Harary (1955a); also: Adjacency ma-
trix A(D, σ) of a signed digraph: entries are 0,±1. The “valency matrix”
is the Abelson–Rosenberg (1958a) adjacency matrix R. Thm. 13.8: En-
tries of (R− pI)l show the existence of (undirected) walks of length l of
each sign between pairs of vertices. [Strengthened in Zaslavsky (2010b),
Thm. 2.1.]

“Cycle-balance and path-balance”, pp. 355–358: here directions of arcs
are taken into account. E.g., Thm. 13.11: Every cycle is positive iff each
strong component is balanced as an undirected graph.

(SG: Bal, Fr, Adj: Exp, Exr)(SD: Bal, Exr)

1968a Introduction a la théorie des graphes orientés. Modèles structuraux. Dunod,
Paris, 1968. Zbl 176, 225 (e: 176.22501).

French edition of (1965a). (GD: bal, Exr)
(SG: Bal, Fr, Adj: Exp, Exr)(SD: Bal, Exr)

Frank Harary and Edgar M. Palmer
1967a On the number of balanced signed graphs. Bull. Math. Biophysics 29 (1967),

759–765. Zbl 161, 209 (e: 161.20904). (SG: Bal: Enum)

1973a Graphical Enumeration. Academic Press, New York, 1973. MR 50 #9682. Zbl
266.05108.

Four exercises and a remark concern signed graphs, balanced signed
graphs, and signed trees. Russian transl.: Kharari and Palmer (1977a).

(SG: Enum, Bal)

1977a (As “F. Kharari and È. Palmer”) Perechislenie grafov. “Mir”, Moscow, 1977.
MR 56 #5353.

Russian translation of (1973a). (SG: Enum, Bal)

Frank Harary, Edgar M. Palmer, Robert W. Robinson, and Allen J. Schwenk

1977a Enumeration of graphs with signed points and lines. J. Graph Theory 1 (1977),
295–308. MR 57 #5818. Zbl 379.05035.

See Bender and Canfield (1983a). (SG, VS: Enum)

Frank Harary and Michael Plantholt MR 782975 (86h:05056). Zbl 525.05030.
A digraph D gives a signed graph LHP (D) with VHP := E(D) and

edges +ef if e, f have the same head, −ef if e, f have the same tail.
[The negative part of Λ(+D) in Zaslavsky (2010b, 20xxa, 20xxb) with
extraverted edges made positive and introverted edges negative.] [An-
not. 4 Sept 2010, 17 Jan 2012.] (SG: LG, Bal)
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Frank Harary and Geert Prins
1959a The number of homeomorphically irreducible trees, and other species. Acta

Math. 101 (1959), 141–162. MR 21 #653. Zbl 84, 193 (e: 084.19304).
(SG: Enum)

Frank Harary and Robert W. Robinson
1977a Exposition of the enumeration of point-line-signed graphs enjoying various du-

alities. In: R.C. Read and C.C. Cadogan, eds., Proceedings of the Second
Carribean Conference in Combinatorics and Computing (Cave Hill, Barbados,
1977), pp. 19–33. Dept. of Math., Univ. of the West Indies, Cave Hill, Barba-
dos, 1977. (SG, VS: Enum)

Frank Harary and Bruce Sagan
1984a Signed posets. In: Calcutta Mathematical Society Diamond-cum-Platinum Ju-

bilee Commemoration Volume (1908–1983), Part I, pp. 3–10. Calcutta Math.
Soc., Calcutta, 1984. MR 87k:06003. Zbl 588.05048.

A signed poset is a (finite) partially ordered set P whose Möbius func-
tion takes on only values in {0,±1}. S(P ) is the signed graph with
V = P and Eε = {xy : x ≤ y andµ(x, y) = ε1} for ε = +,−. Some ex-
amples are chains, tree posets, and any product of signed posets. Thm.
1 characterizes P such that |S(P )| ∼= H(P ), the Hasse diagram of P .
Thm. 3 characterizes posets for which S(P ) is balanced. Thm. 4 gives
a sufficient condition for clusterability of S(P ). There are many unan-
swered questions, most basically Question 1. Which signed graphs have
the form S(P )? [See Zelinka (1988a) for a partial answer.] (SG, Sgnd)

Frank Harary and Marcello Truzzi
1979a The graph of the zodiac: On the persistence of the quasi-scientific paradigm of

astrology. J. Combin. Inform. System Sci. 4 (1979), 147–160. MR 82e:00004
(q.v.). (SG: Bal)

Katsumi Harashima
See H. Kosako.

E. Harburg
See K.O. Price.

Mela Hardin
See M. Beck.

Nadia Hardy
See S. Fiorini.

Tero Harju
See also A. Ehrenfeucht and J. Hage.

2005a Combinatorial models of gene assembly. In: S.B. Cooper, B. Löwe, and L.
Torenvliet, eds., New Computational Paradigms (First Conf. Computability in
Europe, CiE 2005, Amsterdam, 2005), pp. 188–195. Lect. Notes in Computer
Sci., Vol. 3526. Springer, Berlin, 2005. Zbl 1113.68400.

A vertex-signed graph (called a “signed graph”) encodes the overlap of
signed permutations (pp. 190ff.). [Annot. 6 Feb 2011.]

(VS: Alg, Appl)

2004a Tutorial on DNA computing and graph transformation. In: H. Ehrig et al., eds.,
ICGT 2004, pp. 434–436. Lect. Notes in Computer Sci., Vol. 3256. Springer,
Berlin, 2004.
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[Vertex-]signed overlap graphs mentioned on p. 436. [Annot. 6 Feb
2011.] (VS: Alg, Appl)

Tero Harju, Chang Li, and Ion Petre
2008a Graph theoretic approach to parallel gene assembly. Discrete Appl. Math. 156

(2008), no. 18, 3416–3429. MR 2467313 (2010c:92075). Zbl 1200.05238.
See Harju, Li, Petre, and Rozenberg (2005a). The “parallel complexity”

of a vertex-signed graph is the minimum number of operations required
to reduce it to ∅. The value for an all-positive or all-negative tree is low
(≤ 3 and 2, resp.). Conjecture. That of an all-negative graph is ≤ 3.

(VS, Appl)

2008b Parallel complexity of signed graphs for gene assembly in ciliates. Soft Com-
puting 12 (2008), 731–737. Zbl 1137.92305.

See (2008a). The parallel complexity of various examples, e.g., complete
tripartite graphs with constant sign (complexity ≤ 3), and an all-positive
circle with two negative leaves hanging off each circle vertex (complexity
≤ 4 or 5). (VS, Appl)

Tero Harju, Chang Li, Ion Petre, and Gregorz Rozenberg
2005a Parallelism in gene assembly. In: C. Ferretti, G. Mauri, and C. Zandron,

eds., DNA Computing (Proc. 10th Int. Workshop on DNA Computing, DNA10,
Milan, 2004), pp. 138–148. Lect. Notes in Computer Sci., Vol. 3384. Springer,
Berlin, 2005. MR 2179032 (no rev). Zbl 1116.68454.

The signs are on vertices. An operation is “local complementation” of a
vertex v: in the neighborhood N(v), negate the vertices and complement
the edges. Molecular operations formalized for vertex-signed graphs are:
(1) deletion of an isolated negative vertex, (2) local complementation
of a positive vertex, then deletion of the vertex, (3) a complementation
in the neighborhood of two adjacent negative vertices v, w: complement
in N(v) ∪ N(w), then complement in N(v) ∩ N(w). (The paper has a
misprint.) The objective is to reduce the graph to ∅ by these operations,
if possible. One consideration is when operations can be performed “in
parallel”, i.e., independently of order of operations. (VS, Appl)

2007a Complexity measures for gene assembly. In: K. Tuyls et al., eds., Knowledge
Discovery and Emergent Complexity in Bioinformatics (First Int. Workshop,
KDECB 2006, Ghent, 2006), pp. 42–60. Lect. Notes in Bioinformatics, Vol.
4366. Springer, Berlin, 2007.

§7, “Fourth complexity measure: Parallelism”: A definition of paral-
lelism in terms of applying rules (operations) to vertex-signed graphs.
[Annot. 6 Feb 2011.] (VS: Alg)

2006a Parallelism in gene assembly. Nat. Computing 5 (2006), no. 2, 203–223. MR
2259034 (2007h:68043). Zbl 1114.68043.

See (2005a). (VS, Appl)

Tero Harju, Ion Petre, and Gregorz Rozenberg
2004a Tutorial on DNA computing and graph transformation. In: H. Ehrig et al., eds.,

ICGT 2004, pp. 434-436. Lect. Notes in Computer Sci., Vol. 3256. Springer,
Berlin, 2004.

See Harju, Li, Petre, and Rozenberg (2005a) et al. (VS, Appl: Exp)
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Pierre de la Harpe
1994a Spin models for link polynomials, strongly regular graphs and Jaeger’s Higman-

Sims model. Pacific J. Math. 162 (1994), no. 1, 57–96. MR 1247144 (94m:-
57014). Zbl 795.57002. (SGc: Knot, Invar)

David Harries and Hans Liebeck
1978a Isomorphisms in switching classes of graphs. J. Austral. Math. Soc. (A) 26

(1978), 475–486. MR 80a:05109. Zbl 411.05044.
Given Σ = (Kn, σ) and an automorphism group A of the switching

class [Σ], is A “exposable” on [Σ] (does it fix a representative of [Σ])?
General techniques and a solution for the dihedral group. Done in terms
of Seidel switching of unsigned simple graphs. (A further development
from Mallows and Sloane (1975a). [Related work in M. Liebeck (1982a)
and Cameron (1977a).]) (kg: sw, TG: Aut)

Alexander K. Hartmann
See also M. Pelikan.

Alexander K. Hartmann and Martin Weigt
2005a Phase Transitions in Combinatorial Optimization Problems: Basics, Algorithms

and Statistical Mechanics. Wiley-VCH, Weinheim, Germany, 2005. MR 2293999
(2009b:82028). Zbl 1094.82002.

“Example: Ising spin glasses”: Frustration index of signed graphs
on p. 6. §11.7, “Matchings and spin glasses”: Outlines the matching
theory method (cf. Katai and Iwai (1978a) and Barahona (1982a)) for
planar graphs, for calculating l(Σ) and locating ground states (fewest
unsatisfied edges). Also, locating interesting excited states (states with
more than the fewest unsatisfied edges), specifically, domain walls and
droplets. A “domain” is generated by negating signs of a set of edges;
the vertices whose spins remain the same form one domain and the com-
plement is the other. The increased energy (the “domain wall energy”)
has thermodynamic implications. [How to choose the negation set, and
what can be the shapes of domain walls, are not obvious.] A “droplet” in
a state s, vis-á-vis a ground state s0, is a component of the subgraph in-
duced by (ss0)−1(−1). The sizes of droplets appear to have consequences
for thermodynamics. [Annot. 24 Aug 2012.]

(SG: WG, Fr: Phys, Alg: ExpRef)

Nora Hartsfield and Gerhard Ringel
1989a Minimal quadrangulations of nonorientable surfaces. J. Combin. Theory Ser.

A 50 (1989), 186-195. MR 90j:57003. Zbl 665.51007.
“Cascades”: see Youngs (1968b). (sg: Ori: Appl)

Kurt Hässig
1975a Theorie verallgemeinerter Flüsse und Potentiale. In: Siebente Oberwolfach-

Tagung uber Operations Research (1974), pp. 85–98. Operations Research Ver-
fahren, Band XXI. A. Hain, Meisenheim am Glan, 1975. MR 56 #8434. Zbl
358.90070. (GN: Incid)

1979a Graphentheoretische Methoden des Operations Research. Leitfaden der angew.
Math. und Mechanik, 42. B.G. Teubner, Stuttgart, 1979. MR 80f:90002. Zbl
397.90061.

Ch. 5: “Verallgemeinerte Fluss- und Potentialdifferenzen-probleme.”
The lift matroid arises from a side condition, i.e., extra row, added to
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the incidence matrix of the graph. [The side condition is expressed
graphically by additive real gains.] (GN: Incid, M, Bal: Exp, Ref)

Refael Hassin
1981a Generalizations of Hoffman’s existence theorem for circulations. Networks 11

(1981), 243–254. MR 83c:90055. Zbl 459.90026. (GN)

O. Hatami
See S. Akbari.

Naomichi Hatano
See E. Estrada.

D.M. Hatch
See S.T. Chui.

Bian He, Ya-Lei Jin, and Xiao-Dong Zhang
2011a Sharp bounds for the signless Laplacian spectral radius in terms of clique num-

ber. Linear Algebra Appl. 434 (2011), no. 3, 683–687.
§4: The incidence energy (derived from Q := K(−Γ)) has a bound like

that in Thm. 4.5. [Annot. 21 Jan 2012.] (Par: Adj)

Jin-Ling He
See J.-Y. Shao.

Shushan He and Shuchao Li
2012a On the signless Laplacian index of unicyclic graphs with fixed diameter. Linear

Algebra Appl. 436 (2012), no. 1, 252–261. MR 2859926 (2012j:05257). Zbl
1229.05201. (sg: par: Adj)

Patrick Headley
1997a On a family of hyperplane arrangements related to the affine Weyl groups. J.

Algebraic Combin. 6 (1997), 331–338. MR 98e:52010. Zbl 911.52009.
The characteristic polynomials of the Shi hyperplane arrangements
S(W ) of type W for each Weyl group W , evaluated computationally.
S(W ) is obtained by splitting the reflection hyperplanes of W in two
in a certain way; thus S(An−1) splits the arrangement representing

LatG(Kn)—more precisely, it represents Latb{0, 1} ~Kn; that of type Bn

splits the arrangement representing LatG(±K•n), and so on. [See also
Athanasiadis (1996a).] (gg: Geom, M, Invar)

Brian Healy and Arthur Stein
20xxa The balance of power in international history.

Describes balance (incorrectly) and clusterability of a signed graph;
examines the relevance of, i.a., signed-graphic balance. [Annot. 9 Jun
2012.] (PsS; SG: Bal, Clu: Exp)

Fritz Heider
1946a Attitudes and cognitive organization. J. Psychology 21 (1946), 107–112.

No mathematics, but a formative article. [See Cartwright and Harary
(1956a).] (PsS)

1979a On balance and attribution. In: Paul W. Holland and Samuel Leinhardt, eds.,
Perspectives on Social Network Research (Proc. Sympos., Dartmouth Coll.,
Hanover, N.H., 1975), Ch. 2, pp. 11–23. Academic Press, New York, 1979.

(PsS)(SG: Bal)

E. Heilbronner
1964a Hückel molecular orbitals of Möbius-type conformations of annulenes. Tetra-

hedron Letters 5 (1964), no. 29, 1923–1928.
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Eigenvalues of adjacency matrices of negative circles. [Annot. 4 Nov
2010.] (SG: Adj, Chem)

Peter Christian Heinig
20xxa Chio condensation and random sign matrices. Submitted. arXiv:1103.2717.

(SG)

Richard V. Helgason
See J.L. Kennington.

I. Heller
1957a On linear systems with integral valued solutions. Pacific J. Math. 7 (1957),

1351–1364. MR 20 #899. Zbl 79, 19 (e: 079.01903). (sg: Incid: bal)

I. Heller and C.B. Tompkins
1956a An extension of a theorem of Dantzig’s. In: H.W. Kuhn and A.W. Tucker,

eds., Linear Inequalities and Related Systems, pp. 247–252. Annals of Math.
Studies, No. 38. Princeton Univ. Press, Princeton, N.J., 1956. MR 18, 459.
Zbl 72, 378 (e: 072.37804).

Thm.: The incidence matrix of a signed graph where all edges are links
is totally unimodular iff the signed graph is balanced. (Not stated in
terms of signed graphs.) See also Hoffman and Gale (1956a).

(sg: Incid, Bal)

Marc Hellmuth
See T. Biyikoğlu.

J.L. van Hemmen
1983a Equilibrium theory of spin glasses: mean-field theory and beyond. In: J.L.

van Hemmen and I. Morgenstern, eds., Heidelberg Colloquium on Spin Glasses
(Proc., Heidelberg, 1983), pp. 203–233. Lect. Notes in Physics Vol. 192.
Springer-Verlag, Berlin, 1983. MR 733800 (85d:82086).

§2.3, “Frustration”: Physics of Ising models with edges (“bonds”) that
are positive, negative, or of undetermined sign. [Annot. 16 Jun 2012.]

(Phys: sg)

Robert L. Hemminger and Joseph B. Klerlein
1979a Line pseudodigraphs. J. Graph Theory 1 (1977), 365–377. MR 57 #5812. Zbl

379.05032.
An attempt, intrinsically unsuccessful, to represent the (signed) line

graph of a digraph (see Zaslavsky 20xxa) by a digraph. [Continued by
Klerlein (1975a).] (sg: LG, ori)

Robert L. Hemminger and Bohdan Zelinka
1973a Line isomorphisms on dipseudographs. J. Combin. Theory Ser. B 14 (1973),

105–121. MR 47 #3230. Zbl 263.05107. (sg: LG, ori)

Anthony Henderson
2006a Plethysm for wreath products and homology of sub-posets of Dowling lattices.

Electronic J. Combin. 13 (2006), no. 1, Research article R87, 25 pp. MR
2007f:05187. Zbl 1113.05101.

The subposets are Q1 mod d
n (G) where d > 1, whose elements are the

flats A ⊆ E(GK•n) such that d divides the order of the unbalanced part
and the number of vertices every balanced component is ≡ 1 mod d.

(gg: M: Aut)
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Patricia Hersh and Ed Swartz
2008a Coloring complexes and arrangements. J. Algebraic Combin. 27 (2008), 205–

214. MR 2375492 (2008m:05109). Zbl 1154.05315.
Remark 19: Chromatic polynomials of signed graphs vis-á-vis subar-

rangements of the root system arrangement Bn in Thm. 18, which gives
properties of an h-vector. [Annot. 1 Mar 2011.] (SG: Invar)

Daniel Hershkowitz and Hans Schneider
1993a Ranks of zero patterns and sign patterns. Linear Multilinear Algebra 34 (1993),

no. 1, 3–19. MR 1334927 (96g:15004). Zbl 793.05027.
Bipartite Σ such that every matrix with sign pattern Σ has the same

rank, over each field 6= H2. [Annot. 6 Mar 2011.] (SG: QM)

J.A. Hertz
See K.H. Fischer.

G. Hetyei
See Y. Diao.

Hector Hevia
See G. Chartrand.

Takayuki Hibi
See H. Ohsugi.

Desmond J. Higham
See E. Estrada.

K. Hinson
See Y. Diao.

André Hirschowitz
See M. Hirschowitz.

Michel Hirschowitz, André Hirschowitz, and Tom Hirschowitz
2007a A theory for game theories. In: V. Arvind and S. Prasad, eds., (FSTTCS

2007: Foundations of Software Technology and Theoretical Computer Science),
pp. 192–203. Lect. Notes in Computer Sci., Vol. 4855. Springer-Verlag, Berlin,
2007. MR 2480201 (2010h:91057). Zbl 1136.68035. (SD: Appl)

Tom Hirschowitz
See M. Hirschowitz.

Dorit S. Hochbaum
1998a Instant recognition of half integrality and 2-approximations. In: Klaus Jansen

and José Rolim, eds., Approximation Algorithms for Combinatorial Optimiza-
tion (Aalborg, 1998), pp. 99–110. Lect. Notes in Computer Sci., Vol. 1444.
Springer, Berlin, 1998. MR 1677400. Zbl 911.90261.

Integer programs with constraints of a generalized real gain-graphic
form, αx−βy−γ ≤ z, the gain being β/α. Slightly extends Hochbaum,
Megiddo, Naor, and Tamir (1993a). (gn: Incid(D): Alg)

1998b The t-vertex cover problem: extending the half integrality framework with
budget constraints. In: Klaus Jansen and José Rolim, eds., Approximation
Algorithms for Combinatorial Optimization (Aalborg, 1998), pp. 111–122. Lect.
Notes in Computer Sci., Vol. 1444. Springer, Berlin, 1998. MR 2000b:90032.
Zbl 908.90213.

Integer programs as in (1998a) with “budget constraints”.
(gn: Incid(D): Alg)

2000a Instant recognition of polynomial time solvability, half integrality and 2-approxi-
mations. In: Klaus Jansen and Samir Khuller, eds., Approximation Algorithms
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for Combinatorial Optimization (Saarbrücken, 2000), pp. 2–14. Lect. Notes in
Computer Sci., Vol. 1913. Springer, Berlin, 2000. MR 1850069. Zbl 976.90123.

Integer programs as in (1998a). There is a polynomial-time solution
via a minimum cut, or else a half-integral partial solution.

(gn: Incid(D): Alg)

2002a Solving integer programs over monotone inequalities in three variables: a frame-
work for half integrality and good approximations. O.R. for a United Europe
(Budapest, 2000). European J. Operational Res. 140 (2002), no. 2, 291–321.
MR 2003e:90052. Zbl 1001.90050.

Constraints of a generalized positive-real gain-graphic form, αx−βy−
γ ≤ z, the gain being β/α, contrasting α, β ≥ 0 to the intrinsically hard
case where a negative coefficient is allowed but a half-integral approxi-
mate solution is easy. (gn: Incid(D): Alg)

Dorit S. Hochbaum, Nimrod Megiddo, Joseph (Seffi) Naor, and Arie Tamir
1993a Tight bounds and 2-approximation algorithms for integer programs with two

variables per inequality. Math. Programming Ser. B 62 (1993), 69–83. MR
94k:90050. Zbl 802.90080.

Approximate solution of integer linear programs with real, dually gain-
graphic coefficient matrix. [See Sewell (1996a).] (GN: Incid(D): Alg)

Dorit S. Hochbaum and Joseph (Seffi) Naor
1994a Simple and fast algorithms for linear and integer programs with two variables

per inequality. SIAM J. Computing 23 (1994), 1179–1192. MR 95h:90066. Zbl
831.90089.

Linear and integer programs with real, dually gain-graphic coefficient
matrix: feasibility for linear programs, solution of integer programs when
the gains are positive (“monotone inequalities”), and identification of
“fat” polytopes (that contain a sphere larger than a unit hypercube).

(GN: Incid(D): Alg, Ref)

Winfried Hochstättler, Robert Nickel, and Britta Peis
2006a Two disjoint negative cycles in a signed graph. CTW2006 – Cologne-Twente

Workshop on Graphs and Combinatorial Optimization. Electronic Notes Dis-
crete Math. 50 (2006), 107–111. MR2307287 (no rev). Zbl 1134.05319.

Incidence matrix used to find the circles in slow polynomial time. Use
of graphic structure is explored. (SG: Str: Circles: Alg, Incid)

Cornelis Hoede
1981a The integration of cognitive consistency theories. Memorandum nr. 353, Dept.

of Appl. Math., Twente Univ. of Tech., Enschede, The Netherlands, Oct., 1981.
(PsS: Gen)(SG, VS: Bal)

1982a Anwendungen von Graphentheoretischen Methoden und Konzepten in den So-
cialwissenschaften. Memorandum nr. 390, Dept. of Appl. Math., Twente Univ.
of Tech., Enschede, the Netherlands, May, 1982.

Teil 4: “Kognitive Konsistenz.” (PsS: Gen: Exp)

†1992a A characterization of consistent marked graphs. J. Graph Theory 16 (1992),
17–23. MR 93b:05141. Zbl 748.05081.

Characterizes when one can sign the vertices of a graph so every circle
has positive sign product, solving the problem of Beineke and Harary
(1978b). (Γ, µ), where µ : V → {+,−}, is consistent iff, with respect to
some spanning tree, the fundamental circles are positive and the end-
points of the intersection of two fundamental circles have the same sign.
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A polynomial-time algorithm ensues. [The definitive word until Joglekar,
Shah, and Diwan (2010a). Does not treat signed vertices and edges.]
[Annot. Rev. 11 Sept 2010.] (VS: Bal: Str)

P. Hoever, W.F. Wolff, and J. Zittartz
1981a Random layered frustration models. Z. Phys. B 41 (1981), 43–53. MR 600279

(81m:82027).
Physics of Ising models on a planar square lattice. Exact solutions

for partition function, free energy, ground state energy. The transition
temperature depends only on the average edge sign, (|E+| − |E−|)/|E|.
Switching is implicit (“substituting spins”). Model (a): all horizontal
edges are + (attainable by switching); if horizontally periodic these are
“random layered frustration” models. Model (b): Assumed switched to
minimize |E−|. Dictionary: “plaquette” = quadrilateral, “frustration
index” = sign of plaquette.

They conjecture thermodynamic consequences if the ground states
(s : V → {+1,−1} with l(Σ) frustrated edges) are connected in the
state graph {+1,−1}V . [Question. For which Σ are the ground states
connected?] [Annot. 16 Jun, 28 Aug 2012.] (Phys: SG: sw)

Alan J. Hoffman
See also D.R. Fulkerson and D. Gale.

1970a −1 −
√

2? In: Richard Guy et al., eds., Combinatorial Structures and Their
Applications (Proc. Calgary Int. Conf., 1969), pp. 173–176. Gordon and Breach,
New York, 1970. Zbl 262.05133. (LG)

1972a Eigenvalues and partitionings of the edges of a graph. Linear Algebra Appl. 5
(1972), 137–146. MR 46 #97. Zbl 247.05125. (Par: Adj, Fr)

1974a On eigenvalues of symmetric (+1,−1) matrices. Israel J. Math. 17 (1974),
69–75. MR 50 #2202. Zbl 281.15003.

Eigenvalues of signed complete graphs. (sg: kg: Adj)

1975a Spectral functions of graphs. In: Proceedings of the International Congress
of Mathematicians (Vancouver, 1974), Vol. 2, pp. 461–463. Canad. Math.
Congress, Montreal, 1975. MR 55 #7850. Zbl 344.05164. (TG, Adj)

1976a On spectrally bounded signed graphs. (Abstract.) In: Trans. Twenty-First
Conference of Army Mathematicians (White Sands, N.M., 1975), pp. 1–5. ARO
Rep. 76-1. U.S. Army Research Office, Research Triangle Park, N.C., 1976. MR
58 #27648.

Abstract of (1977b). Also, bounding the least eigenvalue in terms of
principal submatrices. (SG: LG)

1977a On graphs whose least eigenvalue exceeds −1 −
√

2. Linear Algebra Appl. 16
(1977), 153–165. MR 57 #9607. Zbl 354.05048.

Introduces generalized line graphs. [They are the reduced line graphs
of signed graphs of the form −Γ with any number of negative digons
attached to each vertex; see Zaslavsky (20xxb), Ex. 7.6, (20xxa)]. (LG)

1977b On signed graphs and gramians. Geometriae Dedicata 6 (1977), 455–470. MR
57 #3167. Zbl 407.05064.

Σ is a signed simple graph. Let λ be the least eigenvalue of A(Σ).
Can (*) A(Σ) − λI − KKT be zero for some K with all entries 0,±1?
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When λ = −2, K exists [equivalently, Σ is a reduced line graph of a
signed graph; cf. Zaslavsky (2010b, 20xxa)], with finitely many excep-
tions; the proof uses root systems; cf. Cameron, Goethals, Seidel and
Shult (1976a). In general, no K may give zero, but the minimum, over
all K, of the largest element of (*) is bounded by a function of λ.

(SG: LG: Adj)

[A.J. Hoffman and D. Gale]
1956a Appendix [to the paper of Heller and Tompkins (1956a)]. In: H.W. Kuhn

and A.W. Tucker, eds., Linear Inequalities and Related Systems, pp. 252–254.
Annals of Math. Studies., No. 38. Princeton Univ. Press, Princeton, N.J., 1956.

(sg: Incid: bal)

Alan J. Hoffman and Peter Joffe
1978a Nearest S-matrices of given rank and the Ramsey problem for eigenvalues of

bipartite S-graphs. In: Problèmes Combinatoires et Théorie des Graphes (Col-
loq. Int., Orsay, 1976), pp. 237–240. Colloques Int. du CNRS, 260. Editions
du C.N.R.S., Paris, 1978. MR 81b:05080. Zbl 413.05031. (SG: Adj)

Alan J. Hoffman and Francisco Pereira
1973a On copositive matrices with −1, 0, 1 entries. J. Combinatorial Theory Ser. A

14 (1973), 302–309. MR 47 #5029. Zbl 273.15019.

Dean Hoffman and Heather Jordon
2006a Signed graph factors and degree sequences. J. Graph Theory 52 (2006), no. 1,

27–36. MR 2006k:05174. Zbl 1117.05089.
The net degree of a vertex in Σ is d+(v)− d−(v). [This is best viewed

as degree in an all-negative bidirected graph; cf. p. 35.] Thms. 2.3 (for
Σ) and 4.1 (for a bidirected graph B, called a “mixed signed graph”)
are an interesting f -factor theorem in terms of net degrees. Thm. 4.1:
Given f : V → Z, an “f -factor” is a subgraph whose net in-degree vec-
tor = f . For disjoint S, T ⊆ V and a component Q of B \ (S ∪ T ),
J(Q,S, T ) is computed in terms of f and in-degrees and out-degrees of
edges among Q,S, T . q(S, T ) is the number of J-odd components Q. An
f -factor exists iff q satisfies an inequality. Thm. 3.2: Fixing the maxi-
mum edge multiplicity, an Erdős–Gallai-type characterization of net de-
gree sequences—simplifying the theorem of Michael (2002a). Thm. 4.2:
Net in-degree sequences of bidirected simple graphs. [More in Jordon,
McBride, and Tipnis (2009a).] [Annot. 14 Oct 2009.] (SG: ori: Invar)

Thomas R. Hoffman
See D.M. Duncan.

Franz Höfting and Egon Wanke
1993a Polynomial algorithms for minimum cost paths in periodic graphs. In: Vijaya

Ramachandran et al., eds., Proceedings of the Fourth Annual ACM-SIAM Sym-
posium on Discrete Algorithms (Austin, Tex., 1993), pp. 493–499. Assoc. for
Computing Machinery, New York, and Soc. for Industrial and Appl. Math.,
Philadelphia, 1993. MR 93m:05184. Zbl 801.68133.

Given a finite gain digraph Φ (the “static graph”) with gains in Zd and
a rational cost for each edge, find a minimum-cost walk (“path”) in its
canonical covering graph Φ̃ with given initial and final vertices.

(GD(Cov): Alg)

1994a Polynomial time analysis of toroidal periodic graphs. In: Serge Abiteboul and
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Eli Shamir, eds., Automata, Languages and Programming (Proc. 21st Int. Col-
loq., ICALP 94, Jerusalem, 1994), pp. 544–555. Lect. Notes in Computer Sci.,
Vol. 820. Springer-Verlag, Berlin, 1994. MR 96c:05164.

Take a gain digraph Φ (the “static graph”) with gains in Zα = Zα1 ×
· · ·×Zαd (where α = (α1, · · · , αd)) and its canonical covering digraph Φ̃
(the “toroidal periodic graph”). Treated algorithmically via integer lin-
ear programming and linear Diophantine equations: existence of directed
paths (NP-complete, but polynomial-time if Φ is strongly connected) and
number of strongly connected components of Φ̃.

(GD(Cov): Alg, Geom)

1995a Minimum cost paths in periodic graphs. SIAM J. Computing 24 (1995), 1051–
1067. MR 96d:05061. Zbl 839.05063.

Full version of (1993a). The min-cost problem is expressed as an
integer linear program. Various conditions under which the problem
is NP-hard, even a very restricted version without costs (Thms. 3.3,
3.5), or polynomial-time solvable (e.g.: without costs, when Φ is an
undirected gain graph: Thm. 3.4; with costs, when d is fixed: Thm.
4.5). (GD, GG(Cov): Alg, Geom, Ref)

2000a Polynomial-time analysis of toroidal periodic graphs. J. Algorithms 34 (2000),
no. 1, 14–39. MR 1732196 (2001k:68111). Zbl 958.68129.

Full version of (1994a). (GD(Cov): Alg, Geom)

Leslie Hogben
2005a Spectral graph theory and the inverse eigenvalue problem of a graph. Elec-

tronic J. Linear Algebra 14 (2005), 12–31. MR 2202430 (2006k:05133). Zbl
1162.05333. (Par: Adj)

Paul W. Holland and Samuel Leinhardt
1971a Transitivity in structural models of small groups. Comparative Group Studies

2 (1971), 107–124. (PsS: SG: Bal)

Paul W. Holland and Samuel Leinhardt, eds.
1979a Perspectives on Social Network Research (Proc. Math. Soc. Sci. Board Adv.

Res. Sympos. on Social Networks held at Dartmouth College, Hanover, N.H.,
September 18–21, 1975). Academic Press, New York, 1979. (PsS, SG)

Roderick B. Holmes and Vern I. Paulsen
2004a Optimal frames for erasures. Linear Algebra Appl. 377 (2004), 31–51. MR

2021601 (2004j:42028). Zbl 1042.46009.
Adjacency matrices of cube-root-of-unity gain graphs. [Annot. 20

June 2011.] (gg: adj)

Hai-Yan Hong
See Y.-Z. Fan.

Sungpyo Hong
See J. H. Kwak.

Yuan Hong and Xiao-Dong Zhang
2005a Sharp upper and lower bounds for largest eigenvalue of the Laplacian matrices of

trees. Discrete Math. 296 (2005), no. 2-3, 187–197. MR 2154712 (2006g:05127).
Zbl 1068.05044 .

Thm. 2: If some neighbors of v in Γ are regrafted onto u, forming
Γ′, and if xu ≥ xv in the Perron vector of K(−Γ), then λ1(K(−Γ)) <
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λ1(K(−Γ′)). [Annot. 24 Jan 2012.] (Par: Adj)

Shlomo Hoory, Nathan Linial, and Avi Wigderson
2006a Expander graphs and their applications. Bull. Amer. Math. Soc. (N.S.) 43

(2006), no. 4, 439–561. MR 2247919 (2007h:68055). Zbl 1147.68608.
§6, “Spectrum and expansion in lifts of graphs”: covering graphs of per-

mutation gain graphs, and from Bilu and linial (2006a) of signed graphs.
§6.1, “Covering maps and lifts”: Covering graphs of permutation gain
graphs, presented as symmetric digraphs with invertible arc gains. §2.6,
“Eigenvalues - old and new”: Prop. 6.3. The covering graph’s eigenval-
ues include those of the (underlying) base graph Γ and its eigenvectors
sum to 0 on fibers. Prop. 6.4. The signed covering graph’s eigenval-
ues are those of Γ and those of (Γ, σ). §6.4, “Nearly-Ramanujan graphs
by way of 2-lifts”: Conjectured and proven eigenvalue ranges when the
base graph is a Ramanujan graph. Dictionary:“signing” of A(Γ) means
A(Γ, σ) for any edge signature. “2-lift” = double covering graph. [An-
not. 25 Aug 2011.] (sg: Cov, Adj: Exp)

Tsuyoshi Horiguchi
1986a Fully frustrated Ising model on a square lattice. Progress Theor. Phys. Suppl.

No. 87 (1986), 33–42. MR 884854 (88g:82063). (Phys: SG: Fr)

Yaoping Hou
2005a Bounds for the least Laplacian eigenvalue of a signed graph. Acta Math.

Sinica (Engl. Ser.) 21 (2005), no. 4, 955–960. MR 2156977 (2006d:05120).
Zbl 1080.05060. (SG: Adj, Bal)

Yaoping Hou, Jiongsheng Li, and Yongliang Pan
2003a On the Laplacian eigenvalues of signed graphs. Linear Multilinear Algebra 51

(2003), 21–30. MR 2003j:05084. Zbl 1020.05044.
Properties of (mainly) largest eigenvalue λ1(Σ) of the Laplacian (Kirch-

hoff) matrix K(Σ) of a signed simple graph. Thms. 2.5–2.6 repeat stan-
dard criteria for balance [with a sign error in (3) of each]. Main results:

Upper bounds, all in terms of underlying graph: Lemma 3.1: For
connected Γ, λ1(Γ, σ) ≤ λ1(−Γ), equal iff σ is antibalanced (e.g., all
negative). Thm. 3.4: λ1(Σ) ≤ 2(n − 1), equal iff Σ ∼ −Kn. Thm.
3.5: λ1(Σ) ≤ (1) max edge degree + 2, (2) max (vertex degree + aver-
age neighbor degree), (3) a combination of these degrees; equal iff Σ is
antibalanced and |Σ| is semiregular bipartite.

Lower bounds: Cor. 3.8: λ1(Σ+) + λ1(Σ−) ≥ λ1(Σ) ≥ λ1(Σ+), λ1(Σ−).
Thm. 3.9: If Σ has a vertex of degree n − 1, then λ1(Σ) ≥ λ1(+|Σ|),
with equality iff Σ is balanced. Thm. 3.10: λ1(Σ) ≥ 1 + maxv d|Σ|(v).

Interlacing: Lemma 3.7 (special case): λi(Σ) ≥ λi(Σ \ e) ≥ λi+1(Σ),
where λ1(Σ) ≥ λ2(Σ) ≥ · · · .

Problems about existence of cospectral unbalanced signed graphs.
(SG: Adj)

Yao Ping Hou and Li Juan Wei
1999a Whitney numbers of the second kind for Dowling lattices. (In Chinese.) Acta

Sci. Natur. Univ. Norm. Hunan. 22 (1999), No. 3, 6–10. MR 2000k:05017. Zbl
948.05004.

Combinatorial proof of an explicit formula forWk [possibly the standard
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one?]. Studies “associated numbers” W r
k . Proved: Wn−k ≤ Wk for k ≤ 3

[this must be an error for Wk ≤ Wn−k and must have some restriction on
n; well known for k = 1]. [Cf. Benoumhani (1996a).] (gg: M: Invar)

R.M.F. Houtappel
1950a Statistics of two-dimensional hexagonal ferromagnetics with ”Ising”- interaction

between nearest neighbours only. Physica 16 (1950), 391–392. Zbl 38, 419c (e:
038.41903).

Announcement of (1950b). (Phys, WG, sg: Fr)

1950b Order-disorder in hexagonal lattices. Physica 16 (1950), 425–455. MR 039632
(12, 576j). Zbl 38, 139c (e: 038.13903).

Ising spins, i.e. ζ : V → {+1,−1}, in the triangular and honey-
comb (hexagonal) lattice graphs on a torus. Different edge weights
(“bond strengths”) and signs are allowed in the three directions. The
all-negative triangular signature (i.e., “antiferromagnetic” with equal
weights) is an exceptional case. Switching the triangular lattice (p.
449, bottom) permits assuming that two chosen directions are positive.
Exceptional weights are the antibalanced triangular lattice with equal
smaller weights, e.g., all weights equal (p. 449, bottom). The honey-
comb cannot be exceptional [because it is balanced] (p. 451). [See also
G.F. Newell (1950b), I. Syôzi (1950a), G.H. Wannier (1950a).] [Annot.
20 Jun 2012.] (Phys, WG, sg: Fr. sw)

Guang Hu and Wen-Yuan Qiu
2009a Extended Goldberg polyhedral links with odd tangles. MATCH Commun.

Math. Comput. Chem. 61 (2009), no. 3, 753–766. Zbl 1189.92027.
See Flapan (1995a). [Annot. 4 Nov 2010.] (sg: Top, Chem)

Hongbo Hua
2007a Bipartite unicyclic graphs with large energy. MATCH Commun. Math. Com-

put. Chem. 58 (2007), no. 1, 57–73. MR 2335478 (2008d:05101). Zbl 1224.05301.
Fix n ≥ 13. For connected unicyclic Γ such that −Γ is balanced,

excluding circles and balloons (“tadpoles”, “lollipops”), the maximum
energy occurs for a hexagon attached by an edge to the third vertex of a
path. [Problem. Replace “bipartite” by “signed”, i.e., allow unbalanced
signed graphs.] [Annot. 24 Jan 2012.] (par: Adj)

Qiongxiang Huang
See J.F. Wang.

Rong Huang, Jianzhou Liu, and Li Zhu
2011a A structural characterization of real k-potent matrices. Linear Multilinear Al-

gebra 59 (2011), no. 4, 433–439. MR 2802524 (2012d:15023). (QM: SD)

Ting-Zhu Huang
See G.X. Tian.

Yihua Huang
See Y.-B. Gao.

Yufei Huang
See also C.H. Liang.

Yufei Huang, Bolian Liu and Yingluan Liu
2011a The signless Laplacian spectral radius of bicyclic graphs with prescribed de-

gree sequences. Discrete Math. 311 (2011), no. 6, 504–511. MR 2799902
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(2012a:05189). Zbl 1222.05130.
The largest spectral radius and the extremal graphs. [Annot. 19 Nov

2011.] (Par: Adj)

Falk Hüffner
See also S. Böcker.

Falk Hüffner, Nadja Betzler, and Rolf Niedermeier
2007a Optimal edge deletions for signed graph balancing. In: Camil Demetrescu, ed.,

Experimental Algorithms (6th Int. Workshop, WEA 2007, Rome, 2007), pp.
297–310. Lect. Notes in Computer Sci., Vol. 4525. Springer-Verlag, Berlin,
2007. Zbl 1203.68125.

An improved algorithm for frustration index. Dictionary: “2-coloring
that minimizes inconsistencies with given edge labels” = switching func-
tion that minimizes number of negative edges. [Annot. 10 Sept 2011.]

(SG: Fr: Alg)

2010a Separator-based data reduction for signed graph balancing. J. Combin. Optim.
20 (2010), no. 4, 335–360. MR 2734305 (2011j:05325). Zbl 1206.90201.

(SG: Fr: Alg)

Florian Hug
See I.E. Bocharova.

Axel Hultman
2007a The topology of spaces of phylogenetic trees with symmetry. Discrete Math.

307 (2007), no. 14, 1825–1832. MR 2008a:05055. Zbl 1109.92031.
Introduces Dowling trees: “Natural Dowling analogues of the complex

of phylogenetic trees”. (gg: M: Invar)

2007b Link complexes of subspace arrangements. European J. Combin. 28 (2007), no.
3, 781–790. MR 2007m:52029. Zbl 1113.52038. arXiv:math/0507314.

Interprets chromatic polynomials of signed graphs in terms of Hilbert
polynomials. (SG: Invar)

John Hultz
See also F. Glover.

John Hultz and D. Klingman
1979a Solving singularly constrained generalized network problems. Appl. Math. Op-

tim. 4 (1978), 103–119. MR 57 #15414. Zbl 373.90075. (GN: M(bases))

Norman P. Hummon and Patrick Doreian
†2003a Some dynamics of social balance processes: bringing Heider back into balance

theory. Social Networks 25 (2003), 17–49.
Presents a model for evolution of balance and clusterability (as in Davis

1967a) of a signed digraph and explores it via computer simulations.

Definitions: Given a signed digraph ~Σ and a partition π of V , define
the ‘clusterability’ c(~Σ, π) := (# negative edges within blocks of π) +

(# positive edges between blocks). Define π(~Σ) := any π that minimizes

c(~Σ, π). Define ~Σ(vi) := { ~vivj ∈ ~E(~Σ)} with signs. (~Σ models relations

in a social group V . ~Σi is the graph of relations perceived by vi.)
Initial conditions: Fixed |V |, fixed “contentiousness” p := the prob-

ability that an initial edge is negative, a fixed “communication” rule,
random ~Σ0 and, for each vi ∈ V , ~Σ0

i := ~Σ0. At time t + 1, ~Σt
i(vi)
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changes to ~Σt+1
i (vi) to minimize d(d(~Σt+1

i , π(~Σt)). Then ~Σt+1
j (i) changes

to ~Σt+1
i (vi) for some vj (depending on ~Σi and the communication rule).

Computer simulations examined the types of changes and emerging
clusterability of ~Σt or ~Σt

i as t increases, under four different communica-
tion rules, random initial conditions with various p, and |V | = 3, 5, 7, 10.
The outcomes are highly suggestive (see §4; p seems influential). [Prob-
lem. Predict the outcomes in terms of initial conditions through a math-
ematical analysis.] [Annot. 26 Apr 2009.]

(SD, sg: Bal, Clu: Alg)(PsS)

Norman P. Hummon and T.J. Fararo
1995a Assessing hierarchy and balance in dynamic network models. J. Math. Sociology

20 (1995), 145–159. Zbl 858.92032.

John E. Hunter
1978a Dynamic sociometry. J. Math. Sociology 6 (1978), 87–138. MR 58 #20631.

(SG: Bal, Clu)

Bofeng Huo, Shengjin Ji, Xueliang Li, and Yongtang Shi
2011a Solution to a conjecture on the maximal energy of bipartite bicyclic graphs.

Linear Algebra Appl. 435 (2011), no. 4, 804–810. MR 2807234 (2012e:05232).
Zbl 1220.05073.

[Question. Does this naturally generalize to antibalanced signed bicyclic
graphs?] [Annot. 21 Mar 2011.] (sg: Par: Adj)

Bofeng Huo, Xueliang Li, and Yongtang Shi
2011a Complete solution to a problem on the maximal energy of unicyclic bipar-

tite graphs. Linear Algebra Appl. 434 (2011), no. 5, 1370–1377. MR 2763594
(2011m-05176). Zbl 1205.05146.

[Question. Do the results generalize to antibalanced signed unicyclic
graphs?] [Annot. 21 Mar 2011.] (sg: Par: Adj)

Li Fang Huo and Yu Bin Gao
2010a Local bases of two class of primitive nonpowerful signed digraphs with girth 2.

Math. Pract. Theory 40 (2010), no. 10, 235–239. MR 2730313 (no rev).
(SD: Adj)

C.A.J. Hurkens
1989a On the existence of an integral potential in a weighted bidirected graph. Linear

Algebra Appl. 114/115 (1989), 541–553. MR 90c:05142. Zbl 726.05050.
Given: a bidirected graph B (with no loose or half edges or positive

loops) and an integer weight be on each edge. Wanted: an integral vertex
weighting x such that H(B)Tx ≤ b, where H(B) is the incidence matrix.
Such x exists iff (i) every coherent circle or handcuff walk has nonnega-
tive total weight and (ii) each doubly odd Korach walk (a generalization
of a coherent handcuff that has a cutpoint dividing it into two parts,
each with odd total weight) has positive total weight. This improves a
theorem of Schrijver (1991a) and is best possible. Dictionary: “path”
(“cycle”) = coherent (closed) walk. (sg: Ori: Incid)

Daniel Huttenlocher
See J. Leskovec.

Tony Chi Thong Huynh
See also J. Geelen.
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2009a The Linkage Problem for Group-labelled Graphs. Doctoral thesis, Univ. of Wa-
terloo, 2009.

Gains are in GF(q)× or sometimes in a finite abelian group. Dictio-
nary: “group-labelled graph” = gain graph, ”Dowling matroid” = frame
matroid (not Dowling geometry), “shifting” = switching. (GG: M)

T. Ibaraki
See also Y. Crama and P.L. Hammer.

T. Ibaraki and U.N. Peled
1981a Sufficient conditions for graphs to have threshold number 2. In: Pierre Hansen,

ed., Studies on Graphs and Discrete Programming (Proc. Workshop, Brussels,
1979), pp. 241–268. North-Holland Math. Studies, 59. Ann. Discrete Math., 11.
North-Holland, Amsterdam, 1981. MR 84f:05056. Zbl 479.05058. (par: ori)

Takashi Iino
See T. Yoshikawa.

Takeo Ikai
See H. Kosako.

Yoshiko T. Ikebe and Akihisa Tamura
20xxa Perfect bidirected graphs. Submitted.

A transitively closed bidirection of a simple graph is perfect iff its
underlying graph is perfect. (See Johnson and Padberg (1982a) for def-
initions.) [Also proved by Sewell (1996a).] (sg: Ori: Incid, Geom)

Aleksandar Ilić
See also L.H. Feng and B. Zhou.

2010a Trees with minimal Laplacian coefficients. Computers Math. Appl. 59 (2010),
2776–2783. MR 2607982 (2010m:05069). Zbl 1193.05060. (Par: Adj)

Nicole Immorlica
See E. Demaine.

Takehiro Inohara
1999a On conditions for a meeting not to reach a recurrent argument. Appl. Math.

Comput. 101 (1999), 281–298. MR 1677966 (99k:90010). Zbl 942.91019.
(SD, PsS)

2000a Meetings in deadlock and decision makers with interperception. Appl. Math.
Comput. 109 (2000), 121–133. MR 1738208 (2000m:91035). Zbl 1042.91010.

(SD, PsS)

2002a Characterization of clusterability of signed graph in terms of Newcomb’s balance
of sentiments. Appl. Math. Comput. 133 (2002), no. 1, 93–104. MR 1923185
(2003i:05064). Zbl 1023.05072.

Assumption: all σ(i, i) = +. Thm. 3: A signed complete digraph is
clusterable iff σ(i, j) = − or σ(j, k) = σ(i, k) for every triple {i, j, k} of
vertices (not necessarily distinct). [The notation is unnecessarily com-
plicated.] (SD: Clu, PsS)

2003a Clusterability of groups and information exchange in group decision making
with approval voting system. Appl. Math. Comput. 136 (2003), no. 1, 1–15.
MR 2004b:91059. Zbl 1042.91086. (SD: KG: Bal, Clu, PsS)

2004a Quasi-clusterability of signed graphs with negative self evaluation. Appl. Math.
Comput. 158 (2004), no. 1, 201–215. MR 2091243 (2005f:05072). Zbl 1055.05074.

(SD: Clu, PsS)
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2004b Signed graphs with negative self evaluation and clusterability of graphs. Appl.
Math. Comput. 158 (2004), no. 2, 477–487. MR 2094633 (2005f:05073). Zbl
1054.05048. (SD: Clu, PsS)

2007a Relational dominant strategy equilibrium as a generalization of dominant strat-
egy equilibrium in terms of a social psychological aspect of decision making.
Europ. J. Oper. Res. 182 (2007), 856–866. Zbl 1121.90355. (SD, PsS)

Takehiro Inohara, Shingo Takahashi, and Bunpei Nakano
1998a On conditions for a meeting not to reach a deadlock. Appl. Math. Comput. 90

(1998), 1–9. MR 1485601. Zbl 907.90014. (SD, PsS)

2000a Credibility of information in ‘soft’ games with interperception of emotions.
Appl. Math. Comput. 115 (2000), 23–41. MR 1779380 (2001e:91037). Zbl
1046.91004. (SD, PsS)

Yuri J. Ionin and Mohan S. Shrikhande
2006a Combinatorics of Symmetric Designs. Cambridge Univ. Press, Cambridge,

Eng., 2006. MR 2234039 (2008a:05001). Zbl 1114.05001.
§7.3, “Switching in strongly regular graphs”: Graph switching and

two-graphs. (TG, Sw: Exp)

Masao Iri and Katsuaki Aoki
1980a A graphical approach to the problem of locating the origin of the system fail-

ure. J. Operations Res. Soc. Japan 23 (1980), 295–312. MR 82c:90041. Zbl
447.90036.

(SD, VS: Appl)

Masao Iri, Katsuaki Aoki, Eiji O’Shima, and Hisayoshi Matsuyama
1976a [A graphical approach to the problem of locating the system failure.] (In

Japanese.) [???] 76(135) (1976), 63–68. (SD, VS: Appl)

1979a An algorithm for diagnosis of system failures in the chemical process. Comput-
ers and Chem. Eng. 3 (1979), 489–493 (1981).

The process is modelled by a signed digraph with some nodes v marked
by µ(v) ∈ {+,−, 0}. (Marks +,− indicate a failure in the process.) Ob-
ject: to locate the node which is origin of the failure. An oversimplified
description of the algorithm: µ is extended arbitrarily to V . Arc (u, v)
is discarded if 0 6= µ(u)µ(v) 6= σ(u, v). If the resulting digraph has a
unique initial strongly connected component S, the nodes in it are pos-
sible origins. Otherwise, this extension provides no information. (I have
overlooked: special marks on “controlled” nodes; speedup by stepwise
extension and testing of µ.) [This article and/or (1976a) seems to be
the origin of a whole literature. See e.g. Chang and Yu (1990a), Kramer
and Palowitch (1987a).] (SD, VS: Appl, Alg)

Toru Ishihara
2000a Cameron’s construction of two-graphs. Discrete Math. 215 (2000), 283–291.

MR 2000k:05090. Zbl 959.05099.
A new proof of Cameron (1994a). (TG)

2002a Signed graphs associated with the lattice An. J. Math. Univ. Tokushima 36
(2002), 1–6 (2003). MR 1974060 (2004c:05086). Zbl 1032.05061.

A signed graph corresponding to a base of An is a [signed] path of cliques
and locally switches to a path. (For local switching see Cameron, Seidel,
and Tsaranov (1994a).) (SG: Geom)(SG: Sw: Gen)
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2004a Local switching of some signed graphs. J. Math. Univ. Tokushima 38 (2004),
1–7. MR 2123167 (2005m:05110). Zbl 1067.05032.

Which signed graphs locally switch to a tree? Examples only.
(SG: Sw: Gen)

2005a Local switching of signed induced cycles. J. Math. Univ. Tokushima 39 (2005),
1–5. MR 2194305 (2006i:05077).

Converting an induced circle to a path by local switching.
(SG: Sw: Gen)

2007a Signed graphs and Hushimi trees. J. Math. Univ. Tokushima 41 (2007), 13–23.
MR 2380208 (no rev). Zbl 1138.05316.

Local switching between trees. [Annot. 28 Dec 2011.] (CSG)

Sorin Istrail
2000a Statistical mechanics, three-dimensionality and NP-completeness. I. Universal-

ity of intractability for the partition function of the Ising model across non-
planar lattices. In: Proceedings of the Thirty-Second Annual ACM Symposium
on Theory of Computing (STOC, Portland, Ore., 2000), pp. 87–96. ACM, New
York, 2000. MR 2114521 (no rev).

Extends Barahona (1982a) on finite signed lattice graphs to the com-
putational complexity of (a) ground states (i.e., frustration index) and
(more difficult) (b) partition function (generating function of frustrated
edges over all states), for signed infinite lattice graphs. [An infinite
lattice graph is (apparently) a graph drawn in Ed, crossings allowed,
that has translational symmetry in d independent directions.] General
conclusion: For nonplanar ones they are NP-hard. Thm. 1: A lattice
graph in d = 2, 3 is planar iff it does not contain a certain d = 2 lattice
graph K0, the “Basic Kuratowskian”. Lem. 2: Every 3-regular graph
has a subdivision contained in K0. §5, “Computational complexity of
the 3D Ising models”: Lattice graphs with signs, subgraphs thereof, all-
positive subgraphs, all-negative subgraphs. Thm. 2: For every subgraph
of a signed non-planar infinite lattice graph, computing l(Σ) for finite
sublattice graphs Σ is NP-hard. Thm. 3: For every subgraph of an
all-negative non-planar infinite lattice graph, computing l(Σ) for finite
sublattice graphs Σ is NP-hard. §5.3, “Ising models with {−J,+J} inter-
actions”: For every signed non-planar infinite lattice graph, computing
l(Σ) for finite sublattice graphs Σ is NP-hard; the proof is postponed to
“the full version of the paper” [which has not appeared]. [Annot. 21
Aug 2012.] (SG, Phys: Fr)

Gabriel Istrate
2009a On the dynamics of social balance on general networks (with an application to

XOR-SAT). Machines, Computations and Universality, Part II. Fund. Inform.
91 (2009), no. 2, 341–356. MR 2516378 (2010f:68140). Zbl 1181.91282.

Imbalance measured by triangles. Repeatedly change signs of edges of
a fixed graph. Looks for recurrent states and time to become balanced.
[Annot. 5 May 2010.] (SG: Fr)

C. Itzykson
See R. Balian.

P.L. Ivanescu [P.L. Hammer]
See E. Balas and P.L. Hammer.
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Sousuke Iwai
See also O. Katai.

Osamu Katai and Sousuke Iwai
1978a Graph-theoretic models of social group structures and indices of group struc-

tures. (In Japanese.) Systems and Control (Shisutemu to Seigyo) 22 (1978),
713–722. MR 80d:92038 (no rev). (CPsS: Exp)

Hiroshi Iyetomi
See T. Yoshikawa.

Bill Jackson
See P.J. Cameron.

François Jaeger
1992a On the Kauffman polynomial of planar matroids. In: Jaroslav Nešetřil and

Miroslav Fiedler, eds., Fourth Czechoslovak Symposium on Combinatorics,
Graphs and Complexity (Prachatice, 1990), pp. 117–127. Ann. Discrete Math.,
Vol. 51. North-Holland, Amsterdam, 1992. MR 94d:57016. Zbl 763.05021.

(This is not the colored Tutte polynomial of Kauffman (1989a).) Jaeger
shows that the Kauffman polynomial, originally defined for link diagrams
and here transformed to an invariant of signed plane graphs, depends
only on the edge signs and the circle matroid. It can also be reformu-
lated to be essentially independent of signs. Problem. Define a similar
invariant for more general matroids. (SGc, Sgnd(M): Invar, Knot)

François Jaeger, Nathan Linial, Charles Payan, and Michael Tarsi
1992a Group connectivity of graphs—a nonhomogeneous analogue of nowhere-zero

flow properties. J. Combin. Theory Ser. B 56 (1992), 165–182. MR 93h:05088.
Zbl 824.05043.

Let A be an abelian group. Γ is “A-colorable” if every A-gain graph on
Γ has a proper group-coloring (as in Zaslavsky 1991a). Prop. 4.2: Every
simple planar graph is A-colorable for every abelian group of order ≥ 6.
(For the same reason as the classical 6-Color Theorem.) [Improved by
Lai and Zhang (2002b).] (GG: Col)

John C. Jahnke
See J.O. Morrissette.

John J. Jarvis and Anthony M. Jezior
1972a Maximal flow with gains through a special network. Operations Res. 20 (1972),

678–688. MR 47 #6286. Zbl 241.90021. (GN: M(bases))

A. Javanmard
See S. Akbari.

C. Jayaprakash
See J. Vannimenus.

Clark Jeffries
1974a Qualitative stability and digraphs in model ecosystems. Ecology 55 (1974),

1415–1419.
Sufficient (and necessary) conditions for sign stability in terms of neg-

ative cycles and a novel color test. Proofs are sketched or (for necessity)
absent. (SD: QSta)

1993a Some matrix patterns arising in queuing theory. In: Richard A. Brualdi, Shmuel
Friedland, and Victor Klee, eds., Combinatorial and Graph-Theoretical Prob-
lems in Linear Algebra, pp. 165–174. IMA Vols. Math. Appl., 50. Springer-
Verlag, New York, 1993. MR 1240961 (94e:15056). Zbl 789.60069.
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In a weighted symmetric digraph, a cycle is ”balanced” if the product
of its weights equals the weight product of the inverse cycle (p. 171).
If all cycles of length ≥ 3 are balanced, stability multipliers exist in an
associated differential system (Thms. 9, 10). [For weights aij, define
gains ϕ(vi, vj) := aij/aji. Then ”balance” is balance in the gain graph.
Question: What can be made of this?] [Annot. 13 Apr 2009.] (gg: bal)

Clark Jeffries, Victor Klee, and Pauline van den Driessche
1977a When is a matrix sign stable? Canad. J. Math. 29 (1977), 315–326. MR 56

#5603. Zbl 383.15005. (SD: QSta)

Clark Jeffries and P. van den Driessche
1988a Eigenvalues of matrices with tree graphs. Linear Algebra Appl. 101 (1988),

109–120. MR 941299 (89i:05198). Zbl 686.05037.
A is a real matrix whose bipartite graph is a forest. The signed digraph
~Σ(A) yields information about eigenvalues. Controllability of solutions

of ẋ(t) = Ax(t) may be deduced from ~Σ(A). [Annot. 24 July 2010.]
(QM: SD)

Eva Jeĺınková and Jan Kratochv́ıl
2008a On switching to H-free graphs. In: Hartmut Ehrig et al., eds., Graph Trans-

formations (4th Int. Conf., ICGT 2008, Leicester, U.K., 2008), pp. 379–395.
Lect. Notes in Computer Sci., Vol. 5214. Springer-Verlag, Berlin, 2008. Zbl
1175.68298.

Characterizing graph switching classes that contain a graph with no H
subgraph, for some particular H. [An example of Kratochv́ıl, Nešetřil,
and Zýka (1992a).] [Annot. 21 Mar 2011.] (TG: Sw)

Robin Jenkins
See P. Abell.

Pablo Jensen
See S. Gómez.

Paul A. Jensen and J. Wesley Barnes
1980a Network Flow Programming. Wiley, New York, 1980. MR 82f:90096. Zbl

502.90057. Repr.: Robert E. Krieger, Melbourne, Fla., 1987. MR 89a:90152.
§1.4: “The network-with-gains model.” §2.8: “Networks with gains—-

example applications.” Ch. 9: “Network manipulation algorithms for
the generalized network.” Ch. 10: “Generalized minimum cost flow
problems.” (GN: M(bases))
§5.5: “Negative cycles.” (OG: M(bases))

1984a Potokovoe programmirovanie. Radio i Svyaz, Moskva, 1984. Zbl 598.90035.
Russian translation of (1980a). (GN: M(bases)) (OG: M(bases))

P.A. Jensen and Gora Bhaumik
1977a A flow augmentation approach to the network with gains minimum cost flow

problem. Management Sci. 28 (1976/77), no. 6 (Feb., 1977), 631–643. MR 55
#14163. Zbl 352.90024. (GN)

Tommy R. Jensen and Bjarne Toft
1995a Graph Coloring Problems. Wiley, New York, 1995. MR 95h:05067. Zbl

950.45277.
§8.14: “t-perfect graphs.” Related to all-negative Σ with no sub-

graph homeomorphic to −K4 (no “odd-K4”). See Gerards and Schrijver
(1986a), Gerards and Shepherd (1998b). (sg: Par: Geom, Str)
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§13.4: “Bouchet’s 6-flow conjecture” (for signed graphs). See Bouchet
(1983a), Khelladi (1987a). (SG: Flows)
§15.9: “Square hypergraphs.” Related to nonexistence of even cy-

cles in a digraph and to sign nonsingularity. See Seymour (1974a) and
Thomassen (1985a, 1986a, 1992a). (sd: Par: bal, QSol: Exp)

Mark Jerrum and Alistair Sinclair
1990a Polynomial-time approximation algorithms for the Ising model (extended ab-

stract). In: Michael S. Paterson, ed., Automata, Languages and Programming
(Proc. 17th Int. Colloq., Warwick, 1990), pp. 462–475. Lect. Notes in Com-
puter Sci., Vol. 443. Springer-Verlag, Berlin, 1990. MR 1076810 (91e:68004)
(book). Zbl 764.65091.

Extended abstract of (1993a). [Annot. 26 June 2011.] (sg: Fr, Phys)

1993a Polynomial-time approximation algorithms for the Ising model. SIAM J. Com-
put. 22 (1993), no. 5, 1087–1116. MR 1237164 (94g:82007). Zbl 782.05076.

§6, “Completeness results”: The problem Ising is to find the parti-
tion function

∑
ζ:V→{+1,−1} 2−βH(Σζ) of a signed simple graph Σ, where

H(Σζ) =
∑

vw∈E σ
ζ(vw). Thm. 14 suggests nonexistence of certain ap-

proximation algorithms. [Annot. 26 June 2011.] (sg: Fr, Phys)

R.H. Jeurissen
1975a Covers, matchings and odd cycles of a graph. Discrete Math. 13 (1975), 251–

260. MR 54 #168. Zbl 311.05129.
Involves the negative-circle edge-packing number of −Γ. (par: Fr)

1981a The incidence matrix and labellings of a graph. J. Combin. Theory Ser. B 30
(1981), 290–301. MR 83f:05048. Zbl 409.05042, (457.05047).

The rank of the incidence matrix of a signed graph, in arbitrary charac-
teristic, generalizing the all-negative results of Doob (1974a). Employs
column operations on the incidence matrix. Application to magic label-
lings, where at each vertex a number (in a ring) is specified; the value
of an edge is added if it enters the vertex and subtracted if it departs.
§5, “Generalizations”: “Mixed” graphs, really signed graphs. §6: A new
proof of Doob’s (1973a) theorem on the multiplicity of −2 as a line-graph
eigenvalue in arbitrary characteristic. (sg, ori: Incid, Adj(LG))

1983a Disconnected graphs with magic labellings. Discrete Math. 43 (1983), 47–53.
MR 84c:05064. Zbl 499.05053.

The graphs, called “mixed”, are bidirected graphs without introverted
edges. Dictionary: “ ‘bipartite’ ” = balanced (as a signed graph; the
term “balanced” is herein used with another meaning). (sg, ori: incid)

1983b Pseudo-magic graphs. Discrete Math. 43 (1983), 207–214. MR 84g:05122. Zbl
514.05054.

Mostly, the graphs are all-negative signed graphs (oriented to be ex-
troverted). §5, “Labelings of mixed graphs”, discusses bidirected graphs
without introverted edges; as in the undirected problem, the (signed-
graphically) balanced and unbalanced cases differ. (sg, ori: Incid)

1988a Magic graphs, a characterization. European J. Combin. 9 (1988), 363–368. MR
89f:05138. Zbl 657.05065.

Connected graphs with magic labellings are classified, separately for
bipartite and nonbipartite graphs [as one might expect, due to the con-
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nection with the incidence matrix of −Γ; see Stewart (1966a)].
(par: incid)

William S. Jewell
1962a Optimal flow through networks with gains. Operations Res. 10 (1962), 476–499.

MR 26 #2325. Zbl (e: 109.38203). (GN)

Anthony M. Jezior
See J.J. Jarvis.

Samuel Jezný and Marián Trenkler
1983a Characterization of magic graphs. Czechoslovak Math. J. 33(108) (1983), 435–

438. MR 85c:05030. Zbl 571.05030.
A weak characterization of magic graphs. [See Jeurissen (1988a) for a

stronger characterization.] (par: Incid)

Shengjin Ji
See B. Huo.

Guangfeng Jiang and Jianming Yu
2004a Supersolvability of complementary signed-graphic hyperplane arrangements.

Australasian J. Combin. 30 (2004), 261–276. MR 2080474 (2005j:05042). Zbl
1054.05049.

Characterizes supersolvability of G(Kn, σ). [A special case of Zaslavsky
(2001a).] (SG: Geom: m)

Guangfeng Jiang, Jianming Yu, and Jianghua Zhang
2008a Poincaré polynomial of a class of signed complete graphic arrangements. In:

Konno, Kazuhiro et al., eds., Algebraic Geometry in East Asia—Hanoi 2005
(Proc. 2nd Int. Conf. Algebraic Geometry in East Asia, Hanoi, 2005), pp. 289–
297. Adv. Stud. Pure Math., Vol. 50. Mathematical Society of Japan, Tokyo,
2008. MR 2409562 (2009j:52024). Zbl 1144.52025.

The chromatic polynomial of KK3 , i.e., +Kn with a triangle changed
to negative edges. It factors integrally except for a cubic factor. [See
Zaslavsky (1982c), §7, for a graph-theoretic treatment of such examples.
One hopes for a direct proof by adding positive vertices in sequence
to −K3. Problem. Evaluate χΣ(λ) where Σ is Σ1 with a new vertex
positively adjacent to all vertices of Σ1.] [Annot. 25 Feb 2012.]

(SG: Geom, Invar)

Jing-Jing Jiang
See S.W. Tan and X.L. Wu.

Raúl D. Jiménez
See O. Rojo.

Xian’an Jin and Fuji Zhang
2005a The Kauffman brackets for equivalence classes of links. Adv. Appl. Math. 34

(2005), no. 1, 47–64. MR 2102274 (2005j:57009). Zbl 1060.05041.
They compute the Read–Whitehead chain polynomial of a sign-colored

graph in which, for each divalent vertex, the two incident edges have the
same color. This is applied to get the Kauffman bracket of small link
diagrams. [Cf. Yang and Zhang (2007a).] (SGc: Invar, Knot)

2007a The replacements of signed graphs and Kauffman brackets of link families.
Adv. Appl. Math. 39 (2007), no. 2, 155–172. MR 2333646 (2009b:57005). Zbl
1129.57004. arXiv:math/0511326. (SGc: Invar, Knot)
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Ya-Lei Jin
See B.A. He.

Peter Joffe
See A.J. Hoffman.

Manas Joglekar, Nisarg Shah, and Ajit A. Diwan
2010a Balanced group labeled graphs. In: International Conference on Recent Trends

in Graph Theory and Combinatorics (ICRTBC-2010) (Cochin, 2010) [Sum-
maries], pp. 120–121. Dept. of Mathematics, Cochin Univ. of Science and
Technology, 2010.

Extended abstract of (20xxa). [Annot. 13 Jan 2012.] (SG, VS: Bal)

††2012a Balanced group labeled graphs. Recent Trends in Graph Theory and Combi-
natorics (Cochin, 2010). Discrete Math. 312 (2012), no. 9, 1542–1549.

Γ has weights w : V ∪E → A where A is an abelian group. (A = Z2 is
signs.) “Balance” = harmony: the sum around every circle = 0. Thm.
1: There are |fA||V |+t−c(Γ) harmonious labellings, where t := number of
edge 3-components of Γ. Lemma 2. If (Γ, w) is balanced and u, v are
edge 3-connected in Γ, then 2w(P ) = w(u) + w(v) for every uv-path.
[Annot. 30 Aug 2010.] (GGw: Bal)

Thm. 3 is a construction for all edge 2-connected Γ such that ∃ harmo-
nious sign labelling, not all +. [The best characterization of consistent
vertex signatures as in Beineke and Harary (1978b), improving on Hoede
(1992a).] [Annot. 30 Aug 2010.] (SG, VS: Bal)

Rolf Johannesson
See I.E. Bocharova.

David John
1998a Minimal edge cuts to induce balanced signed graphs. Proc. Twenty-ninth

Southeastern Int. Conf. Combinatorics, Graph Theory and Computing (Boca
Raton, Fla., 1998). Congr. Numer. 132 (1998), 5–8. MR 99j:05178. Zbl
991.53332.

Polynomial-time algorithms to decide balance of a signed graph [this
has long been known; see e.g. Hansen (1978a)] and allegedly to find the
minimum number of negative edges whose deletion makes the graph bal-
anced [call this the ‘negative frustration index’]. Contract the positive
edges, leaving a graph consisting of the negative edges. To detect bal-
ance, look for bipartiteness of the contraction. [Inferior to the standard
algorithm.] For negative frustration index, find a maximum cut of the
contraction. [Something is wrong, since Max Cut is NP-complete and
negative frustration index contains Max Cut. I believe the algorithm
finds a nonmaximum cut.] (SG: Bal, Fr: Alg)

Eugene C. Johnsen
1989a The micro-macro connection: Exact structure and process. In: Fred Roberts,

ed., Applications of Combinatorics and Graph Theory to the Biological and
Social Sciences, pp. 169–201. IMA Vols. Math. Appl., Vol. 17. Springer-Verlag,
New York, 1989. MR 90g:92089. Zbl 725.92026 (q.v.).

An elaborate classificatory analysis of “triads” (signed complete di-
rected graphs of 3 vertices) vis-á-vis “macrostructures” (signed complete
directed graphs) with reference to structural interactions and implica-
tions of triadic numerical restrictions on “dyads” (s.c.d.g. of 2 vertices).
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Connections to certain models of affect in social psychology. [“Impene-
trability! That’s what I say!” “Would you tell me, please,” said Alice,
“what that means?”] ( KG, SD, SG: Bal, PsS: Exp)

Eugene C. Johnsen and H. Gilman McCann
1982a Acyclic triplets and social structure in complete signed digraphs. Social Net-

works 3 (1982), 251–272.
Balance and clustering analyzed via triples rather than edges. [Possible

because the digraph is complete. A later analysis via triples is in Doreian
and Krackhardt (2001a).] (SD: Bal, Clu)

Charles R. Johnson
See also P.J. Cameron and C.A. Eschenbach.

1983a Sign patterns of inverse nonnegative matrices. Linear Algebra Appl. 55 (1983),
69–80. MR 719863 (86i:15001). Zbl 519.15008. (SG: QSol)

Charles R. Johnson, Frank Thomson Leighton, and Herbert A. Robinson
1979a Sign patterns of inverse-positive matrices. Linear Algebra Appl. 24 (1979), 75–

83. (SG: QSol)

Charles R. Johnson and John Maybee
1991a Qualitative analysis of Schur complements. In: Applied Geometry and Discrete

Mathematics: The Victor Klee Festschrift, pp. 359–365. DiMACS Ser. Discrete
Math. Theor. Computer Sci., Vol. 4. Amer. Math. Soc., Providence, 1991. MR
92h:15004. Zbl 742.15009.

In square matrix A let A[S] be the principal submatrix with rows and
columns indexed by S. Thm. 1: Assume A[S] is sign-nonsingular in stan-
dard form and i, j /∈ S. Then the (i, j) entry of the Schur complement
of A[S] has sign determined by the sign pattern of A iff, in the signed
digraph of A, every path i→ j via S has the same sign. (QM: sd)

Charles R. Johnson, William D. McCuaig, and David P. Stanford
1995a Sign patterns that allow minimal semipositivity. Linear Algebra Appl. 223–224

(1995), 363–373. MR 1340701 (96g:15021). Zbl 829.15017. (SG: QM: QSol)

Charles R. Johnson, Michael Neumann, and Michael J. Tsatsomeros
1996a Conditions for the positivity of determinants. Linear Multilinear Algebra 40

(1996), 241–148. MR 1382081 (97a:15014). Zbl 866.15001. (SD: QM)

Charles R. Johnson, D.D. Olesky, Michael Tsatsomeros, and P. van den Dries-
sche

1993a Spectra with positive elementary symmetric functions. Linear Algebra Appl.
180 (1993), 247–261. MR 94a:15028. Zbl 778.15006.

Suppose the signed digraph D of an n × n matrix has longest cycle
length k and all cycles of −D are negative. Theorem: If k = n− 1, the
eigenvalues lie in a domain subtending angle < 2π/k. This is known for
k = 2 but false for k = n− 3. (QM, SD)

Charles R. Johnson, Frank Uhlig, and Dan Warner
1982a Sign patterns, nonsingularity, and the solvability of Ax = b. Linear Algebra

Appl. 47 (1982), 1–9. MR 672727 (84h:15005). Zbl 488.15002. (SG: QSol)

David S. Johnson
1983a The NP-completeness column: An ongoing guide. J. Algorithms 4 (1983), 87–

100.
§4, Problem 3, “Ground state of a spin glass”: Is the “ground state spin

energy” of a weighted signed graph ≤ K? NP-complete for weights ±1
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on a two-layer cubic lattice; cf. Barahona (1982a). Related problems.
[Annot. 18 Jun 2012.] (SG: wg, Fr, Alg)

Ellis L. Johnson
See also J. Edmonds and G. Gastou.

1965a Programming in networks and graphs. Report ORC 65-1, Operations Research
Center, Univ. of California, Berkeley, Calif., Jan. 1965.

§7: “Flows with gains.” §8: “Linear programming in an undirected
graph.” §9: “Integer programming in an undirected graph.”

(GN: Incid, M(bases))(ec: Incid, M(bases), Alg)

1966a Networks and basic solutions. Operations Res. 14 (1966), 619–623. (GN)

Ellis L. Johnson and Sebastiano Mosterts
1987a On four problems in graph theory. SIAM J. Algebraic Discrete Methods 8

(1987), 163–185. MR 88d:05097. Zbl 614.05036.
Two of the problems: Given a signed graph (edges called “even” and

“odd” rather than “positive” and “negative”). The co-postman problem
is to find a minimum-cost deletion set (of edges). The “odd circuit”
problem is to find a minimum-cost negative circle. The Chinese postman
problem is described in a way that involves cobalance and “switching”
around a circle. (SG: Fr(Gen), Incid)

Ellis L. Johnson and Manfred W. Padberg
1982a Degree-two inequalities, clique facets, and biperfect graphs. In: Achim Bachem,

Martin Grotschel, and Bernhard Korte, eds., Bonn Workshop on Combinatorial
Optimization (Fourth, 1980), pp. 169–187. North-Holland Math. Studies, 66.
Ann. Discrete Math., 16. North-Holland, Amsterdam, 1982. MR 84j:05085.
Zbl 523.52009.

Geometry of the bidirected stable set polytope P (B) (which generalizes
the stable set polytope to bidirected graphs), defined as the convex hull
of 0, 1 solutions of xi + xj ≤ 1, −xi − xj ≤ −1, xi ≤ xj for extroverted,
introverted, and directed edges of B. (Thus, undirected graphs corre-
spond to extroverted bidirected graphs.) It suffices to treat transitively
closed bidirections of simple graphs ([unfortunately] called “bigraphs”).
[Such a bidirected graph must be balanced.] A “biclique” (S+, S−) is
the Harary bipartition of a balanced complete subgraph (S+, S− are the
source and sink sets of the subgraph). It is “strong” if no external ver-
tex has an edge directed out of every vertex of S+ and an edge directed
into every vertex of S−. Strong bicliques generate facet inequalities of
the polytope. Call B perfect if these facets (and nonnegativity) deter-
mine P (B). Γ is “biperfect” if every transitively closed bidirection B
of Γ is perfect. Conjectures: Γ is biperfect iff it is perfect. Γ is per-
fect iff some transitively closed bidirection is perfect. [Both proved by
Sewell (1996a) and independently by Ikebe and Tamura (20xxa). See
e.g. Tamura (1997a), Conforti (20xxa) for further work.]

(sg: Ori: Incid, Geom, sw)

Mohammadreza Jooyandeh, Dariush Kiani, and Maryam Mirzakhah
2009a Incidence energy of a graph. MATCH Commun. Math. Comput. Chem. 62

(2009), no. 3, 561–572. MR 2568740 (2010j:05238). (par: Incid)

Heather Jordon [Heather Gavlas]
See also G. Chartrand and D. Hoffman.



the electronic journal of combinatorics #DS8 170

Heather Jordon, Richard McBride, and Shailesh Tipnis
2009a The convex hull of degree sequences of signed graphs. Discrete Math. 309

(2009), no. 19, 5841–5848. MR 2551962 (2010k:05120). Zbl 1208.05043.
Consider signed simple graphs of order n. Pn := polytope determined

by the inequalities from Hoffman and Jordon (2006a) that characterize
net degree vectors. Thm. 2.7: Pn =conv(net degree vectors). Thm. 2.9:
Each vertex of Pn ↔ a unique signed graph, which is a signed Kn. §3:
Comparison with net degree vectors of digraphs. [As in other papers
on net degree sequences, the best viewpoint is that “signed” edges are
oriented negative edges and “directed” edges are oriented positive edges.]
[Annot. 1 Oct 2009.] (SG: ori: Invar: Geom)

Leif Kjær Jørgensen
1989a Some probabilistic and extremal results on subdivisions and odd subdivisions

of graphs. J. Graph Theory 13 (1989), 75–85. MR 90d:05186. Zbl 672.05070.
Let σop(Γ), or σodd(Γ), be the largest s for which −Γ contains a subdivi-

sion of −Ks (an “odd-path-KsS”), or [−Γ] contains an antibalanced sub-
division of Ks (an “odd-KsS”). Thm. 4: σop(Γ), σodd(Γ) ≈

√
n. Thms. 7,

8 (simplified): For p = 4, 5 and large enough n = |V |, σodd(Γ) ≥ p or
Γ is a specific exceptional graph. Conjecture 9. The same holds for all
p ≥ 4. [Problem. Generalize this to signed graphs.] (par: Xtreml)

Shalini Joshi
See B.D. Acharya.

Tadeusz Józefiak and Bruce Sagan
1992a Free hyperplane arrangements interpolating between rootsystem arrangements.

In: Séries formelles et combinatoirealgébrique (Actes du colloque, Montréal,
1992), pp. 265–270.Publ. Lab. Combin. Inform. Math., Vol. 11. Dép. de math.
et d’informatique, Univ. de Québec à Montréal, 1992.

Summarizes the freeness results in (1993a).
(sg, gg: Geom, m, Invar)

1993a Basic derivations for subarrangements of Coxeter arrangements. J. Algebraic
Combin. 2 (1993), 291–320. MR 94j:52023. Zbl 798.05069.

The hyperplane arrangements (over fields with characteristic 6= 2) cor-
responding to certain signed graphs are shown to be “free”. Explicit
bases and the exponents are given. The signed graphs are: +Kn−1 ⊆
Σ1 ⊆ +Kn (known), ±Kn ⊆ Σ2 ⊆ ±K◦n, ±Kn ⊆ Σ3 ⊆ ±K◦n; also,
those obtained from +Kn or K◦n by adding all negative links in the or-
der of their larger vertex (assuming ordered vertices) (Thms. 4.1, 4.2)
or smaller vertex (Thms. 4.4, 4.5); and those obtained from ±Kn−1 by
adding positive edges ahead of negative ones (Thm. 4.3). [For further
developments see Edelman and Reiner (1994a).] Similar theorems hold
for complex arrangements when the sign group is replaced by the com-
plex s-th roots of unity (§5). The Möbius functions of Σ2, known from
Hanlon (1988a), are deduced in §6. (sg, gg: Geom, m, Invar)

Michael Jünger
See F. Barahona, C. De Simone, and M. Grötschel.

Mark Jungerman and Gerhard Ringel
1978a The genus of the n-octahedron: Regular cases. J. Graph Theory 2 (1978),

69-75. MR 58 #5315. Zbl 384.05037.
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“Cascades”: see Youngs (1968b). (sg: Ori: Appl)

Dieter Jungnickel
See C. Fremuth-Paeger.

Samuel Jurkiewicz
See M.A.A. de Freitas.

James Justus
2005a Qualitative scientific modeling and loop analysis. Philosophy of Science 72

(2005), 1272–1286. MR 2295282 (2007j:00008).
Philosophical discussion of qualitative differential equations with em-

phasis on Levins (1975a). [Annot. 9 Sept 2010.]
(SD: QM: QSta: Exp)

Jerald A. Kabell
See also F. Harary.

1985a Co-balance in signed graphs. J. Combin. Inform. System Sci. 10 (1985), 5–8.
MR 89i:05232. Zbl 635.05028.

Cobalance means that every cutset has positive sign product. Thm.:
Σ is cobalanced iff every vertex star has evenly many negative edges.
For planar graphs, corollaries of this criterion and Harary’s bipartition
theorem result from duality. [The theorem follows easily by looking at
the negative subgraph.] (SG: Bal(D), Bal)

1988a An algorithmic look at cycles in signed graphs. 250th Anniversary Conf. on
Graph Theory (Fort Wayne, Ind., 1986). Congressus Numerantium 63 (1988),
229–230. MR 90d:05143. Zbl 666.05046. (SG, SD: Bal: Alg)

Jeff Kahn and Joseph P.S. Kung
1980a Varieties and universal models in the theory of combinatorial geometries. Bull.

Amer. Math. Soc. (N.S.) 3 (1980), 857–858. MR 81i:05051. Zbl 473.05025.
Announcement of (1982a). (gg: M)

††1982a Varieties of combinatorial geometries. Trans. Amer. Math. Soc. 271 (1982),
485–499. MR 84j:05043. Zbl 503.05010. Repr. in: Joseph P.S. Kung, A
Source Book in Matroid Theory, pp. 395–409, with commentary, pp. 335–338.
Birkhäuser, Boston, 1986. MR 88e:05028. Zbl 597.05019.

A “variety” is a class closed under deletion, contraction, and direct
summation and having for each rank a “universal model”, a single mem-
ber containing all others. There are two nontrivial types of variety of
finite matroids: matroids representable over GF(q), and gain-graphic
matroids with gains in a finite group G. The universal models of the
latter are the Dowling geometries Qn(G).

It is incidentally proved (§7, pp. 490–492) that Dowling geometries of
non-group quasigroups cannot exist in rank n ≥ 4. (gg: M)

1986a A classification of modularly complemented geometric lattices. European J.
Combin. 7 (1986), 243–248. MR 87i:06026. Zbl 614.05018.

A geometric lattice of rank ≥ 4, if not a projective geometry with a
few points deleted, is a Dowling lattice. (gg: M)

Jeff Kahn and Roy Meshulam
1998a On the number of group-weighted matchings. J. Algebraic Combin. 7 (1998),

285–290. MR 99b:05113. Zbl 899.05042.
Continues Aharoni, Meshulam, and Wajnryb (1995a) (q.v., for defi-

nitions), generalizing its Thm. 1.3 (the case |K| = 2 of the following).
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Let m = number of 0-weight matchings, δ = minimum degree. Thm.
1.1: If m > 0 then m ≥ (δ − k + 1)! where k = |K|. Conjecture 1.2.
k can be reduced. (See the paper for details.) [Question. Is there a
generalization to weighted digraphs? One could have two kinds of arcs:
some weighted from K, and some weighted 0. The perfect matching
might be replaced by an alternating Hamilton cycle or a spanning union
of disjoint alternating cycles.] (WG)

Thm. 2.1: Let D be a simple digraph with weights in an abelian group
K. If all outdegrees are > k, where k = |K|, then there is a nonempty
set of disjoint cycles whose total weight is 0. (WD)

Naonori Kakimura
2010a Matching structure of symmetric bipartite graphs and a generalization of Pólyas

problem. J. Combin. Theory Ser. B 100 (2010), 650–670. MR 2718684 (2011j:-
05265). Zbl 1208.05112.

Symmetric matching theory of a bipartite graph with left-right symme-
try, with a symmetric Mendelsohn–Dulmage theorem. [A symmetrically
bipartite graph Γ′ is the signed covering graph of an all-negative signed
graph −Γ, possibly with half edges. A symmetrical matching in Γ′ corre-
sponds to a subgraph of −Γ with maximum degree 1. Problem. Develop
the symmetric matching theory of any graph with an involutory, fixed-
point-free automorphism in terms of a matching theory of signed graphs
with half edges.] [Annot. 29 Sept 2011.] (sg: cov: Str)

D. Kalita
See also R.B. Bapat.

D. Kalita and S. Pati
2012a On the spectrum of 3-colored digraphs. Linear and Multilinear Algebra 60

(2012), no. 6, 743–756.

Theorem: SpecA(Σ̃) = SpecA(Σ) ∪ SpecA(|Σ|). [Also in Bilu and
Linial (2006a).] [Annot. 13 Jan 2012.] (SG: Cov, Adj)

M. Kamaraj
See M. Parvathi.

Daniel Kandel, Radel Ben-Av, and Eytan Domany
†1990a Cluster dynamics for fully frustrated systems. Phys. Rev. Lett. 65 (1990), no.

8, 941–944.
A new probabilistic algorithm for clustering in a ground state (a func-

tion s : V → {+1,−1} such that |E−| = l(Σ)) of an all-negative (“fully
frustrated”) square lattice Σ. A “cluster” in s is a partition of V such
that switching any part does not change |E−|. The objective is to join
vertices connected by satisfied edges but not those joined by frustrated
edges; this cannot be solved uniquely for any unbalanced Σ, so pre-
vious methods (used for balanced Σ), e.g., nearest-neighbor moves in
state space (“single spin flips”), are ineffective (see p. 942, col. 1; p. 943,
col. 2). The algorithm depends on the square lattice structure since it
works on squares (“plaquettes”); it succeeds because it works through
plaquettes instead of edges (p. 943, col. 2). [Problem: Do state-space
algorithms help to approximate signed-graph clustering in the sense of
Davis (1967a)? Finding a ground state is NP-hard in general, though not
for planar signed graphs (cf. Katai and Iawi (1978a), Barahona (1982a)).]
[Annot. 18 Jun 2012.] (Phys, SG: Clu: Alg)
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Vikram Singh Kapil
See R.P. Sharma.

Ajai Kapoor
See M. Conforti.

Roman Kapuscinski
See P. Doreian.

D. Karapetyan
See G. Gutin.

Mehran Kardar
See L. Saul.

Richard M. Karp, Raymond E. Miller, and Shmuel Winograd
1967a The organization of computations for uniform recurrence equations. J. Assoc.

Computing Machinery 14 (1967), 563–590. MR 38 #2920. Zbl (e 171.38305).
Implicitly, concerns the existence of nonpositive directed tours (closed

trails) in a Zd-gain graph (the “dependence graph” of a system of recur-
rences). (gd: cov)

Alexander V. Karzanov
See M.A. Babenko and A.V. Goldberg.

Yasuhiro Kasai, Ayao Okiji, and Itiro Syozi
1981a The ground state of a replicated Ising system. Progress Theor. Phys. 65 (1981),

no. 4, 1439–1442. MR 620472 (82h:82030).
Grand partition function :=

∑
θ exp(|E−| − |E+|) over all edge signa-

tures θ and all switchings of a lattice graph, investigated for a physical
phase via multiple replicates and analytic continuation. [The relevance
to signed graphs is obscured by summing over all signatures.] [Annot.
17 Aug 2012.] (Phys: SG, Fr)

1981b Ising replicated system of ±J model. Progress Theor. Phys. 66 (1981), no. 5,
1561–1573. MR 642957 (83b:82081).

Similar to (1981a), without analytic continuation. §2 recapitulates
(1981a). §3 does calculations for the path graph. §4, “The ground
state”. [Annot. 17 Aug 2012.] (Phys: SG, Fr)

P.W. Kasteleyn
See also C.M. Fortuin.

P.W. Kasteleyn and C.M. Fortuin
1969a Phase transitions in lattice systems with random local properties. In: Inter-

national Conference on Statistical Mechanics (Proc., Kyoto, 1968), pp. 11–14.
Supplement to J. Physical Soc. Japan, Vol. 26, 1969. Physical Society of Japan,
[Tokyo?], 1969.

A specialization of the parametrized dichromatic polynomial of a graph:
QΓ(q, p;x, 1) where qe = 1 − pe. [Essentially, announcing Fortuin and
Kasteleyn (1972a).] (sgc: Gen: Invar, Phys)

Osamu Katai
See also S. Iwai.

1979a Studies on aggregation of group structures and group attributes through quan-
tification methods. D.Eng. dissertation, Kyoto Univ., 1979.

Osamu Katai and Sousuke Iwai
1978a Studies on the balancing, the minimal balancing, and the minimum balancing

processes for social groups with planar and nonplanar graph structures. J.
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Math. Psychology 18 (1978), 140–176. MR 83m:92072. Zbl 394.92027.
Balance and detecting balance are discussed at length. Finding the

frustration index l(Σ) is solved for planar graphs by converting it into a
matching problem in the dual graph with signed vertices. This applies
also when edges are weighted by positive reals. [Barahona (1982a) and
Barahona, Maynard, Rammal, and Uhry (1982a) have a similar, later,
but independent solution for the planar frustration index. Barahona
(1981a, 1990a) solves toroidal graphs.]

The nonplanar problem is treated via A(Σ), but amounts to finding
minζ(|E+(Σζ)|−|E−(Σζ)|) [which is NP-hard]. This suggests an iterative
procedure which consists of switching v ∈ V that minimizes d±(v), and
repeating; it may not attain the true minimum. [Mitra (1962a) also
proposed this.] [Annot. 22 Jun 2012.]

(SG, CVS, WG, CPsS: Bal, Fr, Alg, Adj, sw)

1978c On the characterization of balancing processes of social systems and the deriva-
tion of the minimal balancing processes. IEEE Trans. Systems Man Cybernetics
SMC-8 (1978), 337–348. MR 57 #18886 (q.v.). Zbl 383.92025.

A shorter version of (1978a). Lem. 1 [restated]: Σ is balanced iff it
switches to all positive. [Annot. 22 Jun 2012.]

(SG, CVS, WG, CPsS: Bal, Fr, Alg, Adj, sw)

1978d Characterization of social balance by statistical and finite-state systems theo-
retical analysis. In: Proceedings of the International Conference on Cybernetics
and Society (Tokyo, 1978). IEEE, 1978. (SG, WG, CPsS: Bal, Fr)

Louis H. Kauffman
See also J.R. Goldman.

1986a Signed graphs. Abstract 828-57-12, Abstracts Amer. Math. Soc. 7 (1986), no.
5, p. 307.

Announcement of (1989a). (SGc: Knot: Invar)

1988a New invariants in the theory of knots. Amer. Math. Monthly 95 (1988), 195–
242. MR 89d:57005. Zbl 657.57001.

A leisurely development of Kauffman’s combinatorial bracket poly-
nomial of a link diagram and the Jones and other knot polynomials,
including the basics of (1989a). (Knot, SGc: Invar: Exp)

†1989a A Tutte polynomial for signed graphs. Discrete Appl. Math. 25 (1989), 105–127.
MR 91c:05082. Zbl 698.05026.

The Tutte polynomial, also called “Kauffman’s bracket of a signed
graph” and equivalent to his bracket of a link diagram, is defined by a
sum over spanning trees of terms that depend on the signs and activities
of the edges and nonedges of the tree. The point is that the deletion-
contraction recurrence over an edge has parameters dependent on the
color of the edge; also, the parameters of the two colors are related. The
purpose is to develop the bracket of a link diagram combinatorially. §3.2,
“Link diagrams”: how link diagrams correspond to signed plane graphs.
§4, “A polynomial for signed graphs”, defines the general sign-colored
graph polynomial Q[Σ](A,B, d) by deletion-contraction, modified multi-
plication on components, and evaluation on graphs of loops and isthmi.
§5, “A spanning tree expansion for Q[G]” [G means Σ], proves Q[Σ] ex-
ists by producing a spanning-tree expansion, shown independent of the
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edge ordering by a direct argument. [No dichromatic form of Q[Σ] ap-
pears; but see successor articles.] §6, “Conclusion”, remarks that Q[Σ] is
invariant under signed-graphic Reidemeister moves II and III. [This sig-
nificant work, inspired by Thistlethwaite (1988a), led to independent but
related generalizations by Przytycka and Przytycki (1988a), Schwärzler
and Welsh (1993a), Traldi (1989a), and Zaslavsky (1992b) that were par-
tially anticipated by Fortuin and Kasteleyn (1972a). Also see (1997a).]

(SGc: Invar, Knot)

1997a Knots and electricity. In: S. Suzuki, ed., Knots ’96 (Proc. Fifth Int. Research
Inst., Math. Soc. Japan, Tokyo, 1996), pp. 213–230. World Scientific, Singa-
pore, 1997. MR 99m:57006. Zbl 967.57007.

§2, “A state summation for classical electrical networks”, uses a form of
the parametrized dichromatic polynomial QΓ(B,A; 1, 1) [as in Zaslavsky
(1992b) et al.], where A(e), B(e) ∈ C×, to compute conductances as in
Goldman and Kauffman (1993a). (sgc: Gen: Invar: Exp)
§3: “The bracket polynomial”, discusses the connections with signed

graphs and electricity. Problem: Is there a signed graph, not reducible
by signed-graphic Reidemeister moves (see (1989a)) to a tree with loops,
whose sign-colored dichromatic polynomial is trivial? If not, the Jones
polynomial detects the unknot. (SGc: Invar: Exp)(SGc: Invar)

Ken-ichi Kawarabayashi
See also M. Chudnovsky.

Ken-Ichi Kawarabayashi and Atsuhiro Nakamoto
2007a The Erdős–Pósa property for vertex- and edge-disjoint odd cycles in graphs on

orientable surfaces. Discrete Math. 307 (2007), no. 6, 764–768. MR 2291454
(2007h:05084). Zbl 1112.05056. (sg: Par: Circles, Top)

Ken-Ichi Kawarabayashi and Bruce Reed
2009a Highly parity linked graphs. Combinatorica 29 (2009), no. 2, 215–225. MR

2520281 (2010k:05157). Zbl 1212.05143. (sg: Par: Str)

B. Kawecka-Magiera
See M.J. Krawczyk.

Christine A. Kelley and Joerg Kliewer
20xxa Algebraic constructions of graph-based nested codes from protographs. Sub-

mitted. arXiv:1006.2977. (GG)

John G. Kemeny and J. Laurie Snell
1962a Mathematical Models in the Social Sciences. Blaisdell, Waltham, Mass., 1962.

Repr.: MIT Press, Cambridge, Mass., 1972. MR 25 #3797. Zbl (256.92003).
Chapter VIII: “Organization theory: Applications of graph theory.”

See pp. 97–101 and 105–107. (SG: Bal: Exp)

A. Joseph Kennedy
See also M. Parvathi.

2007a Class partition algebras as centralizer algebras of wreath products. Comm.
Algebra 35 (2007), no. 1, 145–170. MR 2287557 (2008j:16072). Zbl 1151.20006.

(gg: m: Algeb)

John W. Kennedy
See M.L. Gargano.
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Jeff L. Kennington and Richard V. Helgason
1980a Algorithms for Network Programming. Wiley, New York, 1980. MR 82a:9013.

Zbl 502.90056.
Ch. 5: “The simplex method for the generalized network problem.”

(GN: M(Bases): Exp)

Anne-Marie Kermarrec and Christopher Thraves
2011a Can everybody sit closer to their friends than their enemies? In: Filip Murlak

and Piotr Sankowski, eds., Mathematical Foundations of Computer Science
2011 (36th Int. Symp., Warsaw), pp. 388–399. Lecture Notes in Computer
Science, Vol. 6907. Springer, Heidelberg, 2011.

Can (Kn, σ) be drawn in Rl so every positive neighbor is closer than
every negative neighbor, for each vertex? Polynomial-time algorithm for
l = 1. [Continued by Cygan, Pilipczuk, et al. (20xxa).] [Annot. 26 Apr
2012.] (SG: KG: Bal, Alg, Clu)

Julie Kerr
1999a A basis for the top homology of a generalized partition lattice. J. Algebraic

Combin. 9 (1999), 47–60. MR 2000k:05265. Zbl 921.05063.
The lattice is isomorphic to the semilattice of k-composed partitions

of a set with a top element adjoined. (See R. Gill (1998a).)
(gg: m: Geom, Top)

H. Kharaghani
2003a On a class of symmetric balanced generalized weighing matrices. Designs Codes

Cryptogr. 30 (2003), no. 2, 139–149. MR 2004j:05027. Zbl 1036.05016.
A “balanced generalized weighing matrix” is the group-ring adjacency

matrix Â of a gain digraph ~Φ, with finite gain group G, such that ÂÂ∗ =
kI + ls(J − I) where s :=

∑
g∈G g. Constructs examples of Â where G is

cyclic and ~Φ is symmetric with no loops. [The article does not mention
gain digraphs.] (gg: Adj)

F. Kharari and È. Palmer [Frank Harary and Edgar M. Palmer]
See F. Harary and E.M. Palmer (1977a).

A. Khelladi
1987a Nowhere-zero integral chains and flows in bidirected graphs. J. Combin. Theory

Ser. B 43 (1987), 95–115. MR 88h:05045. Zbl 617.90026.
Improves the result of Bouchet (1983a) about nowhere-zero integral

flows on a signed graph. Σ has such an 18-flow if 4-connected, a 30-flow
if 3-connected and without a positive triangle, and in some cases a 6-flow
(proving Bouchet’s conjecture in those cases). (SG: M: Flows)

1999a Colorations généralisées, graphes biorientés et deux ou trois choses sur François.
Symposium à la Mémoire de François Jaeger (Grenoble, 1998). Ann. Inst.
Fourier (Grenoble) 49 (1999), 955–971. MR 2000h:05083. Zbl 917.05026.

Comments on the results of Bouchet (1983a) and Khelladi (1987a).
(SG: M, Flows)

Dariush Kiani
See I. Gutman, H. Hamidzade, M. Jooyandeh, and M. Mirzakhah.

Kathleen P. Kiernan
See R.A. Brualdi.
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Dongseok Kim and Jaeun Lee
2008a The chromatic numbers of double coverings of a graph. Discrete Math. 308

(2008), no. 22, 5078–5086. MR 2450445 (2009k:05082). Zbl 1158.05026.
(SG: Col, Cov)

Eun Jung Kim
See N. Alon.

Harunobu Kinoshita
See T. Yamada.

Shin’ichi Kinoshita
See also T. Yajima.

Shin’ichi Kinoshita and Hidetaka Terasaka
1957a On unions of knots. Osaka Math J. 9 (1957), 131–153. MR 20 #4846. Zbl

080.17001.
Employs the sign-colored graph of a link diagram from Bankwitz

(1930a) to form certain combinations of links. (SGc: Knot)

M. Kirby
See A. Charnes.

Steve Kirkland
See also M.A.A. de Freitas, C.S. Oliveira, and J. Stuart.

2011a Sign patterns for eigenmatrices of nonnegative matrices. Linear Multilinear
Algebra 59 (2011), no. 9, 999–1018. MR 2826068 (2012j:15049). (QM, SD)

Steve Kirkland, J.J. McDonald, and M.J. Tsatsomeros
1996a Sign-patterns which require a positive eigenvalue. Linear Multilinear Algebra

41 (1996), no. 3, 199–210. MR 1430028 (97j:15009). (QM, SD)

Steve Kirkland and Debdas Paul
2011a Bipartite subgraphs and the signless Laplacian matrix. Appl. AnalḊiscrete

Math. 5 (2011), no. 1, 1–13. MR 2809028 (2012c:05191). (Par: Adj: Adj, in-
cid)

Scott Kirkpatrick
See also D. Sherrington and J. Vannimenus.

1977a Frustration and ground-state degeneracy in spin glasses. Phys. Rev. B 16
(1977), no. 10, 4630–4641. (Phys: SG, Fr, Sw)

Scott Kirkpatrick and David Sherrington
1978a Infinite-ranged models of spin-glasses. Phys. Rev. B 17 (1978), no. 11, 4384–

4403. Repr. in M. Mézard, G. Parisi, and M.A. Virasoro, Spin Glass Theory and
Beyond, pp. 109–128. World Scientific Lect. Notes in Physics, Vol. 9. World
Scientific, Singapore, 1987.

Random edge weights and signs on Kn. Most interesting: § VI, “Statics
for T 6= 0”, where the “energy” (frustration-index l(Σ)) landscape of ran-
dom signs is described, based on computer experiments, as consisting of
deep valleys, each having several local minima of l separated by slightly
higher ridges, and with high-l barriers separating the valleys. [Presum-
ably, the distance function is Hamming distance between reduced sign
functions, i.e., those with E− = l.] [This picture, while convincing, has
never been proved; it remains an object of intense curiosity. Cf. Marvel,
Kleinberg, Kleinberg, and Strogatz (2011a,b).] [Annot. 22 Aug 2012.]

(Phys: sg: Fr)
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Victor Klee
See also C. Jeffries.

1971a The greedy algorithm for finitary and cofinitary matroids. In: Theodore S.
Motzkin, ed., Combinatorics, pp. 137–152. Proc. Sympos. Pure Math., Vol. 19.
Amer. Math. Soc., Providence, R.I., 1971. MR 48 #10865. Zbl 229.05031.

Along with Simões-Pereira (1972a), invents the bicircular matroid
(here, for infinite graphs). (Bic)

1989a Sign-patterns and stability. In: Fred Roberts, ed., Applications of Combinator-
ics and Graph Theory to the Biological and Social Sciences, pp. 203–219. IMA
Vols. Math. Appl., Vol. 17. Springer-Verlag, New York, 1989. MR 90h:34081.
Zbl 747.05057.

When are various forms of stability of a linear differential equation
ẋ = Ax determined solely by the sign pattern of A? A survey of elegant
combinatorial criteria. Signed digraphs [alas] play but a minor role.

(QSta, SD: Exp, Ref)

1993a Open Problem 2. In: Richard A. Brualdi, Shmuel Friedland, and Victor Klee,
eds., Combinatorial and Graph-Theoretical Problems in Linear Algebra, p. 257.
IMA Vols. Math. Appl., 50. Springer-Verlag, New York, 1993. MR 1240954
(94d:00012) (book). Zbl 780.00017 (book).

A question about sign solvability that generalizes “the infamous even
cycle problem.” [Annot. 13 Apr 2009.] (sd: QSol, QSta)

Victor Klee, Richard Ladner, and Rachel Manber
1984a Signsolvability revisited. Linear Algebra Appl. 59 (1984), 131–157. MR 86a:-

15004. Zbl 543.15016. (SD, QM: QSol, Alg)

Victor Klee and Pauline van den Driessche
1977a Linear algorithms for testing the sign stability of a matrix and for finding

Z-maximum matchings in acyclic graphs. Numer. Math 28 (1977), 273–285.
Zbl 348.65032, (352.65020). (SD: QM, QSta, Alg)

Jon M. Kleinberg
See D. Easley, J. Leskovec, and S.A. Marvel.

Robert D. Kleinberg
See S.A. Marvel.

Peter Kleinschmidt and Shmuel Onn
1995a Oriented matroid polytopes and polyhedral fans are signable. In: Egon Balas

and Jens Clausen, eds., Integer Programming and Combinatorial Optimization
(4th Int. IPCO Conf., Copenhagen, 1995, Proc.), pp. 198–211. Lect. Notes in
Computer Sci., Vol. 920. Springer, Berlin, 1995. MR 97b:05040.

In a graded partially ordered set with 0 and 1, assign a sign to each
covering pair (x, y) where y is covered by 1. This is an “exact signing”
if in every upper interval there is just one y whose coverings are all
positive. Then the poset is “signable”. (Sgnd: Geom)

1996a Signable posets and partitionable simplicial complexes. Discrete Comput. Geom.
15 (1996), 443–466. MR 97a:52014. Zbl 853.52010.

See (1995a) for definition. Signability is a generalization to posets of
partitionability of a simplicial complex (Prop. 3.1). Shellable posets, and
face lattices of spherical polytopes and oriented matroid polytopes, are
signable. A stronger property of a simplicial complex, “total signabil-
ity”, which applies for instance to simplicial oriented matroid polytopes
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(Thm. 5.12), implies the upper bound property (Thm. 4.4). Compu-
tational complexity of face counting and of deciding shellability and
partitionability are discussed in §6. (Sgnd: Geom, Alg)

Daniel J. Kleitman
See F.R.K. Chung.

Joseph B. Klerlein
See also R.L. Hemminger.

1975a Characterizing line dipseudographs. In: F. Hoffman et al., eds., Proceedings
of the Sixth Southeastern Conference on Combinatorics, Graph Theory and
Computing (Boca Raton, 1975), pp. 429–442. Congressus Numerantium, XIV.
Utilitas Math. Publ. Inc., Winnipeg, Man., 1975. MR 53 #190. Zbl 325.05106.

Continues the topic of Hemminger and Kerlein (1977a). (sg: LG, ori)

Joerg Kliewer
See C.A. Kelley.

Darwin Klingman
See J. Elam, F. Glover, and J. Hultz.

Elizabeth Klipsch
20xxa Some signed graphs that are forbidden link minors for orientation embedding.

Manuscript in preparation.
For each n ≥ 5, either −Kn or its 1-edge deletion, but not both, is a

forbidden link minor. Which one it is, is controlled by Euler’s polyhedral
formula, provided n ≥ 7. [A long version with excruciating detail is
available.] (SG: Top, Par)

Ton Kloks, Haiko Müller, and Kristina Vušković
2009a Even-hole-free graphs that do not contain diamonds: A structure theorem and

its consequences. J. Combin. Theory Ser. B 99 (2009), 733–800. MR 2522592
(2010j:05345). Zbl 1218.05160.

A decomposition theorem for graphs without induced even circles and
K4 \ e’s. [Question. Does it make sense to generalize to signed graphs
without chordless balanced circles (longer than 3?) or [K4 \ e]’s?] [An-
not. 10 Mar 2011.] (par: Str)

Lori Koban [Lori Fern]
See also L. Fern.

2004a Comments on “Supersolvable frame-matroid and graphic-lift lattices” by T.
Zaslavsky. European J. Combin. 25 (2004), 141–144. MR 2004k:05054. Zbl
1031.05032.

Correction to Thm. 2.1 and an improved (and corrected) proof of Thm.
2.2 of Zaslavsky (2001a). (GG: M)

2004b Two Generalizations of Biased Graph Theory: Circuit Signatures and Modular
Triples of Matroids, and Biased Expansions of Biased Graphs. Doctoral dis-
sertation, State Univ. of New York at Binghamton, 2004. MR 2706325 (no
rev).

Chapter 1: “Circuit signatures and modular triples.” When can gains
be applied to matroids, as they are to graphs in Zaslavsky (1991a), to
produce a linear class of circuits and hence a lift matroid? Theorem
1.4.1: When the group has exponent > 2, one needs a ternary circuit
signature, thus a ternary matroid. Theorem 1.4.5: When the group has
exponent 2 the matroid must be binary (no circuit signature is required).
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(M: GG: Gen)
Ch. 2: “Biased expansions of biased graphs.” Generalizes group and

biased expansions of a graph and the chromatic (and bias-matroid char-
acteristic) polynomial formulas (Zaslavsky 1995b, 20xxj) to expansions
of a biased graph. Ch. 3: “When are biased expansions actually group
expansions?” Partial results about characterizing biased expansions of
biased graphs that are group expansions; counterexamples to several
plausible conjectures. (GG: M, Invar, Geom)

2008a A modular triple characterization of circuit signatures. European J. Combin.
29 (2008), no. 1, 159–170. MR 2368623 (2008k:05040). Zbl 1127.05021.

Four kinds of circuit signatures of a matroid can be characterized
through modular triples of copoints or circuits. They are lift signatures
as well as the previously known weak orientations, orientations, and
ternary signatures. Lifting signatures are needed to define a matroid
with gains and thereby a lift matroid determined by the gains.

(GG: Gen, M)

William Kocay and Douglas Stone
1993a Balanced network flows. Bull. Inst. Combin. Appl. 7 (1993), 17–32. MR

1206759 (93j:05148). Zbl 804.05057.
Balanced network = signed covering graph of −Γ with edges vw lifted

to
−−−−→
+v,−w and added source and sink. [Annot. 8 Mar 2011.] (sg: cov)

1995a An algorithm for balanced flows. J. Combin. Math. Combin. Comput. 19
(1995), 3–31. MR 1358494 (96j:90087). Zbl 841.68098.

Continuation of (1993a). [Annot. 8 Mar 2011.] (sg: cov: Alg)

Muralidharan Kodialam and James B. Orlin
1991a Recognizing strong connectivity in (dynamic) periodic graphs and its relation

to integer programming. In: Proceedings of the Second Annual ACM-SIAM
Symposium on Discrete Algorithms (San Francisco, 1991), pp. 131–135. Assoc.
for Computing Machinery, New York, 1991. Zbl 800.68639.

Linear programming methods to find the strongly connected compo-
nents of a periodic digraph from the static graph: i.e., of the covering
digraph of a gain digraph Φ with gains in Qd by looking at Φ. Cf. Cohen
and Megiddo (1993a), whose goals are similar but algorithms differ.

(GD(Cov): Bal, Circles: Alg)

Vijay Kodiyalam, R. Srinivasan, and V.S. Sunder
2000a The algebra of G-relations. Proc. Indian Acad. Sci., Math. Sci. 110 (2000), no.

3, 263–292. MR 1781906 (2001k:16019) (q.v.). Zbl 992.16015. (gg: Algeb, m)

János Komlós
1997a Covering odd cycles. Combinatorica 17 (1997), 393–400. MR 99b:05114. Zbl

902.05036.
Sharp asymptotic upper bounds on frustration index and vertex frus-

tration number for all-negative signed graphs with fixed negative girth.
Improves Bollobás, Erdős, Simonovits, and Szemerédi (1978a). [Prob-
lem. Generalize to arbitrary signed graphs or signed simple graphs.]

(Par: Fr)

Helene J. Kommel
See F. Harary.
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Dénes König
1936a Theorie der endlichen und unendlichen Graphen: Kombinatorische Topologie

der Streckenkomplexe. Mathematik und ihre Anwendungen, Band 16. Akademis-
che Verlagsges., Leipzig, 1936. Repr.: Chelsea, New York, 1950. MR 12, 195.
Zbl 13, 228 (e: 013.22803).

§ X.3, “Komposition von Büsheln”, contains Thms. 9–16 of Ch. X. I re-
state them in terms of a signature on the edge set; König says subgraph
or p-subgraph (“p-Teilgraph”) to mean what we would call the nega-
tive edge set of a signature or a balanced signature. Instead of signed
switching, König speaks of set summation (“composition”) with a vertex
star (“Büschel”). His theorems apply to finite and infinite graphs except
where stated otherwise. Thm. 9: The edgewise product of balanced sig-
natures is balanced. Thm. 10: Every balanced signing of a finite graph
is a switching of the all-positive signature. Thm. 11: A signature is bal-
anced iff it has a Harary bipartition [see Harary (1953a)]. Thm. 12 (cor.
of 11): A graph is bicolorable iff every circle has even length. [König
makes this fundamental theorem a corollary of a signed-graph theorem!]
Thm. 13: A signature is balanced if (not only if) every circle of a fun-
damental system is positive. Thm. 14: A graph with n vertices (a finite
number) and c components has 2n−c balanced signings. Thm. 16: The
set of all vertex switchings except for one in each finite component of Γ
forms a basis for the space of all finitely generated switchings.

(sg: Bal, sw, Enum)

1986a Theorie der endlichen und unendlichen Graphen. Mit einer Abhandlung von
L. Euler Ed. and introd. by H. Sachs, introd. by P. Erdos, biographical essay
by T. Gallai [in English]. Teubner-Archiv zur Math., 6. BSB B. G. Teubner,
Leipzig, 1986. MR 88i:01168. Zbl 608.05002.

Reprint of (1936a) together with Euler’s paper (in Latin and German)
on the Königsberg bridges and supplementary material.

(sg: Bal, sw, Enum)

1990a Theory of Finite and Infinite Graphs. Trans. Richard McCoart, commentary
by W.T. Tutte, biographical sketch by T. Gallai. Birkhäuser, Boston, 1990.
MR 91f:01026. Zbl 695.05015.

English translation of (1936a). § X.3: “Composition of stars”. [The
term “Kreis” (circle, meaning circle) is unfortunately translated as “cy-
cle”—one of the innumerable meanings of “cycle”.]

(sg: Bal, sw, Enum)

Jack H. Koolen
See T.Y. Chung and S. Akbari.

Hideo Kosako, Suck Joong Moon, Katsumi Harashima, and Takeo Ikai
1993a Variable-signed graph. Bull. Univ. Osaka Pref. Ser. A 42 (1993), 37–49. MR

96e:05167. Zbl 798.05070.
“Variable-signed graph” = signed simple (di)graph Σ with switching

function p and switched graph Σp. Known basic properties of switching
are established. More interesting: planar duality when |Σ| is planar.
The planar dual |Σ|∗ inherits the same edge signs; a dual vertex has
sign of the surrounding primal face boundary. Property 9 is in effect the
statements: (1) If a signed plane graph has f negative face boundaries,
then l(Σ) ≥ f/2. (2) If the negative faces fall into two connected groups
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with oddly many faces in each, (1) can be improved to ≥ f/2 + 1.
Finally, incidence matrices are studied that are only superficially related
to signs. [The paper is hard to interpret due to mathematical imprecision
and language difficulty.] (SG: Sw, fr, D, Incid)

Alexandr V. Kostochka
See A.A. Ageev and E. Györi.

Balázs Kotnyek
See G. Appa and L. Pitsoulis.

A. Kotzig
1968a Moves without forbidden transitions in a graph. Mat. Časopis 18 (1968), 76–80.

MR 39 #4038. Zbl (e: 155.31901). (par: ori)

Robin Koytcheff
See E. Ziv.

David Krackhardt
See P. Doreian.

Daniel Král’, Ondřej Pangrác, and Heinz-Jürgen Voss
2005a A note on group colorings. J. Graph Theory 50 (2005), no. 2, 123–129. MR

2006d:05072. Zbl 1077.05044.
The group chromatic number (Lai and Zhang 2002a) χ1(Γ) ≥ δ/2 ln δ,

where δ = minimum degree. A planar graph may have χ1(Γ) = 5, the
maximum allowed by Lai and Zhang (2002b). Etc. (gg: Col)

Daniel Král’ and Heinz-Jürgen Voss
2004a Edge-disjoint odd cycles in planar graphs. J. Combin. Theory Ser. B 90 (2004),

107–120. MR 2041320 (2005d:05089). Zbl 1033.05064.
Thm. 1: For a plane graph Γ, the frustration index l(−Γ) ≤ 2ν ′, where
ν ′ := maximum number of edge-disjoint odd circles. [See Fiorini, Hardy,
Reed, and Vetta (2007a), Thm. 3.] [Annot. 6 Feb 2011.] (sg: Par: Fr)

M.A. Kramer and B.L. Palowitch, Jr.
1987a A rule-based approach to fault diagnosis using the signed directed graph. AIChE

J. 33 (1987), 1067–1078. MR 88j:94060.
Vertex signs indicate directions of change in vertex variables; signed

directed edges describe relations among these directions.
Truth tables for a signed edge as a function of endpoint signs. Al-

gorithms for deducing logical rules about states (assignments of vertex
signs) from the signed digraph. Has a useful discussion of previous lit-
erature, e.g., Iri, Aoki, O’Shima, and Matsuyama (1979a).

(SD, VS: Appl, Alg, Ref)

P.L. Krapivsky
See T. Antal.

I. Krasikov
1988a A note on the vertex-switching reconstruction. Int. J. Math. Math. Sci. 11

(1988), 825–827. MR 89i:05204. Zbl 663.05046.
Following up Stanley (1985a), a signed Kn is reconstructible from

its single-vertex switching deck if its negative subgraph is disconnected
[therefore also if its positive subgraph is disconnected] or if the minimum
degree of its positive or negative subgraph is sufficiently small. All done
in terms of Seidel switching of unsigned simple graphs. (kg: sw, TG)
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1994a Applications of balance equations to vertex switching reconstruction. J. Graph
Theory 18 (1994), 217–225. MR 95d:05091. Zbl 798.05039.

Following up Krasikov and Roditty (1987a), (Kn, σ) is reconstructible
from its s-vertex switching deck if s = 1

2
n− r where r ∈ {0, 2} and

r ≡ n (mod 4), or r = 1 ≡ n (mod 2); also, if s = 2 and the minimum
degree of the positive or negative subgraph is sufficiently small. Also,
bounds on |E−| if (Kn, σ) is not reconstructible. Negative-subgraph
degree sequence: reconstructible when s = 2 and n ≥ 10. Done in terms
of Seidel switching of unsigned simple graphs. (kg: sw, TG)

1996a Degree conditions for vertex switching reconstruction. Discrete Math. 160
(1996), 273–278. MR 97f:04137. Zbl 863.05056.

If the minimum degrees of its positive and negative subgraphs obey
certain bounds, a signed Kn is reconstructible from its s-switching deck.
The main bound involves the least and greatest even zeros of the Kraw-
tchouk polynomial Kn

s (x). Done in terms of Seidel switching of unsigned
simple graphs. [More details in Zbl.] (kg: sw, TG)

Ilia Krasikov and Simon Litsyn
1996a On integral zeros of Krawtchouk polynomials. J. Combin. Theory Ser. A 74

(1996), 71–99. MR 97i:33005. Zbl 853.33008.
Among the applications mentioned (pp. 72–73): 2. “Switching recon-

struction problem”, i.e., graph-switching reconstruction as in Stanley
(1985a) etc. 4. “Sign reconstruction problem”, i.e., reconstructing a
signed graph from its s-edge negation deck, which is the multiset of
signed graphs obtained by separately negating each subset of s edges
(here called “switching signs”, but it is not signed-graph switching); this
is a new problem. (kg: sw, TG)(SG)

I. Krasikov and Y. Roditty
1987a Balance equations for reconstruction problems. Arch. Math. (Basel) 48 (1987),

458–464. MR 88g:050996. Zbl 594.05049.
§2: “Reconstruction of graphs from vertex switching”. Corollary 2.3.

If a signed Kn is not reconstructible from its s-vertex switching deck,
a certain linear Diophantine system (the “balance equations”) has a
certain kind of solution. For s = 1 the balance equations are equivalent
to Stanley’s (1985a) theorem; for larger s they may or may not be. All is
done in terms of Seidel switching of unsigned simple graphs. [Ellingham
and Royle (1992a) note a gap in the proof of Lemma 2.5.] (kg: sw, TG)

1992a Switching reconstruction and Diophantine equations. J. Combin. Theory Ser.
B 54 (1992), 189–195. MR 93e:05072. Zbl 702.05062 (749.05047).

Main Theorem. Fix s ≥ 4. If n is large and (for odd s) not evenly even,
every signed Kn is reconstructible from its s-vertex switching deck. Dif-
ferent results hold for s = 2, 3. (This is based on and strengthens Stanley
(1985a).) Theorems 5 and 6 concern reconstructing subgraph numbers.
All done in terms of Seidel switching of unsigned simple graphs.

(kg: sw, TG)

1994a More on vertex-switching reconstruction. J. Combin. Theory Ser. B 60 (1994),
40–55. MR 94j:05090. Zbl 794.05092.

Based on (1987a) and strengthening Stanley (1985a): Theorem 7.
A signed Kn is reconstructible if the Krawtchouk polynomial Kn

s (x)
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“has one or two even roots [lying] far from n/2” (the precise statement
is complicated). Numerous other partial results, e.g., a signed Kn is
reconstructible if s = 1

2
(n − r) where r = 0, 1, 3, or 2, 4, 5, 6 with side

conditions. All is done in terms of Seidel switching of unsigned simple
graphs. (kg: sw, TG)

Jan Kratochv́ıl
See also E. Jeĺınková.

1989a Perfect codes and two-graphs. Comment. Math. Univ. Carolin. 30 (1989), no.
4, 755–760. MR 1045906 (91a:05080). Zbl 693.05060.

A two-graph T has a perfect code if every graph in its switching class
has a 1-perfect vertex code (a perfect dominating set). Thm. T has a
perfect code iff one of its graphs is the union of up to 3 disjoint cliques
iff T has no sub-pentagons and no sub-4-cocliques. [Annot. 21 Mar
2011.] (TG: Sw)

2003a Complexity of hypergraph coloring and Seidel’s switching. In: Hans L. Bodlaen-
der, ed., Graph-Theoretic Concepts in Computer Science (29th Int. Workshop,
WG 2003, Elspeet, Neth., 2003), pp. 297–308. Lect. Notes in Computer Sci.,
Vol. 2880. Springer-Verlag, Berlin, 2003. MR 2080089.

Results about properties as in Kratochv́ıl, Nešetřil, and Zýka (1992a).
E.g., switching to a regular graph is NP-complete. [Annot. 21 Mar
2011.] (TG: Sw)

Jan Kratochv́ıl, Jaroslav Nešetřil, and Ondřej Zýka
1992a On the computational complexity of Seidel’s switching. In: Jaroslav Nešetřil

and Miroslav Fiedler, eds., Fourth Czechoslovak Symposium on Combinatorics,
Graphs and Complexity (Prachatice, 1990), pp. 161–166. Ann. Discrete Math.,
Vol. 51. North-Holland, Amsterdam, 1992. MR 93j:05156. Zbl 768.68047.

Is a given graph switching isomorphic to a graph with a specified prop-
erty? (This is Seidel switching of simple graphs.) Depending on the
property, this question may be in P or be NP-complete, whether the
original property is in P or is NP-complete. Properties: containing a
Hamilton path; containing a Hamilton circle; no induced P2; regular-
ity; etc. Thm. 4.1: Switching isomorphism and graph isomorphism are
polynomially equivalent. (TG: Sw: Alg)

M.J. Krawczyk, K. Malarz, B. Kawecka-Magiera, A.Z. Maksymowicz, and K.
Ku lakowski

2005a Spin-glass properties of an Ising antiferromagnet on the Archimedean (3, 122)
lattice. Phys. Rev. B 72 (2005), article 24445. (par: Fr)

Vyacheslav Krushkal
See also P. Fendley.

2011a Graphs, links, and duality on surfaces. Combin. Prob. Computing 20 (2011),
267–287. MR 2769192 (2012d:05190). Zbl 1211.05029. arXiv:.

§7, “A multivariate graph polynomial”: A partially parametrized rank-
generating polynomial (“multivariate Tutte polynomial”) for graphs em-
bedded in surfaces, with the somewhat awkward duality relation (7.3).
Cf. Chmutov and Pak (2007a) and Chmutov (2009a). [Annot. 12 Jan
2012.] (GGw: Invar)

Ying-Qiang Kuang
See Z.H. Chen.
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Boris D. Kudryashov
See I.E. Bocharova.

Bernard Kujawski, Mark Ludwig, and Peter Abell
20xxa Structural balance dynamics and group formation: An exploratory study. Sub-

mitted. (SG: Bal)

Krzysztof Ku lakowski
See also P. Gawroński, A. Mańka-Krasoń, B. Tadić, and J. Tomkowicz.

2007a Some recent attempts to simulate the Heider balance problem. Computing in
Science and Engineering 9 (July/Aug. 2007), no. 4, 86–91.

Krzysztof Ku lakowski, Premiys law Gawroński, and Piotr Gronek
2005a The Heider balance: a continuous approach. Int. J. Mod. Phys. C 16 (2005),

no. 5, 707–716. Zbl 1103.91405.

Devadatta M. Kulkarni
See J.W. Grossman.

T.R. Vasanth Kumar
See P. Siva Kota Reddy.

Vijaya Kumar [G.R. Vijayakumar]
See G.R. Vijayakumar.

Jérôme Kunegis, Andreas Lommatzsch, and Christian Bauckhage
2009a The slashdot zoo: mining a social network with negative edges. In: Proceedings

of the 18th International Conference on the World Wide Web (Madrid, 2009),
pp. 741–750. Assoc. for Computing Machinery, New York, 2009.

(SG: WG: Clu: Alg)

Jérôme Kunegis, Stephan Schmidt, Şahin Albayrak, Christian Bauckhage, and
Martin Mehlitz

2008a Modeling collaborative similarity with the signed resistance distance kernel. In:
Malik Ghallab et al., eds., ECAI 2008 – 18th European Conference on Artificial
Intelligence, pp. 261–265. Frontiers in Artificial Intelligence and Applications,
Vol. 178. IOS Press, Amsterdam, 2008. (SG: Adj, Alg)

Jérôme Kunegis, Stephan Schmidt, Andreas Lommatzsch, Jürgen Lerner, Er-
nesto W. De Luca, and Sahin Albayrak

2010a Spectral analysis of signed graphs for clustering, prediction and visualization.
In: Srinivasan Parthasarathy et al., eds., Proceedings of the Tenth SIAM In-
ternational Conference on Data Mining (Columbus, Ohio, 2010), pp. 559–570.
Soc. for Industrial and Appl. Math., 2010. (SG: Adj, Clu, Geom, Alg)

Joseph P.S. Kung
See also J.E. Bonin and J. Kahn.

1986a Numerically regular hereditary classes of combinatorial geometries. Geom. Ded-
icata 21 (1986), 85–105. MR 87m:05056. Zbl 591.05019.

Examples include Dowling geometries, Ex. (6.2), and the bias matroids
of full group expansions of graphs in certain classes; see pp. 98–99.

(GG: M)

1986b Radon transforms in combinatorics and lattice theory. In: Ivan Rival, ed., Com-
binatorics and Ordered Sets (Proc., Arcata, Calif., 1985), pp. 33–74. Contemp.
Math., Vol. 57. Amer. Math. Soc., Providence, R.I., 1986. MR 88d:05024. Zbl
595.05006.

P. 41: Exposition of Stanley (1985a) from the viewpoint of the finite
Radon transform. (kg: sw, TG)
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1990a Combinatorial geometries representable over GF(3) and GF(q). I. The num-
ber of points. Discrete Comput. Geom. 5 (1990), 83–95. MR 90i:05028. Zbl
697.51007.

The Dowling geometry over the sign group is the largest simple ternary
matroid not containing the “Reid matroid”. (sg: M: Xtreml)

1990b The long-line graph of a combinatorial geometry. II. Geometries representable
over two fields of different characteristic. J. Combin. Theory Ser. B 50 (1990),
41–53. MR 91m:51007. Zbl 645.05026.

Dowling geometries used in the proof of Prop. (1.2). (gg: M)

1993a Extremal matroid theory. In: Neil Robertson and Paul Seymour, eds., Graph
Structure Theory (Proc., Seattle, 1991), pp. 21–61. Contemp. Math., Vol. 147.
Amer. Math. Soc., Providence, R.I., 1993. MR 94i:05022. Zbl 791.05018.

Survey with new results; largely on size bounds and extremal ma-
troids for certain minor-closed classes. §2.7: “Gain-graphic matroids,”
i.e., frame matroids of gain graphs. P. 30, top and fn. 9 on extremal
gain-graph theory. §4.3: “Varieties.” Conj. (4.9)(c) on growth rates.
§4.5. “Framed gain-graphic matroids,” i.e., cones over (“framed”) frame
matroids in projective space. §6.1: “Cones,” i.e., unions of long lines on
a common point: p. 47. Thm. (6.15) is a quadratic bound on matroids
whose minors exclude (approximately) q + 2-point lines and non-frame
planes. Conj. (7.1) on directions in Cn-matroids proposes that cyclic
Dowling matroids are extremal. §8: “Concluding remarks,” on a possi-
ble ternary analog of Seymour’s decomposition theorem.

(GG: M: Xtreml, Str, Exp, Ref)

1993b The Radon transforms of a combinatorial geometry. II. Partition lattices. Adv.
Math. 101 (1993), 114–132. MR 95b:05051. Zbl 786.05018.

Dowling lattices are lower-half Sperner. The proof is given only for
partition lattices. (gg: M)

1996a Matroids. In: M. Hazewinkel, ed., Handbook of Algebra, Vol. 1, pp. 157–184.
North-Holland (Elsevier), Amsterdam, 1996. MR 98c:05040. Zbl 856.05001.

§6.2: “Gain-graphic matroids,” i.e., frame matroids of gain graphs.
(GG: M: Exp)

1996b Critical problems. In: Joseph E. Bonin, James G. Oxley, and Brigitte Servatius,
eds., Matroid Theory (Proc., Seattle, 1995), pp. 1–127. Contemp. Math., Vol.
197. Amer. Math. Soc., Providence, R.I., 1996. MR 97k:05049. Zbl 862.05019.

A remarkable more-than-survey with numerous new results and open
problems. §4.5: “Abstract linear functionals in Dowling group geome-
tries”. §6: “Dowling geometries and linear codes”, concentrates on
higher-weight Dowling geometries, extending Bonin (1993b). §7.4: “Crit-
ical exponents of classes of gain-graphic geometries”. §7.5: “Growth
rates of classes of gain-graphic geometries”. §8.5: “Jointless Dowling
group geometries”. Cor. 8.30. §8.11: “Tangential blocks in Z(A)”. Also
see pp. 56, 61, 88, 92, 114. Dictionary: “Gain-graphic matroids” =
frame matroids of gain graphs. (GG, Gen: M)

1998a A geometric condition for a hyperplane arrangement to be free. Adv. Math.
135 (1998), 303–329. MR 2000f:05023. Zbl 905.05017.

Delete from a Dowling geometry a subset S that contains no whole
plane. Found: necessary and sufficient conditions for the characteristic
polynomial to factor completely over the integers. When the geometry
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corresponds to a hyperplane arrangement, many more of the arrange-
ments are not free than are free; however, if S contains no whole line,
all are free (so the characteristic polynomial factors completely over Z)
while many are not supersolvable. (gg: M: Invar)

2000a Critical exponents, colines, and projective geometries. Combin. Probab. Com-
put. 9 (2000), 355–362. MR 2002f:05048. Zbl 974.51008.

Higher-weight Dowling geometries yield counterexamples to a conjec-
ture. (gg: Gen: M: Invar)

2001a Twelve views of matroid theory. In: Sungpyo Hong et al., eds., Combinato-
rial & Computational Mathematics (Proc., Pohang, 2000), pp. 56–96. World
Scientific, Singapore, 2001. MR 2002i:05028. Zbl 1001.05038.

§5: “Graph theory and lean linear algebra”. “Lean” means at most
2 nonzero coordinates, hence gain graphs. §6, “Varieties of finite ma-
troids”, summarizes Kahn and Kung (1982a). §7, “Secret-sharing ma-
troids”: Question. Is the Dowling matroid Qn(G) a secret-sharing ma-
troid? (GG: M)
§11, “Generic rank-generating polynomials”: The “Tugger polynomial”

is a partially parametrized rank-generating polynomial (cf. Zaslavsky
1992b). (Sc(M): Gen: Invar)

2002a Curious characterizations of projective and affine geometries. Special issue
in memory of Rodica Simion. Adv. Appl. Math. 28 (2002), 523–543. MR
2003c:51008. Zbl 1007.51001.

Dowling geometries G(GK•n) (if |G| > 2) and jointless Dowling ge-
ometries G(GKn) (if |G| > 4) exemplify Lemma 3.4, which says that 5
numbers characterize the line sizes in a simple matroid with all lines of
size 2, 3, or l. (gg: M: Invar)

2006a Minimal blocks of binary even-weight vectors. Linear Algebra Appl. 416 (2006),
288–297. MR 2242730 (2008d:05038). Zbl 1115.05012.

§4, “Minimal blocks from graphs”: GF(q)× · Γ is a minimal k-block
over GF(q) if Γ is minimally j-chromatic for a certain j = f(k), and is a
minimal 1-block if Γ is an odd circle. [Annot. 20 June 2011.] (GG: M)

Joseph P.S. Kung and James G. Oxley
1988a Combinatorial geometries representable over GF(3) and GF(q). II. Dowling

geometries. Graphs Combin. 4 (1988), 323–332. MR 90i:05029. Zbl 702.51004.
For n ≥ 4, the Dowling geometry of rank n over the sign group is the

unique largest simple matroid of rank n that is representable over GF(3)
and GF(q). (sg: M: Xtreml)

David Kuo
See J.H. Yan.

Ranan D. Kuperman
See Z. Maoz.

Jin Ho Kwak
See also I.P. Goulden.

Jin Ho Kwak, Sungpyo Hong, Jaeun Lee, and Moo Young Sohn
2000a Isoperimetric numbers and bisection widths of double coverings of a complete

graph. Ars Combin. 57 (2000), 49–64. MR 2001h:05083. Zbl 1064.05076.
(sg: KG: Cov)
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J.H. Kwak and Jaeun Lee
2001a Enumeration of graph coverings, surface branched coverings and related group

theory. In: Sungpyo Hong et al., eds., Combinatorial & Computational Math-
ematics (Proc., Pohang, 2000), pp. 97–161. World Scientific, Singapore, 2001.
MR 2003b:05083. Zbl 1001.05092.

Voltage graphs (i.e., gain graphs) and their covering graphs (“derived
graphs”) defined in §1; emphasis on groups and counting group covering
graphs of a graph. (gg: Cov, Top)

J.H. Kwak, Jaeun Lee, and Young-hee Shin
2004a Balanced regular coverings of a signed graph and regular branched orientable

surface coverings over a non-orientable surface. Discrete Math. 275 (2004),
177–193. MR 2004i:05036. Zbl 1030.05034.

The number of isomorphism types of regular balanced coverings of a
signed graph. A covering is a sign-preserving covering projection from
one signed graph to another. (SG: Top: Enum)

Domenico Labbate
See M. Abreu.

Martine Labbé
See R.M.V. Figueiredo.

Richard Ladner
See V. Klee.

George M. Lady, Thomas J. Lundy, and John Maybee*
1995a Nearly sign-nonsingular matrices. Linear Algebra Appl. 220 (1995), 229–248.

MR 1334579 (96e:15007).
The signed digraph S(A) of square matrix A. [Annot. 12 Jun 2012.]

(SD: QM)

George M. Lady and John S. Maybee
1983a Qualitatively invertible matrices. Math. Social Sci. 6 (1983), 397–407. MR

85f:15005. Zbl 547.15002.
In terms of signed graphs, restates and completes the characteriza-

tions of sign-invertible matrices A due to Bassett, Maybee, and Quirk
(1968a) and George M. Lady (The structure of qualitatively determi-
nate relationships. Econometrica 51 (1983), 197–218. MR 85c:90019.
Zbl 517.15004) and reveals the sign pattern of A−1 in terms of path
signs in the associated signed digraph. (QM: QSol: SD)

J.C. Lagarias
1985a The computational complexity of simultaneous diophantine approximation prob-

lems. SIAM J. Computing 14 (1985), 196–209. MR 86m:11048. Zbl 563.10025.
Theorem F: Feasibility of integer linear programs with at most two

variables per constraint is NP-complete. (GN(Incid): D: Alg)

Hong-Jian Lai
See also Z.H. Chen and Y.T. Liang.

2000a Group connectivity of 3-edge-connected chordal graphs. Graphs Combin. 16
(2000), 165–176. MR 2001f:05074. Zbl 966.05041.

Hong-Jian Lai and Xiangwen Li
2006a Group chromatic number of planar graphs of girth at least 4. J. Graph Theory

52 (2006), no. 1, 51–72. MR 2006m:05088. Zbl 1088.05032.
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Definition: see Lai and Zhang (2002a). Thm. 1.1: If Γ is a plane graph
with girth ≥ 4, every 4-circle is a face boundary, and no 4-circle meets
another 4-circle or a 5-circle, then χ1(Γ) ≤ 3. Thm. 1.2: If Γ has no K3,3

minor and has girth ≥ 5, then χ1(Γ) ≤ 3. The proofs are by producing
Z3-colorings. (gg: Col)

Hong-Jian Lai and Xiankun Zhang
2002a Group colorability of graphs. Ars Combin. 62 (2002), 299–317. MR 2003c:05109.

Simple graphs only are considered. The [abelian] “group chromatic
number” χ1(Γ) = minm such that, for every abelian group A of order
≥ m, every A-gain graph on Γ is A-colorable (see Jaeger, Linial, Payan,
and Tarsi 1992a). Various results, e.g., Γ is Z2-colorable iff it is a forest;
analog of Brooks’ Theorem (a strengthening because χ1 ≥ χ); analog of
Nordhaus–Gaddum Theorem involving the complementary graph. [Thus
χ1(Γ) seems to resemble ordinary chromatic number more than it does
gain-graph coloring.] (gg: Col)

2002b Group chromatic number of graphs without K5-minors. Graphs Combin. 18
(2002), no. 1, 147–154. MR 2002m:05089. Zbl 993.05073.

Continues (2002a). Thm.: If Γ is simple and has no K5 minor, then
χ1(Γ) ≤ 5, improving on Jaeger, Linial, Payan, and Tarsi (1992a). [See
Král’, Pangrác, and Voss (2005a).] (gg: Col)

P. Lallemand
See H.T. Diep.

Kelvin Lancaster
1981a Maybee’s “Sign solvability”. In: Harvey J. Greenberg and John S. Maybee,

eds., Computer-Assisted Analysis and Model Simplification (Proc. Sympos.,
Boulder, Col., 1980), pp. 259–270. Academic Press, New York, 1981. MR
82g:00016 (book). Zbl 495.93001 (book).

Comment on Maybee (1981a). (QM: QSol: SD)

Steven Landy
1988a A generalization of Ceva’s theorem to higher dimensions. Amer. Math. Monthly

95 (Dec., 1988), no. 10, 936–939. MR 90c:51020. Zbl 663.51011.
The theorem characterizes concurrence of lines drawn from each ver-

tex of a rectilinear simplex to a point in the opposite side. [Problem.
Reformulate, maybe generalize, in terms of gain graphs. Cf. Boldescu
(1970a), Zaslavsky (2003b) §2.6.] (gg: Geom)

Andrea S. LaPaugh and Christos H. Papadimitriou
1984a The even-path problem for graphs and digraphs. Networks 14 (1984), 507–513.

MR 86g:05057. Zbl 552.68059.
Fast algorithms for existence of even paths between two given vertices

(or any two vertices) of a graph. The corresponding digraph problem
is NP-complete. [Signed (di)graphs are similar, due to the standard
reduction by negative subdivision.] [See also, e.g., works by Thomassen.]

(Par: Paths: Alg)(sd: Par: Paths: Alg)

Michel Las Vergnas
See A. Björner.

Martin Lätsch and Britta Peis
2008a On a relation between the domination number and a strongly connected bidi-
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rection of an undirected graph. Discrete Appl. Math. 156 (2008), 3194–3202.
MR 2468789 (2010a:05139). Zbl 1176.05058.

A bidirected graph (Γ, τ) (where τ assigns + or − to each incidence)
is “strongly connected” if there is a coherent walk from any vertex to
any other vertex. The distance dist(Γ,τ)(u, v) := the minimum length of a
coherent ~uv walk. The diameter diam(Γ, τ) := max(u,v)∈V 2 dist(Γ,τ)(u, v).
In Γ define i := number of isthmi, γ := domination number. Thm. 5:
Γ has a strongly connected bidirection iff |V | = 1 or Γ is connected and
minimum degree ≥ 2. Thm. 10: If Γ has strongly connected bidirections
τj (j = 1, . . . , k), then mini diam(Γ, τj) ≤ 2i+2 min(i, 1)+5γ−1. When
i = 0, τj can be chosen so Σ(Γ, τj) is all positive. Conjecture. Also true
when i > 0. Thm. 11: If Γ has a strongly connected bidirection, then
minj diam(Γ, τj) ≤ 6γ + 3. By Fig. 8 this bound must be at least 6γ + 1
if isthmi are allowed. The proofs are constructive, esp. by extending to
Γ a bidirection of a dominating subgraph. Dictionary: “path” = walk
[not trail]. [Annot. 27 Apr 2007.] (sg: Ori: Invar)

Monique Laurent
See M.M. Deza and A.M.H. Gerards.

Eugene L. Lawler
1976a Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and Win-

ston, New York, 1976. MR 55 #12005. Zbl 413.90040.
Ch. 6: “Nonbipartite matching.” §3: Bidirected flows. (sg: Ori)
Ch. 4: “Network flows.” §8: “Networks with losses and gains.” §12:

“Integrality of flows and the unimodular property.”
(GN)(sg: Incid, Bal)

Jason Leasure
See L. Fern.

Bruno Leclerc
1981a Description combinatoire des ultramétriques. Math. Sci. Humaines No. 73

(1981), 5–37. MR 82m:05083. Zbl 476.05079. (SG: Bal)

Gibaek Lee, Sang-Oak Song, and En Sup Yoon
2003a Multiple-fault diagnosis based on system decomposition and dynamic PLS. In-

dust. Engin. Chem. Res. 42 (2003), 6145–6154.
Combines signed digraphs and partial least squares for fault analysis

in chemical engineering. (SD: Appl)

Jaeun Lee
See I.P. Goulden, D. Kim, and J.H. Kwak.

Jon Lee
1989a Subspaces with well-scaled frames. Linear Algebra Appl. 114/115 (1989), 21–56.

MR 90k:90111. Zbl 675.90061.
See §9. (sg: Ori: Incid, Flows, Alg)

Shyi-Long Lee
See also I. Gutman and P.K. Sahu.

1989a Comment on ‘Topological analysis of the eigenvalues of the adjacency matrices
in graph theory: A difficulty with the concept of internal connectivity’. J.
Chinese Chem. Soc. 36 (1989), 63–65.

Response to Gutman (1988a). Proposes weighted net sign: divide by
number of nonzero vertex signs. The goal is to have the ordering of net
signs correlate more closely with that of eigenvalues. (VS, SGw, Chem)
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1989b Net sign analysis of eigenvectors and eigenvalues of the adjacency matrices in
graph theory. Bull. Inst. Chem., Academica Sinica No. 36 (1989), 93–104.

Expounds principally Lee, Lucchese, and Chu (1987a) and Lee and
Gutman (1989a). Examples include all connected, simple graphs of order
≤ 4 and some aromatics. (VS, SGw, Exp, Chem)

1992a Topological analysis of five-vertex clusters of group IVa elements. Theoretica
Chimica Acta 81 (1992), 185–199.

See Lee, Lucchese, and Chu (1987a). More examples; again, eigenvalue
and net-sign orderings are compared. (VS, SGw, Chem)

Shyi-Long Lee and Ivan Gutman
1989a Topological analysis of the eigenvectors of the adjacency matrices in graph

theory: Degenerate case. Chem. Phys. Letters 157 (1989), 229–232.
Supplements Lee, Lucchese, and Chu (1987a) to answer an objection

by Gutman (1988a), by treating vertex signs corresponding to multidi-
mensional eigenspaces. (VS, SGw, Chem)

Shyi-Long Lee and Chiuping Li
1994a Chemical signed graph theory. Int. J. Quantum Chem. 49 (1994), 639–648.

Varies Lee, Lucchese, and Chu (1987a) by taking net signs of all bal-
anced signings, instead of only those obtained from eigenvectors, for
small paths, circles, and circles with short tails. The distribution of net
sign, over all signings of each graph, is more or less binomial.

(VS, SGw, Chem)

1994b On generating molecular orbital graphs: the first step in signed graph theory.
Bull. Inst. Chem., Academica Sinica No. 41 (1994), 69–75.

Abbreviated presentation of (1994a). (VS, SGw: Exp)

Shyi-Long Lee and Feng-Yin Li
1990a Net sign approach in graph spectral theory. J. Molecular Structure (Theochem)

207 (1990), 301–317.
Similar topics to S.L. Lee (1989a, 1989b). Several examples of order 6.

(VS, SGw, Exp, Chem)

1990b Net sign analysis of five-vertex chemical graphs. Bull. Inst. Chem., Academica
Sinica No. 37 (1990), 83–97.

See Lee, Lucchese, and Chu (1987a). Treats all connected, simple
graphs of order 5. (VS, SGw, Chem)

Shyi-Long Lee, Feng-Yin Li, and Friday Lin
1991a Topological analysis of eigenvalues of particle [sic] in one- and two-dimensional

simple quantal systems: Net sign approach. Int. J. Quantum Chem. 39 (1991),
59–70.

See Lee, Lucchese, and Chu (1987a). § II: Net signs calculated for
paths. §§ III, IV: Planar graphs with two different types of potential,
yielding complicated results. (VS, SG, Chem)

Shyi-Long Lee, Robert R. Lucchese, and San Yan Chu
1987a Topological analysis of eigenvectors of the adjacency matrices in graph theory:

The concept of internal connectivity. Chem. Phys. Letters 137 (1987), 279–284.
MR 88i:05130. Zbl none.

Introduces the net sign of a (balanced) signed graph. A graph has
vertices signed according to the signs of an eigenvector Xi of the adja-
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cency matrix, µ(vr) = sgn(Xir), and σ(vrvs) = µ(vr)µ(vs) [hence Σ is
balanced]. Note that a vertex can have ‘sign’ 0. Net sign of a [hydrocar-
bon] chemical graph is applied to prediction of properties of molecular
orbitals. (VS, SGw, Chem)

Shyi-Long Lee, Yeung-Long Luo, and Yeong-Nan Yeh
1991a Topological analysis of some special graphs. III. Regular polyhedra. J. Cluster

Sci. 2 (1991), 105–116.
See Lee, Lucchese, and Chu (1987a). Net signs for the Platonic poly-

hedra (Table I). (VS, SGw, Chem)

Shyi-Long Lee and Yeong-Nan Yeh
1990a Topological analysis of some special classes of graphs. Hypercubes. Chem. Phys.

Letters 171 (1990), 385–388.
Follows up Lee, Lucchese, and Chu (1987a) and Lee and Gutman

(1989a), calculating net signs of eigenspatially signed hypercube graphs
of dimensions up to 6 by means of a general graph-product formula.

(VS, SGw, Chem)

1993a Topological analysis of some special classes of graphs. II. Steps, ladders, cylin-
ders. J. Math. Chem. 14 (1993), 231–241. MR 95f:05079.

See Lee, Lucchese, and Chu (1987a). Net signs and eigenvalues are
compared. (VS, SGw, Chem)

Frank Thomson Leighton
See C.R. Johnson.

Samuel Leinhardt
See also J.A. Davis and P.W. Holland.

Samuel Leinhardt, ed.
1977a Social Networks: A Developing Paradigm. Academic Press, New York, 1977.

An anthology reprinting some basic papers in structural balance theory.
(PsS, SG: Bal, Clu)

P.W.H. Lemmens and J.J. Seidel
1973a Equiangular lines. J. Algebra 24 (1973), 494–512. MR 46 #7084. Zbl 255.50005.

Repr. in Seidel (1991a), pp. 127–145.
Hints of graph switching; see van Lint and Seidel (1966a). (Geom, sw)

Marianne Lepp [Marianne L. Gardner]
See R. Shull.

Jürgen Lerner
See J. Kunegis.

Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg
2010a Signed networks in social media. In: CHI ’10: Proceedings of the 28th ACM

Conference on Human Factors in Computing Systems (Atlanta, 2010). Assoc.
for Computing Machinery, New York, 2010. (SD, SG: Bal, Clu)

2010b Predicting positive and negative links in online social networks. In: WWW ’10:
Proceedings of the 19th International Conference on World Wide Web (Raleigh,
N.C., 2010). Assoc. for Computing Machinery, New York, 2010. (SD: Bal)

Richard Levins
See also J.M. Dambacher and C.J. Puccia.

1974a The qualitative analysis of partially specified systems. Ann. N.Y. Acad. Sci.
231 (1974), 123–138. Zbl 285.93028. (SD: QM: QSta: Cycles)
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1975a Evolution in communities near equilibrium. In: M. Cody and J.M. Diamond,
eds., Ecology and Evolution of Communities, pp. 16–50. Harvard Univ. Press,
Cambridge, Mass., 1975. (SD: QM: QSta: Cycles)

David W. Lewit
See E.G. Shrader.

Josef Leydold
See T. Bıyıkoğlu.

Bao Feng Li
See X.H. Hao.

Bin Li
See T.F. Wang.

Cai Heng Li and Jozef Širáň
2007a Möbius regular maps. J. Combin. Theory Ser. B 97 (2007), no. 1, 57–73. MR

2007h:05043. Zbl 1106.05033.
That is, graphs in a surface, that are signed so every edge belongs to a

negative digon (Möbius), and whose map automorphisms act transitively
on flags (regularity). Properties of their automorphism groups. [Follows
Wilson (1989a).] (SG: Top: Aut)

Chang Li
See T. Harju.

Chiuping Li
See I. Gutman and S.L. Lee.

Feng-Hin Li
See S.L. Lee.

Hiram W. Li
See J.M. Dambacher.

Hong-Hai Li and Jiong-Sheng Li
2008a An upper bound on the Laplacian spectral radius of the signed graphs. Discuss.

Math. Graph Theory 28 (2008), no. 2, 345–359. MR 2477235 (2010a:05115).
Zbl 1156.05035.

Dictionary: See X.D. Zhang and Li (2002a). [Annot. 23 Mar 2009.]
(SG: incid, Adj)

2009a Note on the normalized Laplacian eigenvalues of signed graphs. Australasian
J. Combin. 44 (2009), 153–162. MR 2527006 (2010i:05210). Zbl 1177.05050.

(SG: Adj)

Ji Li
See H.Z. Deng.

Jing Li
See S.Y. Wang.

Ke Li, Ligong Wang, and Guopeng Zhao
2011a The signless Laplacian spectral radius of tricyclic graphs and trees with k pen-

dant vertices. Linear Algebra Appl. 435 (2011), no. 4, 811–822. MR 2807235
(2012f:05179). Zbl 1220.05075. (Par: Adj)

2011b The signless Laplacian spectral radius of unicyclic and bicyclic graphs with a
given girth. Electronic J. Combin. 18 (2011), no. 1, Paper 183, 10 pp. MR
2836818 (2012g:05138). Zbl 1230.05200. (Par: Adj)

Jiong-Sheng Li
See Y. Hou, H.H. Li and X.D. Zhang.
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Qian Li and Bolian Liu
2008a Bounds on the kth multi-g base index of nearly reducible sign pattern matri-

ces. Discrete Math. 308 (2008), 4846–4860. MR 2446095 (2010a:05037). Zbl
1167.15013. (QM: SD)

Qian Li, Bolian Liu, and Jeffrey Stuart
2010a Bounds on the k-th generalized base of a primitive sign pattern matrix. Linear

Multilinear Algebra 58 (2010), no. 3, 355–366. MR 2663436 (2011c:15090). Zbl
1196.15030. (SD: QM)

Rao Li
2010a Inequalities on vertex degrees, eigenvalues and (signless) Laplacian eigenvalues

of graphs. Int. Math. Forum 5 (2010), no. 37-40, 1855–1860. MR 2672449 (no
rev). Zbl 1219.05088. (Par: Adj)

Ruilin Li and Jinsong Shi
2010a The minimum signless Laplacian spectral radius of graphs with given indepen-

dence number. Linear Algebra Appl. 433 (2010), no. 8-10, 1614–1622. MR
2718223 (2011m:05181). Zbl 1211.05075.

See Cvetković, Rowlinson, and Simić (2007a). (Par: Adj)

Rui-lin Li, Jin-song Shi, and Bing-can Dong
2011a Maximal signless Laplacian spectral radius of bicyclic graphs with given inde-

pendence number. (In Chinese?) J. East China Norm. Univ. Natur. Sci. Ed.
2011 (2011), no. 3, 73–84, 99. MR 2867304 (no rev). (Par: Adj)

Shuchao Li
See also B. Chen, X.Y. Geng, and S.S. He.

Shuchao Li and Yi Tian
2011a On the (Laplacian) spectral radius of weighted trees with fixed matching num-

ber q and a positive weight set. Linear Algebra Appl. 435 (2011), no. 6, 1202–
1212. MR 2807144 (2012f:05180). Zbl 1222.05165.

Weight function w : E → R>0. Since SpecK(Γ, w) = SpecK(−Γ, w),
K(−Γ, w) is used to find λ1(K(Γ, w)). [Annot. 21 Jan 2012.]

(Par: Adj)

2012a Some bounds on the largest eigenvalues of graphs. Appl. Math. Lett. 25 (2012),
326–332. (Par: Adj)

Shuchao Li and Shujing Wang
2012a The least eigenvalue of the signless Laplacian of the complements of trees.

Linear Algebra Appl. 436 (2012), no. 7, 2398–2405. (Par: Adj)

Shuchao Li and Li Zhang
2011a Permanental bounds for the signless Laplacian matrix of bipartite graphs and

unicyclic graphs. Linear Multilinear Algebra 59 (2011), no. 2, 145–158. MR
2773647 (2012a:05194).

Sharp upper and lower bounds for per(K(−Γ)) when Γ is unicyclic or
bipartite, with or without girth, and characterization of extremal graphs.
(Authors’ summary.) [Bipartite Γ means they are doing K(Γ); the truly
signed part is for unicyclic graphs only.] [Annot. 19 Nov 2011.]

(Par: Adj)

20xxa Permanental bounds for the signless Laplacian matrix of a unicyclic graph with
diameter d. Graphs Combin., in press.
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See Li and Zhang (2011a). Here, the second minimum of, and a lower
bound for, perK(−Γ). [Annot. 24 Jan 2012.] (Par: Adj)

Shuchao Li and Minjie Zhang
2012a On the signless Laplacian index of cacti with a given number of pendant ver-

tices. Linear Algebra Appl. 436 (2012), no. 12, 4400–4411. (Par: Adj)

Xiangwen Li
See H.J. Lai.

Xiao Ming Li
See F.T. Boesch.

Xueliang Li
See also W.X. Du and B.F. Hou.

Xueliang Li, Jianbin Zhang, and Lusheng Wang
2009a On bipartite graphs with minimal energy. Discrete Appl. Math. 157 (2009), no.

4, 869–873. MR 2499503 (2010f:05116). Zbl 1226.05161.
[Bipartite energy is the energy of A(Γ) for bipartite Γ. Problem 1.

Generalize to antibalanced signed graphs. Problem 2. Generalize to
signed graphs.] [Annot. 24 Jan 2012.] (Par: Adj)

Yiyang Li
See W.X. Du.

Zhongshan Li
See also C.A. Eschenbach and F.J. Hall.

Zhongshan Li, Frank Hall, and Carolyn Eschenbach
1994a On the period and base of a sign pattern matrix. Linear Algebra Appl. 212-213

(1994), 101–120. MR 1306974 (95m:15026). Zbl 821.15017.

Chaohua Liang, Bolian Liu, and Yufei Huang
2010a The kth lower bases of primitive non-powerful signed digraphs. Linear Al-

gebra Appl. 432 (2010), no. 7, 1680–1690. MR 2592910 (2011b:15076). Zbl
1221.05190. (SD)

Yanting Liang, Bolian Liu, and Hong-Jian Lai
2009a Multi-g base index of primitive anti-symmetric sign pattern matrices. Linear

Multilinear Algebra 57 (2009), no. 6, 535–546. MR 2543715 (2010i:05151. Zbl
1221.15019. (QM: SD)

Hans Liebeck
See D. Harries.

Martin W. Liebeck
1980a Lie algebras, 2-graphs and permutation groups. Bull. London Math. Soc. 33

(1982), 76–85. MR 81f:05095. Zbl 499.05031.
Examines the F Aut([Σ])-module F V (Σ), where Σ is a signed complete

graph and F is a field of characteristic 2. (TG: Aut)

1982a Groups fixing graphs in switching classes. J. Austral. Math. Soc. (A) 33 (1982),
76–85. MR 83h:05048. Zbl 499.05031.

Given an abstract group A, which of its permutation representations are
exposable on every invariant switching class of signed complete graphs
[see Harries and H. Liebeck (1978a) for definitions]? (kg: sw, TG: Aut)

Thomas M. Liebling
See H. Gröflin.



the electronic journal of combinatorics #DS8 196

Rainer Liebmann
†1986a Statistical Mechanics of Periodic Frustrated Ising Systems. Lect. Notes in

Phys., Vol. 251. Springer-Verlag, Berlin, 1986. MR 850837 (87k:82004).
Detailed and readable descriptions, often simplified and relatively com-

binatorial, of the state of knowledge about Ising systems in the form
of signed graphs and weighted signed graphs. [Relatively accessible to
combinatorists.] Dictionary: ”model” = graph with signs and usually
weights, “ferromagnetic” = positive edge, “antiferromagnetic” = nega-
tive edge, “fully frustrated” = all girth circles are negative, “state” =
s : V → {+1,−1}, “ground state” = state with fewest frustrated edges,
“ground state degeneracy” = number of ground states (1 being nonde-
generate), “excited state” = non-ground state. §2.1.1, “Ground state
degeneracy of the ANNNI-chain”, on chains of triangles with two bond
signs and strengths, J1 and J2. The number and description of ground
states are treated in detail, as well as less combinatorial physical quan-
tities. §2.3.1, “Periodic frustrated chains”: All weights equal, so this
is signed graphs. Restates Doman and Williams (1982a) in terms of a
path with distance-2 edges, signed with period 4. The path edges have
constant sign (either + or − by switching) and weight B; the distance-2
edges are +−−− with weight J .
§3.1.2b, “Star-triangle transformation”: Edge signs and weights trans-

form. The triangle-star transformation on a negative triangle gives imag-
inary signs. [Question. Does this indicate a use for complex unit gains?]
§3.2, “Triangular lattice”: Based on Houtappel (1950a,b) and Wannier
(1950a). §3.3.1, “Union Jack lattice”: Square lattice, edges weighted
J1, with alternating diagonals in alternating squares weighted J2 < 0.
All triangles are negative. |J2|/J1 determines behavior. For ratio 1 (a
signed graph), there are ≈ C |V | ground states for a finite sublattice,
where C ≥

√
(17/8). §3.3.2, “Villain’s odd model”: Cf. Villain (1977a).

§3.3.3, “Hexagon lattice”: Cf. Wolff and Zittartz (1982a, 1983a). §3.3.4,
“Pentagon lattice”: Cf. Waldor, Wolff, and Zittartz (1985a). §3.3.5,
“Kagomé lattice”: Various periodic sign patterns; references. §3.3.6,
“Connection between GS [ground state] degeneracy and existence of a
phase transition at Tc = 0”: The conjecture of Hoever, Wolff, and Zit-
tartz (1981a). Also, a conjecture of Süto on the exact conditions under
which the ground states are connected in the state graph. §3.4, “Frus-
trated Ising systems with crossing interactions”: Several more compli-
cated extensions of previous models, usually by adding distance-2 edges
(“nnn interactions”). See (2) below.
§4.1, “fcc antiferromagnet”: All-negative face-centered cubic lattice

graph. Interesting remarks on how ground state and near-ground state
structure might influence physical properties. §4.2, “Fully and partially
frustrated simple cubic lattice”: The fully frustrated planar square lat-
tice can be stacked in various ways to produce differently frustrated cubic
lattices. §4.3, “AF pyrochlore model”: All-negative tetrahedra joined at
corners. §4.4, “ANNNI-model”: All-positive cubic lattice with negative
distance-2 vertical edges.

Two frequent remarks: (1) An external magnetic field reduces the
number of ground states. (2) Slightly more complicated graphs give
models that are not exactly solvable. [Combinatorial explanations: The
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magnetic field corresponds to an extra vertex, positively adjacent to all
V (Σ); see Barahona (1982a). The more complicated graphs are non-
planar; Barahona (1982a) and Istrail (2000a) indicate that this is the
obstacle to exact solution.] [Annot. 28 Aug 2012.]

(Phys, SG: WG: Fr: Exp, Ref)

Magnhild Lien and William Watkins
2000a Dual graphs and knot invariants. Linear Algebra Appl. 306 (2000) 123–130.

MR 2000k:05187. Zbl 946.05061.
The Kirchhoff (“Laplacian”) matrices of a signed plane graph and its

dual have the same invariant factors. The proof is via the signed graphs
of knot diagrams. (SGc: D, Adj, Knot)

Ko-Wei Lih
See J.H. Yan.

Chjan C. Lim
1993a Nonsingular sign patterns and the orthogonal group. Linear Algebra Appl. 184

(1993), 1–12. MR 1209379 (94c:15036). Zbl 782.68098.
A family of bipartite signed wheels that prevent A = (A−1)T. A family

of bipartite signed graphs which allow it. [Annot. 6 Mar 2011.]
(SG: QM)

Meng-Hiot Lim
See Harary, Lim, et al.

Leonardo Silva de Lima
See L.S. de Lima (under D).

Enzo M. Li Marzi
See F. Belardo and J.F. Wang.

Friday Lin
See S.L. Lee.

Shangwei Lin
See S.Y. Wang.

Bernt Lindström
See F. Harary.

Nathan Linial
See Y. Bilu, S. Hoory, and F. Jaeger.

Sóstenes Lins
1981a A minimax theorem on circuits in projective graphs. J. Combin. Theory Ser.

B 30 (1981), 253–262. MR 82j:05074. Zbl 457.05057.
For Eulerian Σ in projective plane, max. number of edge-disjoint neg-

ative circles = min. number of edges cut by a noncontractible closed
curve that avoids the vertices. [Generalized by Schrijver (1989a).]

(SG: Top, fr, Alg)

1982a Graph-encoded maps. J. Combin. Theory Ser. B 32 (1982), 171–181. MR
83e:05049. Zbl 465.05031, (478.05040).

See §4. (sg: Top: bal)

1985a Combinatorics of orientation reversing circles. Aequationes Math. 29 (1985),
123–131. MR 87c:05051. Zbl 592.05019. (sg, par: Top, Bal, Fr)
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J.H. van Lint and J.J. Seidel
1966a Equilateral point sets in elliptic geometry. Proc. Koninkl. Ned. Akad. Weten-

schap. Ser. A 69 (= Indag. Math. 28) (1966), 335–348. MR 34 #685. Zbl 138,
417 (e: 138.41702). Repr. in Seidel (1991a), pp. 3–16.

Introduces graph switching. (tg, Geom)

Svante Linusson
See C.A. Athanasiadis.

Marc J. Lipman and Richard D. Ringeisen
1978a Switching connectivity in graphs. In: F. Hoffman et al., eds., Proc. of the Ninth

Southeastern Conf. on Combinatorics, Graph Theory and Computing (Boca
Raton, 1978), pp. 471–478. Congressus Numerantium, XXI. Utilitas Math.
Publ. Inc., Winnipeg, Man., 1978. MR 80k:05073. Zbl 446.05033. (TG)

C.H.C. Little
See I. Fischer.

Simon Litsyn
See I. Krasikov.

Charles H.C. Little
See C.P. Bonnington.

Bolian Liu
See also B. Cheng, Y.F. Huang, C. Li, Q.A. Li, Y.T. Liang, J.P. Liu, M.H. Liu,
and Z.F. You.

2007a The period and base of a reducible sign pattern matrix. Discrete Math. 307
(2007), 3031–3039. MR 2371074 (2009i:15043). Zbl 1127.15018. (QM: SD)

Bolian Liu, Muhuo Liu, and Zhifu You
20xxa The majorization theorem for signless Laplacian spectral radii of connected

graphs. Graphs Combin., in press.
For a degree sequence π, define µc(π) := maxΓ λ1(K(−Γ)) over con-

nected Γ with degree sequence π and c circles. Let π 4 π′ in the ma-
jorization ordering. Thm. 2: Under certain assumptions on c, π, π′,
µ(π) ≤ µ(π′). For the special cases of unicyclic and bicyclic graphs:
X.D. Zhang (2009a) and Huang, Liu, and Liu (2011a). [Also see B.L. Liu
and Liu (2012a).] [Annot. 24 Jan 2012.] (Par: Adj)

Feng Liu
See X.-J. Tian.

Gui Zhen Liu and Qiang Wu
Applications of graph theory to social science. (In Chinese. English summary.)
Shandong Daxue Xuebao Ziran Kexue Ban 30 (1995), no. 4, 361–366. MR
97c:05149. Zbl 882.05116.

Describes some applications of and some results about balance in signed
graphs. (SG: Bal, PsS: Exp, M)

Jianping Liu and Bolian Liu
2008a The maximum clique and the signless Laplacian eigenvalues. Czechoslovak

Math. J. 58(133) (2008), no. 4, 1233–1240. MR 2471179 (2010a:05116). Zbl
1174.05079.

See Cvetković, Rowlinson, and Simić (2007a). (Par: Adj)

Jianzhou Liu
See R. Huang.

Jiming Liu
See B. Yang.
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Mu Huo Liu
See also B.L. Liu and F.Y. Wei.

Muhuo Liu and Bolian Liu
2010a The signless Laplacian spread. Linear Algebra Appl. 432 (2010), no. 2-3, 505–

514. MR 2577696 (2011d:05226). Zbl 1206.05064.
See Cvetković, Rowlinson, and Simić (2007a). (Par: Adj)

2011a On the spectral radii and the signless Laplacian spectral radii of c-cyclic graphs
with fixed maximum degree. Linear Algebra Appl. 435 (2011), no. 12, 3045–
3055. MR 2831596 (2012h:05197). Zbl 1226.05138. (Par: Adj)

2012a New method and new results on the order of spectral radius. Computers Math.
Appl. 63 (2012), no. 3, 679–686. MR 2871667 (2012i:05171).

Also see B.L. Liu, Liu, and You (20xxa). (Par: Adj)

20xxa On the signless Laplacian spectral radii of bicyclic and tricyclic graphs. Sub-
mitted.

See Cvetković, Rowlinson, and Simić (2007a). (Par: Adj)

Muhuo Liu, Bolian Liu, and Fuyi Wei
2011a Graphs determined by their (signless) Laplacian spectra. Electron. J. Lin-

ear Algebra 22 (2011), 112–124. MR 2781040 (2012g:05141). Zbl 1227.05185.
(Par: Adj)

Muhuo Liu, Xuezhong Tan, and Bolian Liu
2010a The (signless) Laplacian spectral radius of unicyclic and bicyclic graphs with

n vertices and k pendant vertices. Czechoslovak Math. J. 60 (2010), no. 3,
849–867. MR 2672419 (2011f:05185). Zbl 1224.05311.

See Cvetković, Rowlinson, and Simić (2007a). (Par: Adj)

2011a The largest signless Laplacian spectral radius of connected bicyclic and tricyclic
graphs with n vertices and k pendant vertices. (In Chinese.) Appl. Math. J.
Chinese Univ. Ser. A 26 (2011), no. 2, 215–222. MR 2838952 (2012e:05238).
(Par: Adj)

20xxa On the ordering of the signless Laplacian spectral radii of unicyclic graphs.
Appl. Math. J. Chinese Univ. Ser. B, to appear.

See Cvetković, Rowlinson, and Simić (2007a). (Par: Adj)

Ning Liu and William J. Stewart
2011a Markov chains and spectral clustering. In: Performance Evaluation of Com-

puter and Communication Systems: Milestones and Future Challenges, pp. 87–
98. Lect. Notes in Comput. Sci. Vol. 6821. Springer-Verlag, Berlin, 2011.
(Par: Adj: Appl)

Ruifang Liu
See M.Q. Zhai.

Xiaogang Liu
See also Y.P. Zhang.

Xiaogang Liu, Suijie Wang, Yuanping Zhang, and Xuerong Yong
2011a On the spectral characterization of some unicyclic graphs. Discrete Math. 311

(2011), 2317–2336. (Par: Adj)

Yan Pei Liu
See R.X. Hao.

Yingluan Liu
See Y.F. Huang.
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Yue Liu
See X.Y. Yuan.

Paulette Lloyd
See P. Bonacich and P. Doreian.

Martin Loebl
See also Y. Crama and A. Galluccio.

Martin Loebl and Iain Moffatt
2008a The chromatic polynomial of fatgraphs and its categorification. Adv. Math. 217

(2008), no. 4, 1558–1587. MR 2382735 (2008j:05114). Zbl 1131.05036.

D.O. Logofet and N.B. Ul’yanov
1982a Necessary and sufficient conditions for the sign stability of matrices. (In Rus-

sian.) Dokl. Akad. Nauk SSSR 264 (1982), 542–546. MR 84j:15018. Zbl
509.15008.

Necessity of Jeffries’ (1974a) sufficient conditions. (QSta)

D.O. Logofet and N.B. Ul’janov [N.B. Ul’yanov]
1982b Necessary and sufficient conditions for the sign stability of matrices. Soviet

Math. Dokl. 25 (1982), 676–680. MR 84j:15018. Zbl 509.15008.
English translation of (1982a). (QSta)

Michael Lohman
See M. Chudnovsky.

V. Lokesha
See also P. Siva Kota Reddy.

V. Lokesha, P. Siva Kota Reddy, and S. Vijay
2009a The triangular line n-sigraph of a symmetric n-sigraph. Adv. Stud. Contemp.

Math. (Kyungshang) 19 (2009), no. 1, 123–129. MR 2542128 (2010k:05121).
Zbl 1213.05120.

Definitions and notation as in Sampathkumar, Siva Kota Reddy, and
Subramanya (2008a). Generalization of Subramanya and Siva Kota
Reddy (2009a) to symmetric n-signed graphs, with similar definitions
and results. [The results remain true without assuming symmetry.]
[Annot. 10 Apr 2009.] (SG(Gen), gg: Bal, LG(Gen), Sw)

Andreas Lommatzsch
See J. Kunegis.

M. Loréa
1979a On matroidal families. Discrete Math. 28 (1979), 103–106. MR 81a:05029. Zbl

409.05050.
Discovers the “linearly bounded” (or “count”) matroids of graphs. [See

White and Whiteley (1983a), Whiteley (1996a), Schmidt (1979a).]
(MtrdF: Bic, Gen)

E. Loukakis
2003a A dynamic programming algorithm to test a signed graph for balance. Int. J.

Computer Math. 80 (2003), no. 4, 499–507. MR 1983308. Zbl 1024.05034.
Another algorithm for detecting balance [cf. Hansen (1978a), Harary

and Kabell (1980a)]. Also, once again proves that all-negative frustration
index [obviously equivalent to Max Cut] is NP-complete.

(SG: Bal, Fr: Alg)

Janice R. Lourie
1964a Topology and computation of the generalized transportation problem. Man-

agement Sci. 11 (1965) (Sept., 1964), no. 1, 177–187. (GN: M(bases))
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László Lovász
See also J.A. Bondy, Gerards et al. (1990a), and M. Grötschel.

1965a On graphs not containing independent circuits. (In Hungarian.) Mat. Lapok
16 (1965), 289–299. MR 35 #2777. Zbl 151, 334c (e 151.33403).

Characterization of the graphs having no two vertex-disjoint circles.
See Bollobás (1978a) for exposition in English. [Major Problem. Char-
acterize the biased graphs having no two vertex-disjoint unbalanced cir-
cles. This theorem is the contrabalanced case. For the sign-biased case
see Slilaty (2007a). McQuaig (1993a) might be relevant to the general
problem.] (GG: Circles)

1979a Combinatorial Problems and Exercises. North-Holland, Amsterdam, and Aka-
démiai Kiadó, Budapest, 1979. MR 537284 (80m:05001). Zbl 439.05001.

Prob. 7.21 finds rk H(−Γ) [cf. van Nuffelen (1973a)]. Prob. 10.18:
The vertex frustration number of a contrabalanced graph vs. the circle
edge-packing number. [Annot. 16 Jun 2012.] (sg: par: Incid)(gg: fr)

1983a Ear-decompositions of matching-covered graphs. Combinatorica 3 (1983), 105–
117. MR 85b:05143. Zbl 516.05047.

It is hard to escape the feeling that we are dealing with all-negative
signed graphs and their −K4 and −K◦2 minors. [And indeed, see Ger-
ards and Schrijver (1986a) and Gerards et al. (1990a) and the notes on
Seymour (1995a).] (Par: Str)

1993a Combinatorial Problems and Exercises, Second Ed. Elsevier, Amsterdam, and
Akadémiai Kiadó, Budapest, 1993. MR 1265492 (94m:05001). Zbl 785.05001.

See (1979a). [Annot. 16 Jun 2012.] (sg: par: Incid)(gg: fr)

2007a Combinatorial Problems and Exercises, Second Ed., corr. reprint. AMS Chelsea
Publ., American Mathematical Soc., Providence, R.I., 2007. MR 2321240 (no
rev). Zbl 439.05001.

See (1979a). [Annot. 16 Jun 2012.] (sg: par: Incid)(gg: fr)

2011a Subgraph densities in signed graphons and the local Simonovits–Sidorenko con-
jecture. Electronic J. Combin. 18 (2011), #P127. MR 2811096 (2012f:05158).
Zbl 1219.05084. arXiv:1004.3026. (SG)

L. Lovász and M.D. Plummer
1986a Matching Theory. North-Holland Math. Stud., Vol. 121. Ann. Discrete Math.,

Vol. 29. Akadémiai Kiadó, Budapest, and North-Holland, Amsterdam, 1986.
MR 88b:90087. Zbl 618.05001.

Pp. 247–248: Shortest odd/even uv-path problem in Γ. Lemma 6.6.9
reduces min length of odd path to a min-weight perfect matching prob-
lem in a modified graph. Exerc. 6.6.10–11 are similar for even paths and
odd/even circles. [Problem. Generalize to negative/positive paths and
circles in signed graphs.] §6.6, p. 252: l(−Γ) [i.e., max cut in Γ], l(Σ) for
signed planar graphs. Cor. 6.19: For planar Γ, l(−Γ) = 1

2
(max number

of circles in a 2-packing of negative circles). [Question: How does this
generalize to signed planar graphs?] Pp. 252–253: Odd-circle packing
and 2-packing. [Annot. 10 Nov 2010.] (sg, par: fr, Paths, Cir-
cles: Exp)
§8.7, pp. 353–354: Weighted non-ferromagnetic Ising model. [Annot.

10 Nov 2010.] (SG, WG: Phys, fr: Exp)
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2009a Matching Theory. AMS Chelsea Publ. (Amer. Math. Soc.), Providence, R.I.,
2009. MR 88b:90087. Zbl 618.05001.

Reprint of (1986a) with errata and an appendix of updates. [Annot.
10 Nov 2010.]

(sg: par: Circles, Paths, fr: Exp)(sg, WG: Phys, fr: Exp)

L. Lovász, L. Pyber, D.J.A. Welsh, and G.M. Ziegler
1995a Combinatorics in pure mathematics. In: R.L. Graham, M. Grötschel, and L.

Lovász, eds., Handbook of Combinatorics, Vol. II, Ch. 41, pp. 2039–2082. North-
Holland (Elsevier), Amsterdam, and MIT Press, Cambridge, Mass., 1995. MR
97f:00003. Zbl 851.52017.

§7: “Knots and the Tutte polynomial”, considers the signed graph of
a knot diagram (pp. 2076–77). (SGc: Knot)

Aidong Lu
See L.T. Wu.

Claire Lucas
See M. Aouchiche and P. Hansen.

Robert R. Lucchese
See S.L. Lee.

Henri Luchian
See A. Băutu.

Tomasz  Luczak
See E. Györi.

Mark Ludwig
See also P. Abell and B. Kujawski.

M. Ludwig and P. Abell
2007a An evolutionary model of social networks. Europ. Phys. J. B 58 (2007), 97–105.

Signed edges are added to and deleted from a fixed set of nodes under
a balancing rule. Imbalance measured by frustrated triangles impels
evolution, which converges under some conditions. [Annot. 20 June
2011.] (SG: Bal, Fr)

J. Lukic, A. Galluccio, E. Marinari, O.C. Martin, and G. Rinaldi
2004a Critical thermodynamics of the two-dimensional ±J Ising spin glass. Phys.

Rev. Lett. 92 (2004), no. 11, #117202.
Physical properties of a signed toroidal square lattice graph, from

computation of the exact partition function (energy distribution) via
Galluccio, Loebl, and Vondrák (2000a, 2001a). E.g., the approximate
proportion of negative edges is important. [Annot. 18 Aug 2012.]

(SG: Phys, Fr)

J. Richard Lundgren
See H.J. Greenberg and F. Harary.

Thomas J. Lundy
See also G.M. Lady.

Thomas J. Lundy, John Maybee, and James Van Buskirk
1996a On maximal sign-nonsingular matrices. Linear Algebra Appl. 247 (1996), 55–81.

MR 1412740 (97k:15020) (q.v.). Zbl 862.15019.
Constructions of such matrices. A matrix definition of C4-cockades.
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(and their role is trivial). Real weights are assigned to the vertices and an
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matroidal families, e.g., it immediately shows there are infinitely many.

(MtrdF: Bic, EC: Gen)

Enzo Marinari
See also S. Cabasino, B. Coluzzi, M. Falcioni, and J. Lukic.

Enzo Marinari, Giorgio Parisi, and Felix Ritort
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Ising (spins, i.e., vertex values, ∈ S0 = {+1,−1}) and XY (spins ∈ S1,
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(2009a).] [Questions. Do unbalanced locally minimal regions with more
than one point (graph) exist? How does the landscape look for switching
classes?] [Annot. 5 May 2010, rev 26 Jan 2011.] (SG: KG: Fr)

Enzo M. Li Marzi
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An important early survey with new results.
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mas (1999a) to prove: A digraph has an edge weighting in which all cycles
have equal nonzero total weight iff it does not contain a “double dicycle”:
a symmetric digraph whose underlying simple graph is a circle. There
is also a structural description of such digraphs. (SD: par: Str)(Sw)

William McCuaig, Neil Robertson, P.D. Seymour, and Robin Thomas
1997a Permanents, Pfaffian orientations, and even directed circuits. Extended ab-

stract. In: Proceedings of the Twenty-Ninth Annual ACM Symposium on The-
ory of Computing (STOC 97, El Paso, Tex., 1997), pp. 402–405. ACM Press,
New York, 1997. Zbl 963.68153.

Extended abstract of McCuaig (2004a) and Robertson, Seymour, and
Thomas (1999a). (SD: par)

W.D. McCuaig and M. Rosenfeld
1985a Parity of cycles containing specified edges. In: B.R. Alspach and C.D. Godsil,

eds., Cycles in Graphs, pp. 419–431. Ann. Discrete Math., Vol. 27. North-
Holland Math. Stud., Vol. 115. North-Holland, Amserdam, 1985. MR 87g:05139.
Zbl 583.05037.

In a 3-connected graph, almost any two edges are in an even and an
odd circle. [By the negative-subdivision trick this generalizes to signed
graphs.] (Par, sg: Bal)

J.J. McDonald
See S. Kirkland.

James McKee and Chris Smyth
2007a Integer symmetric matrices having all their eigenvalues in the interval [−2, 2].

J. Algebra 317 (2007), 260–290. MR 2008j:15038. Zbl 1140.15007. arXiv
:0705.3599.

The matrices (except those of orders 1, 2) are signed-graph “adja-
cency” matrices A with diagonal entries 0, 1,−1. There are 3 infinite
families and a few sporadic examples of maximal such signed graphs; all
of which satisfy A2 = 4I. The proof uses “charged signed graphs”, i.e., a
signed graph with 0, +1, or −1 attached to each vertex (and appearing
on the diagonal of the adjacency matrix). Switching a vertex negates
the charge. Dictionary: “strongly equivalent” = switching isomorphic;
“bipartite” = switching isomorphic to its negation. [The charged signed
graphs are really oriented all-negative graphs with half edges. The ad-
jacency matrix is not A(Σ) but an oriented adjacency matrix ~A defined
by ~aij = net in-degree of vivj edges at vi. [Annot. 27 June 2008.]]

(SG: Adj)
Terry A. McKee

1984a Balance and duality in signed graphs. Proc. Fifteenth Southeastern Conf. on
Combinatorics, Graph Theory and Computing (Baton Rouge, 1984). Congres-
sus Numer. 44 (1984), 11–18. MR 87b:05124. Zbl 557.05046. (SG: Bal: D)

1987a A local analogy between directed and signed graphs. Utilitas Math. 32 (1987),
175–180. MR 89a:05075. Zbl 642.05023. (SG: D, Clu, Bal)
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2002a Chordally signed graphs. Discrete Appl. Math. 119 (2002), 273–280. MR
1906865 (2003d:05101). Zbl 1003.05051.

A chordally signed graph is a chordal graph signed so every positive
circle C of length at least 4 has a chord such that C ∪ e is balanced.
Characterized in various ways. (SG)

2007a Chordal multipartite graphs and chordal colorings. Discrete Math. 307 (2007),
2309–2314. MR 2340631 (2008f:05063).

P. 2312: An auxiliary graph can be treated as signed; chordal coloring
is signed-graph clustering. [Annot. 11 Jul 2012.] (SG: Clu)

Kathleen A. McKeon
See G. Chartrand.

Luis Medina
See I. Gutman.

Killian Meehan
See Y. Duong.

Nimrod Megiddo
See E. Cohen and D. Hochbaum.

Kurt Mehlhorn and Dimitrios Michail
2005a Implementing minimum cycle basis algorithms. In: S.E. Nikoletseas, ed., Ex-

perimental and Efficient Algorithms (4th Int. Workshop, WEA 2005, Santorini
Island, 2005), pp. 32–43. Lect. Notes in Computer Sci., Vol. 3503. Springer,
Berlin, 2005. Zbl 1121.05314.

The “signed graph Gi” is a signed covering graph Σ̃i. Used to find
minimum cycle basis in a positively weighted graph Γ. Σi has negative
edge set Si, the “witness set”. [Annot. 6 Feb 2011.] (SG: Alg, Cov)

2006a Implementing minimum cycle basis algorithms. ACM J. Exper. Algorithmics
11 (2006), 14 pp. MR 2306622 (2007m:05139). Zbl 1143.05310.

See (2005a). (SG: Alg, Cov)

Martin Mehlitz
See J. Kunegis.

A. Mehrabian
See S. Akbari.

Marco A. Mendez
See J. Aracena.

Leanne Merrill
See Y. Duong.

Russell Merris
1994a Laplacian matrices of graphs: a survey. Linear Algebra Appl. 197/198 (1994),

143–176. MR 1275613 (95e:05084). Zbl 802.05053.
Thm.: SpecK(Γ) = SpecK(−Γ) iff Γ is bipartite. [The antibalanced

case of B.D. Acharya (1980a).] [Annot. 21 Jan 2012.] (Par: Adj, bal)

1995a A survey of graph Laplacians. Linear Multilinear Algebra 39 (1995), no. 1–2,
19–31. MR 1374468 (97c:05104). Zbl 832.05081. (Par: Adj)

Roy Meshulam
See R. Aharoni and J. Kahn.

Robert Messer
See E.M. Brown.
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Karola Mészáros
2011a Root polytopes, triangulations, and the subdivision algebra, II. Trans. Amer.

Math. Soc. 363 (2011), no. 11, 6111–6141. MR 2817421 (2012g:52021). Zbl
1233.05216. arXiv:0904.3339.

A signed simple graph generates a polytope P (Σ) whose volume is
calculated. [Annot. 11 Sept 2010.] (SG: Geom)

Frédéric Meunier and András Sebő
2009a Paintshop, odd cycles and necklace splitting. Discrete Appl. Math. 157 (2009),

780–793. MR 2499492 (2010e:90102). Zbl 1163.90774.
Dictionary: “signed graph” = (|Σ|, E−), “odd cycle” = negative cir-

cle, “odd cycle clutter” = Bc(Σ), “uncut” = minimal balancing set,
“BIP(G,F )” = MinBalSet(Σ) (the problem of finding a minimum bal-
ancing set), “resigning” = switching. [Annot. 22 Sept 2010.] (SG: Fr)

Seth A. Meyer
See R.A. Brualdi.

Hildegard Meyer-Ortmanns
See F. Radicchi.

Andrew MṀeyers
See N.A. Neudauer.

Marc Mézard, Giorgio Parisi, and Miguel Angel Virasoro
1987a Spin Glass Theory and Beyond. World Scientific Lect. Notes in Physics, Vol.

9. World Scientific, Singapore, 1987. MR 91k:82066.
Focuses on the Sherrington–Kirkpatrick model, i.e., underlying com-

plete graph, emphasizing the Parisi-type model (see articles reprinted
herein), which posits numerous metastable states, separated by energy
barriers of greatly varying heights and subdividing as temperature de-
creases (cf. Kirkpatrick and Sherrington (1978a)). Essentially heuristic
(as noted in MR): that is, the ideas awaited [and still largely await]
mathematical justification.

Many original articles on Ising and vector models (both of which are
based on weighted signed graphs) are reprinted herein, though few are
of general signed-graphic interest.
[See also, i.a., Toulouse (1977a, etc.), Chowdhury (1986a), Stern (1989a),

Fischer and Hertz (1991a), Vincent, Hammann, and Ocio (1992a) for
physics, Barahona (1982a, etc.), Grötschel, Jünger, and Reinelt (1987a)
for mathematics.] (Phys, SG: Fr: Exp, Ref)

Ch. 0, “Introduction”, briefly compares, in the obvious way, balance in
social psychology [they neglect to mention the original paper, Cartwright
and Harary (1956a)] with frustration in spin glasses.

(Phys, PsS: SG: Bal: Exp)
Pt. 1, “Spin glasses”, Ch. II, “The TAP approach”: pp. 19–20 describe

1-vertex switching of a weighted signed graph to reduce frustration, not
however necessarily producing the frustration index (minimum frustra-
tion). (Phys: SG: Fr, Sw, Alg: Exp)

Zhengke Miao
See H.P. Ma and L.Q. Wang.

T.S. Michael
2002a Signed degree sequences and multigraphs. J. Graph Theory 41 (2002), 101–105.
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MR 2003g:05042. Zbl 1012.05052.
Characterizes net degree sequences of signed graphs with fixed max-

imum edge multiplicity. [See Chartrand, Gavlas, Harary, and Schultz
(1994a) for explanation.] (SGw: Invar, Alg)

Dimitrios Michail
See K. Mehlhorn.

Manuel Middendorf
See E. Ziv.

Anna de Mier
See O. Giménez.

Raymond E. Miller
See R.M. Karp.

William P. Miller
See also J.E. Bonin.

1997a Techniques in matroid reconstruction. Discrete Math. 170 (1997), 173–183. MR
98f:05039. Zbl 878.05020.

Dowling matroids are reconstructible from their hyperplanes, their
deletions, and their contractions. (gg: M)

Maya Mincheva and Gheorghe Craciun
2008a Multigraph conditions for multistability, oscillations and pattern formation in

biochemical reaction networks. Proc. IEEE 96 (2008), no. 8, 1281–1291.
(SD: Chem, Biol: Exp)

Edward Minieka
1972a Optimal flow in a network with gains. INFOR 10 (1972), 171–178. Zbl

234.90012.
(GN: M(indep), Bal)

1978a Optimization Algorithms for Networks and Graphs. Marcel Dekker, New York
and Basel, 1978. MR 80a:90066. Zbl 427.90058.

§4.6: “Flows with gains,” pp. 151–174. Also see pp. 80–81.
(GN: Bal, Sw, m(indep): Exp)

1981a Algoritmy Optimizatsii na Setyakh i Grafakh. Transl. M.B. Katsnel’son and
M.I. Rubinshtĕın; ed. E.K. Maslovskĭı. Mir, Moskva, 1981. MR 83f:90118. Zbl
523.90058.

Russian translation of (1978a). (GN: Bal, Sw, m(indep): Exp)

Maryam Mirzakhah
See also I. Gutman and M. Jooyandeh.

M. Mirzakhah and D. Kiani
2010a The Sun graph is determined by its signless Laplacian spectrum. Electronic J.

Linear Algebra 20 (2010), 610–620. MR 2735977 (2011j:05209). Zbl 1205.05149.
(Par: Adj)

G. Mitra
See N. Gülpinar.

S. Mitra
1962a Letter to the editors. Behavioral Sci. 7 (1962), 107.

Treats signed simple graphs via the Abelson–Rosenberg (1958a) struc-
ture matrix R. Observes that balance holds iff R = rrT for some vector
r ∈ {p, n}V ; also, asserts that frustration index l(Σ) = minimum number
of negative edges over all switchings of Σ. [Proved in Barahona, May-
nard, Rammal, and Uhry (1982a).] Asserts an algorithm for computing
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l(Σ): switch vertices whose negative degree exceeds positive degree, one
at a time, until no such vertices remain [incorrect: consider K6, all pos-
itive except a negative C6]. [Annot. Corr. 20 Jan 2010.]

(sg: kg: Adj, sw, Fr)

V. Mishra
1974a Graphs Associated With (0,+1,−1) Arrays. Doctoral thesis, Indian Institute

of Technology, Bombay, 1974.
The arrays are matrices. (SG)

Hirobumi Mizuno and Iwao Sato
1997a Enumeration of finite field labels on graphs. Discrete Math. 176 (1997), 197–

202. MR 1477289 (98e:05059). Zbl 893.05015.
Isomorphism types, under the action of a subgroup of Aut Γ, of cobound-

aries of 1-chains f : V → H+
q in −Γ. (In other words, the edge labels are

δf(uv) = f(u) + f(v).) [Question. Does it generalize to signed graphs?
The subgroup would be of Aut Σ, or one can count isomorphism types
of switching classes under a subgroup of Aut[Σ].] [Annot. 16 Jan 2012.]

(par: incid)

2010a Weighted scattering matrices of regular coverings of graphs. Linear Multilinear
Algebra 58 (2010), no. 7, 927–940. MR 2742326 (2011k:05145). Zbl 1231.05170.

(GGw: Cov: Invar, Adj: Gen)

Iain Moffatt
See also J.A. Ellis-Monaghan and M. Loebl.

2011a Unsigned state models for the Jones polynomial. Ann. Combin. 15 (2011), no.
1, 126–146. MR 2785760 (2012b:05087).

Vertex models (graphs with vertices labelled ±1) and Potts (edges
labelled ±1) models can be replaced by unsigned models by convert-
ing an edge-labelled graph into an orientable ribbon graph. A limited
parametrized rank-corank polynomial appears (in the standard way) as
the Potts partition function. [Annot. 23 Apr 2009.] (SGc: Invar)

Javad Mohajeri
See S. Fayyaz Shahandashti.

A. Mohammadian and B. Tayfeh-Rezaie
2011a Graphs with four distinct Laplacian eigenvalues. J. Algebraic Combin. 34

(2011), no. 4, 671–682. MR 2842915 (2012j:05265). Zbl 1242.05166.
K(−Γ) is used to prove Thm. 6, characterizing bipartite Γ with four

Laplacian eigenvalues. [Annot. 24 Jan 2012.] (Par: Adj)

Bojan Mohar
1989a An obstruction to embedding graphs in surfaces. Discrete Math. 78 (1989),

135–142. MR 90h:05046. Zbl 686.05019.
The “overlap matrix” of a signed graph with respect to a rotation

system and a spanning tree provides a lower bound on the demigenus
that sometimes improves on that from Euler’s formula. (SG: Top)

Bojan Mohar and Svatopluk Poljak
1993a Eigenvalues in combinatorial optimization. In: Richard A. Brualdi, Shmuel

Friedland, and Victor Klee, eds., Combinatorial and Graph-Theoretical Prob-
lems in Linear Algebra, pp. 107–151. IMA Vols. Math. Appl., 50. Springer-
Verlag, New York, 1993. MR 1240959 (95e:90003). Zbl 806.90104.
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Switching of a weight function on an unsigned graph (p. 119), from
C. Delorme and S. Poljak, Combinatorial properties and the complexity
of a max-cut approximation, Tech. Rep. 91687, Inst. Diskrete Math.,
Univ. Bonn, 1991. [Annot. 13 Apr 2009.] (Sw)

Bojan Mohar and Carsten Thomassen
2001a Graphs on Surfaces. Johns Hopkins Stud. Math. Sci. Johns Hopkins Univ.

Press, Baltimore, 2001. MR 1844449 (2002e:05050). Zbl 979.05002.
§3.3, “Embedding schemes”, surveys rotation systems and edge signa-

tures for embedding in nonorientable surfaces. Cf. Ringel (1977a) and
Stahl (1978a). §4.1, “Embeddings combinatorially”: Detailed treatment
of embeddings from rotation systems and optionally an edge signature.
[Lins (1982a), Širáň and Škoviera (1991a), Zaslavsky (1992a, 1993a), et
al. are regrettably never mentioned in this valuable book.] (sg: Top)

Marco Montalva, Julio Aracena, and Anah́ı Gajardo
2008a On the complexity of feedback set problems in signed digraphs. IV Latin-

American Algorithms, Graphs, and Optimization Sympos. (Puerto Varas, Chile,
2007). Electron. Notes Discrete Math. 30 (2008), 249–254. MR 2570648.

Complexity of finding a minimum set of vertices, or arcs, that cov-
ers all positive, or negative, cycles in a signed digraph. All are NP-
complete, by polynomial-time reduction to the existence problems Even
Cycle and Odd Cycle in the positive and negative problems, respectively.
[Directed frustration index and directed vertex frustration number are
the negative-cycle cover problems, which are said to be easier than the
positive-cycle cover problems.] [Annot. 20 July 2009.]

(SD: Fr: Gen, Alg)

James D. Montgomery
2009a Balance theory with incomplete awareness. J. Math. Sociology 33 (2009), 69–

96. Zbl 1169.91438.
Signed digraphs with possible multiple arcs of different sign, with two

types of vertices (“actors” having positive and possibly negative loops,
and “objects” having no loops), and with extra “awareness” arcs between
actor vertices. Emphasis on directionality of arcs. “Boolean multipli-
cation” [Boolean Hadamard product] of separate positive, negative, and
awareness adjacency matrices to form mixed adjacency matrices. As-
sumption: Over time the signed digraph evolves towards sign-transitive
closure constrained by the awareness arcs, whose absence impedes tran-
sitive closure. Four specific “mechanisms” are postulated for the evolu-
tion, of which two are essential (Lemma 1). Propositions present con-
clusions (no surprises) about intermediate and final (i.e., constrained
sign-transitively closed) signed digraphs. Dictionary: “balance closure”
= sign-transitive closure, i.e., arc-transitive closure with positive triple
sign. [The idea of constrained closure is mathematically intriguing,
though the notation is heavy.] [For more on sign-transitive closure in
signed digraphs see Doreian and Krackhardt (2001a).] [Annot. 16 Apr
2009.] (SD, PsS: Bal)

Elliott W. Montroll
1964a Lattice statistics. In: Edwin F. Beckenbach, ed., Applied Combinatorial Math-

ematics, Ch. 4, pp. 96–143. Wiley, New York, 1964. MR 30 #4687 (book). Zbl
141, 155 (e: 141.15503).
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§4.4: “The Pfaffian and the dimer problem”. Exemplified by the square
lattice, expounds Kasteleyn’s method of signing edges to make the Pfaf-
fian term signs all positive. Partial proofs. §4.7, “The Ising problem”,
pp. 127–129, explains application to the Ising model. Exceptionally read-
able. [Further development in, e.g., Vazirani and Yannakakis (1988a,
1989a).] (SG, Phys: Exp)

J.W. Moon and L. Moser
1966a An extremal problem in matrix theory. Mat. Vesnik N.S. 3(18) (1966), 209–211.

MR 34 #7385. Zbl 146, 14a (e: 146.01401).
Studies the maximum frustration index of a signed Kr,s. (sg: Fr)

Suck Jung Moon
See H. Kosako.

M.A. Moore
See A.J. Bray.

G. Eric Moorhouse
1995a Two-graphs and skew two-graphs in finite geometries. Linear Algebra Appl.

226/228 (1995), 529–551. MR 96f:51012. Zbl 839.05024.
[Skew two-graphs are likely related to the two-digraphs of Cheng and

Wells (1984a).] (gg, sd: sw: Invar)

Michio Morishima
1952a On the laws of change of the price-system in an economy which contains com-

plementary commodities. Osaka Economic Papers 1 (1952), 101–113.
§4: “Alternative expression of the assumptions (1),” can be interpreted

with hindsight as proving that, for a signed Kn, every triangle is positive
iff the signature switches to all positive. (Everything is done with sign-
symmetric matrices, not graphs, and switching is not mentioned in any
form.) (sg: bal, sw)

Julian O. Morrissette
1958a An experimental study of the theory of structural balance. Human Relations

11 (1958), 239–254.
Proposes that edges have strengths between −1 and +1 instead of

pure signs. The Cartwright–Harary degree of balance (1956a), computed
from circles, is modified to take account of strength. In addition, signed
graphs are allowed to have edges of two types, say U and A, and only
short mixed-type circles enter into the degree of balance. This is said to
be more consistent with the experimental data reported herein.

(PsS, SG, Gen: Fr)

Julian O. Morrissette and John C. Jahnke
1967a No relations and relations of strength zero in the theory of structural balance.

Human Relations 20 (1967), 189–195.
Reports an experiment; then discusses problems with and alternatives

to the Cartwright–Harary (1956a) circle degree of balance. (PsS: Fr)

Hannes Moser
See J. Guo.

L. Moser
See J.W. Moon.

Sebastiano Mosterts
See E.L. Johnson.
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C.F. Moukarzel
See M.J. Alava.

Andrej Mrvar
See also P. Doreian and W. de Nooy.

Andrej Mrvar and Patrick Doreian
2009a Partitioning signed two-mode networks. J. Math. Sociology 33 (2009), no. 3,

196–221. Zbl 1168.91511.
§2, “Formalization of block-modeling signed two-mode data”: A signed

two-mode network is a bipartite signed simple graph with color classes
V1, V2. The objective is partitions π1, π2 of V1, V2 that minimize a “cri-
terion function” P := αi− + (1 − α)i+; usually α = .5. k1 := |π1|
and k2 := |π2|, or other restrictions, may be specified. Definitions:
πi := {Vi1, . . . , Viki}. A “block” is a nonvoid set E(V1i, V2j). Its sign
is the sign of the majority of edges, + if a draw. e is “consistent” with
(π1, π2) if it is in a block of sign σ(e). iε := number of inconsistent edges
of sign ε. [Annot. 17 Aug 2009.] (SG: Clu, PsS)

Haiko Müller
See T. Kloks.

Luigi Muracchini and Anna Maria Ghirlanda
1965a Sui grafi segnati ed i grafi commutati. Statistica (Bologna) 25 (1965), 677–680.

MR 33 #7272.
A partially successful attempt to use unoriented signed graphs to define

a line graph of a digraph. [See Zaslavsky (2010b, 20xxa, 20xxb) for the
correct signed-graph approach.] The Harary–Norman line digraph is also
discussed. (SG: Bal, LG)

Kunio Murasugi
1988a On the signature of a graph. C.R. Math. Rep. Acad. Sci. Canada 10 (1988),

107–111. MR 89h:05056.
The signature of a sign-colored graph (see 1989a) is an invariant of the

sign-colored graphic matroid. (SGc: Incid, m)

1989a On invariants of graphs with applications to knot theory. Trans. Amer. Math.
Soc. 314 (1989), 1–49. MR 89k:57016. Zbl 726.05051.

Studies a dichromatic form, PΣ(x, y, z), of Kauffman’s (1989a) Tutte
polynomial of a sign-colored graph. The deletion-contraction parame-
ters are aε = 1, bε = xε for ε = ±1; the initial values are such that
PΣ(x, y, z) = y−1QΣ(a, b; y, z) of Zaslavsky (1992b). The polynomial is
shown to be, in effect, an invariant of the sign-colored graphic matroid.

Much unusual graph theory is in here. A special focus is the degrees of
the polynomial. First Main Thm. 3.1: Formulas for the maximum and
minimum combined degrees of PΣ(x, y, z). §7, “Signature of a graph”,
studies the signature (σ in the paper, s here) of the Kirchhoff matrix
K(Σ) (BΣ in the paper) obtained by changing the diagonal of A(Σ) so
the row sums are 0. Prop. 7.2 is a matrix-tree theorem [entirely different
from that of Zaslavsky (1982a)]. The Second Main Thm. 8.1 bounds the
signature: |V | − 2β0(Σ−) + 1 ≤ s ≤ |V | − 2β0(Σ+) + 1 (β0 = number
of components), with equality characterized. The Kirchhoff matrix is
further examined later on. §9, “Dual graphs”: Differing from most stud-
ies, here the dual of a sign-colored plane graph is the planar dual with
same edge signs [however, negating all colors is a triviality]. §10, “Pe-
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riodic graphs”: These graphs might be called branched covering graphs
of signed gain graphs with finite cyclic gain group. [Thus they general-
ize the periodic graphs of Collatz (1978a) and others.] §§12–15 concern
applications to knot theory.

(SGc: Invar, Incid, GG(Cov), D, Knot)

1991a Invariants of graphs and their applications to knot theory. In: S. Jackowski,
B. Oliver, and K. Pawa lowski, eds., Algebraic topology Poznań 1989 (Proc.,
Poznań, 1989), pp. 83–97. Lect. Notes in Math., Vol. 1474. Springer-Verlag,
Berlin, 1991. MR 92m:57015. Zbl 751.57007.

§§1–3 expound results from (1989a) on the dichromatic polynomial and
the signature of a sign-colored graph and knot applications. §5 discusses
the signed Seifert graph of a link diagram.

(SGc: Invar, Incid, Knot: Exp)

1993a Musubime riron to sono ōnō. [Knot Theory and Its Applications.] (In Japanese.)
1993.

See (1996a). (SGc: Knot)

1996a Knot Theory and Its Applications. Birkhäuser, Boston, 1996. MR 97g:57011.
Zbl 864.57001.

Updated translation of (1993a) by Bohdan Kurpita. Pp. 36–37: Con-
struction of signed plane graph from link diagram, and conversely.

(SGc: Knot)

Kunio Murasugi and Jozef H. Przytycki
1993a An Index of a Graph with Applications to Knot Theory. Mem. Amer. Math.

Soc., Vol. 106, No. 158. Amer. Math. Soc., Providence, R.I., 1993. MR
94d:57025. Zbl 792.05047.

Ch. I, “Index of a graph”. The “index” is the largest number of
“independent” edges, where “independent” has a complicated recursive
definition (unrelated to matchings), one of whose requirements is that
the edges be “singular” (simple, i.e., nonmultiple links). The positive
or negative index of a sign-colored graph is similar except that the in-
dependent edges must all be positive or negative. [The general notion
is that of the index of a graph-subgraph pair. The signs pick out com-
plementary subgraphs.] Thm. 2.4: Each of these indices is additive on
blocks of a bipartite graph. The main interest, because of applications
to knot theory, is in bipartite plane graphs. Ch. II, “Link theory”: Pp.
26–27 define the sign-colored Seifert graph of an oriented link diagram
and apply the graphical index theory. (SGc: Invar, D, Knot)

Tadao Murata
1965a Analysis of lossy communication nets by modified incidence matrices. In: M.E.

Van Valkenburg, ed., Proceedings, Third Annual Allerton Conference on Cir-
cuit and System Theory (Monticello, Ill., 1965), pp. 751–761. Dept. of Electrical
Eng. and Coordinated Sci. Lab., Univ. of Illinois, Urbana, Ill.; and Circuit The-
ory Group, Inst. of Electrical and Electronics Engineers, [1965]. (GN: Incid)

Antoine Musitelli
2010a Recognizing binet matrices. Math. Programming 124 (2010), no. 1-2, 349–381.

MR 2679995 (2011g:68121). Zbl 1206.68149. (SG: Ori: Incid)

P. Mützel
See C. De Simone.
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O. Nagai
See H.T. Diep.

K.M. Nagaraja
See P. Siva Kota Reddy.

T.A. Naikoo
See S. Pirzada.

Takeshi Naitoh
See K. Ando.

Kazuo Nakajima
See H. Choi.

Atsuhiro Nakamoto, Seiya Negami, and Katsuhiro Ota
2002a Chromatic numbers and cycle parities of quadrangulations on nonorientable

closed surfaces. Ninth Quadrennial Int. Conf. Graph Theory, Combinatorics,
Algorithms Appl. Electronic Notes Discrete Math. 11 (2002), 509–518. MR
2155788 (no rev).

Cycle parity on surface S = homomorphism ρ : π(S)→ Z2
∼= {+,−},

equivalently ρ : H1(S;Z2 → Z2
∼= {+,−}. ρ implies a signature (ac-

tually, a switching class) of any embedded graph Γ. There are one
nontrivial type of cycle parity on an orientable surface and three on
a nonorientable surface Nd, different for odd and even d, except two on
N2 and one on N1. If Γ ↪→ S so every face boundary is even (“even em-
bedding”), ρ(W ) = |W |mod 2 for closed walks is a cycle parity. Thm.
9: For three of the six types on Nd’s, there is a negative cut that opens
Nd to an orientable surface. [Annot. 11 Jun 2012.] (sg: Top: sw)

Daishin Nakamura and Akihisa Tamura
1998a The generalized stable set problem for claw-free bidirected graphs. In: Robert

E. Bixby, E. Andrew Boyd, and Roger Z. Ŕıos-Mercado, eds., Integer Program-
ming and Combinatorial Optimization (6th Int. IPCO Conf., Houston, 1998,
Proc.), pp. 69–83. Lect. Notes in Computer Sci., Vol. 1412. Springer, Berlin,
1998. MR 2000h:05209. Zbl 907.90272.

The problem of the title is solvable in polynomial time. See Johnson
and Padberg (1982a), Tamura (1997a) for definitions. They reduce to
simple graphs, transitively bidirected with no sink or introverted edge
(called “canonical” bidirected graphs). (sg: Ori: Geom, Sw, Alg)

1998b Generalized stable set problems for claw-free bi-directed graphs. (In Japanese.)
Theory and Applications of Mathematical Optimization (Kyoto, 1998). Sūri-
kaisekikenkyūsho Kōkyūroku No. 1068 (1998), 100–109. Zbl (939.05506).

(sg: Ori: Geom, Sw, Alg)

2000a A linear time algorithm for the generalized stable set problem on triangulated
bidirected graphs. New Trends in Mathematical Programming (Kyoto, 1998).
J. Operations Res. Soc. Japan 43 (2000), 162–175. MR 2001c:90093. Zbl
1138.90494. (sg: Ori: Geom: Alg)

M. Nakamura
See M. Hachimori.

Tota Nakamura, Shin-ichi Endoh, and Takeo Yamamoto
2003a Weak universality of spin-glass transitions in three-dimensional ±J models. J.

Phys. A 36 (2003), 10895–10906. MR 2025232 (no rev). Zbl 1075.82508.
Physics of Ising, XY, and Heisenberg spin-glass models on a signed

square lattice graph with 3-dimensional spin vectors. The Hamiltonian
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of state S : V → S2 (the sphere) is
∑

uv∈E σ(uv)Su ·Sv. [Annot. 17 Jun
2012.] (Phys: SG)

Bunpei Nakano
See T. Inohara.

Aurélien Naldi, Elisabeth Remy, Denis Thieffry, and Claudine Chaouiya
2011a Dynamically consistent reduction of logical regulatory graphs. Theor. Com-

puter Sci. 412 (2011), no. 21, 2207–2218, MR 2809505 (2012a:92077). Zbl
1211.92024. (SD, Biol)

L. Nanjundaswamy
See E. Sampathkumar.

Joseph (Seffi) Naor
See D. Hochbaum.

Vito Napolitano
See M. Abreu.

C.St.J.A. Nash-Williams
1960a On orientations, connectivity, and odd-vertex-pairings in finite graphs. Canad.

J. Math. 12 (1960), 555–567. MR 22 #9455. Zbl 96, 380 (e: 096.38002).

1969a Well-balanced orientations of finite graphs and unobtrusive odd-vertex-pairings.
In: W.T. Tutte, ed., Recent Progress in Combinatorics (Proc. Third Waterloo
Conf., 1968), pp. 133–149. Academic Press, New York, 1969. MR 40 #7146.
Zbl 209, 557 (e: 209.55701).

Roman Nedela
See also A. Malnič.

Roman Nedela and Martin Škoviera
1996a Regular embeddings of canonical double coverings of graphs. J. Combin. The-

ory Ser. B 67 (1996), 249–277. MR 1399678 (97e:05078). Zbl 856.05029.
By “canonical double covering” of Γ they mean the signed covering

graph Σ̃ of Σ = −Γ, but without reversing orientation at the negative
covering vertex [as one would do in a signed covering graph (cf. e.g.
Zaslavsky 1992a)], because orientable embeddings of Γ are being lifted
to orientable embeddings of Σ̃. [Thus these should be thought of not
as signed graphs but rather as voltage (i.e., gain) graphs with 2-element
gain group.] Instead of reversal they twist the negative-vertex rotations
by taking a suitable power. In some cases this allows classifying the
orientable, regular embeddings of Σ̃. (Par: Cov, Top, Aut)

1997a Exponents of orientable maps. Proc. London Math. Soc. (3) 75 (1997), 1–31.
MR 1444311 (98i:05059). Zbl 877.05012.

Main topic: the theory of twisting of rotations as in (1996a).
(GG: Cov, Top, Aut)

Portions concern double covering graphs of signed graphs. §7: “An-
tipodal and algebraically antipodal maps”. A map is “antipodal” if it
is the orientable double covering of a nonorientable map; that is, as a
graph it is the canonical double covering of an unbalanced signed graph.
A partial algebraic criterion for a map to be antipodal. §9: “Regular
embeddings of canonical double coverings of graphs”. See (1996a).

(sg, Par: Cov, Top, Aut)
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1997b Regular maps from voltage assignments and exponent groups. European J.
Combin. 18 (1997), 807–823. MR 1478826 (98j:05061). Zbl 908.05036.

Cases in which the classification of (1996a) is necessarily incomplete
are studied by taking larger voltage (i.e., gain) groups and twisting the
rotations at covering vertices by taking a power that depends on the po-
sition of the vertex in its fiber. Main result: the (very special) conditions
on twisting under which a regular map lifts to a regular map.

(GG: Cov, Top, Aut)

Seiya Negami
See A. Nakamoto.

Toshio Nemoto
See K. Ando.

H. Nencka [H. Nencka-Ficek]
See Ph. Combe and H. Nencka-Fisek.

H. Nencka-Fisek [H. Nencka]
See also Ph. Combe.

1984a Necessary and sufficient conditions for the overblocking effect. In: A. Pȩkalski
and J. Sznajd, eds., Static Critical Phenomena in Inhomogeneous Systems
(Proc. XX Karpacz Winter School Theor. Phys., Karpacz, Poland, 1984), pp.
337–343. Lect. Notes in Physics Vol. 206. Springer-Verlag, Berlin, 1984. MR
839663 (87i:82096).

Signs are defined for arbitrary proper subhypercubes of the hyper-
cube Qd [thus giving a signed hypergraph]. A “plaquette” (this is non-
standard) is a k−1-dimensional band around a k-subhypercube; its sign
is the product of signs of its k−1-faces. Overblocking means not all pla-
quettes can simultaneously be negative (“frustrated”). The interesting
proof is by the adjacency graph of 2-faces of a 3-cube in Qd. Identify
opposite 2-faces to a single vertex whose sign is the product of 2-face
signs; the faces of a 3-cube form a triangle whose vertices alternate in
sign, if all plaquettes were negative. Conclusion: All 2-faces cannot be
negative, if d > 2. [Presumably a similar argument should be applied to
plaquettes of k − 1-faces of a k-cube, k > 3, but it is not. Is it valid?
There would be one plaquette per dimension.] [Annot. 19 Jun 2012.]

(SH, Phys: Fr)

Jaroslav Nešetřil
See J. Kratochv́ıl.

Nancy Ann Neudauer
See also R.A. Brualdi.

2002a Graph representations of a bicircular matroid. Discrete Appl. Math. 118 (2002),
249–262. MR 2003b:05047. Zbl 990.05025.

Survey of parts of Brualdi and Neudauer (1997a), Wagner (1985a), and
Coullard, del Greco, and Wagner (1991a), with supplementary results
on nice graphs whose bicircular matroid, G(Γ,∅), equals M . (Bic)

Nancy Ann Neudauer, Andrew MṀeyers, and Brett Stevens
2001a Enumeration of the bases of the bicircular matroid on a complete graph. Proc.

Thirty-second Southeastern Int. Conf. Combinatorics, Graph Theory and Com-
puting (Baton Rouge, La., 2001). Congr. Numer. 149 (2001), 109–127. MR
2002m:05054. Zbl 1003.05031.
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Counts bases and connected bases. Very complicated formulas. [The
results count labelled simple 1-trees and 1-forests. A 1-tree is a tree with
one extra edge forming a circle. A 1-forest is a disjoint union of 1-trees.
A connected basis of the bicircular matroid G(Kn,∅) for n ≥ 3 is a la-
belled simple 1-tree; a basis is a labelled simple 1-forest. Riddell (1951a)
has a less complicated formula for 1-trees.] (Bic: Invar(Bases))

Nancy Ann Neudauer and Brett Stevens
2001a Enumeration of the bases of the bicircular matroid on a complete bipartite

graph. Ars Combin. 66 (2003), 165–178. MR 2004a:05034. Zbl 1075.05510.
Bases are counted and their structure compared to the spanning trees

of the graph. [A basis is a simple, labelled 1-forest (cf. Neudauer, Meyer,
and Stevens 2001a) whose circles are even.] (Bic: Invar(Bases))

A. Neumaier
1982a Completely regular twographs. Arch. Math. (Basel) 38 (1982), 378–384. MR

83g:05066. Zbl 475.05045.
In the signed graph (Kn, σ) of a two-graph (see D.E. Taylor 1977a), a

“clique” is a vertex set that induces an antibalanced subgraph. A two-
graph is “completely regular” if every clique of size i lies in the same
number of cliques of size i + 1, for all i. Thm. 1.4 implies there is only
a small finite number of completely regular two-graphs. (TG)

Michael Neumann
See C.R. Johnson.

T.M. Newcomb
See also K.O. Price.

1968a Interpersonal balance. In: R.P. Abelson et al., eds., Theories of Cognitive
Consistency: A Sourcebook. Rand-McNally, Chicago, Ill., 1968. (PsS)

G.F. Newell
1950b Crystal statistics of a two-dimensional triangular Ising lattice. Phys. Rev. (2)

79 (1950), 876–882. MR 039631 (12, 576i). Zbl 38, 139b (e: 038.13902).
The same physics conclusions as R.M.F. Houtappel’s (1950a,b) for a

signed, weighted triangular lattice. [See also I. Syôzi (1950a), G.H. Wan-
nier (1950a).] [Annot. 20 Jun 2012.] (Phys, WG, sg: Fr)

Alantha Newman
See N. Ailon.

Charles M. Newman and Daniel L. Stein
1997a Metastate approach to thermodynamic chaos. Phys. Rev. E (3) 55 (1997), no.

5, part A, 5194–5211. MR 1448389 (98k:82098).
A technical paper supporting (1998a). [Annot. 26 Aug 2012.]

(Phys: sg, fr)

1998a Thermodynamic chaos and the structure of short-range spin glasses. In: Anton
Bovier and Pierre Picco, eds., Mathematical Aspects of Spin Glasses and Neural
Networks, pp. 243–287. Progress in Prob., Vol. 41. Birkhäuser, Boston, 1998.
MR 1601751 (99b:82056). Zbl 896.60078.

See especially §3, “The standard SK picture”. The HamiltonianHσ(s) =
−
∑

vw∈E σ(vw)s(v)s(w) is standard. Criticizes the typical physics ap-
plication of randomly signed (and possibly weighted) Kn (Sherrington–
Kirkpatrick model) to Zd-lattice graphs by limits of finite (cubical) sub-
graphs. Raises the question of a “pure state” (cf. Mézard, Parisi, and Vi-
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rasoro (1987a) et al.) of a signed Kn, where a state is s : V → {+1,−1}
and a pure state is apparently a linear combination of or probability
distribution on states, especially in the Zd limit. A pure state is not well
defined but is related to states of low frustration (and high probability).
[Question. Is there a graphical meaning of a pure state, based on the
(ambiguous) physics definition? It should involve states with low frus-
tration, because they dominate the partition function Z(σ) =

∑
s e

Hσ(s),
and on the qualities desired for computing quantities of physical interest,
especially in terms of H and Z.]

A “metastate” is a measure on states, essentially a linear combination
with explicit coefficients. Pure states on Zd should be metastates. See
(1997a). [Question. Is there a graph-theory meaning to all this? Does it
lead to a definition of frustration in an infinite signed (or gain) graph?]
[Annot. 26 Aug 2012.] (Phys: sg, fr: Exp, Ref)

2010a Distribution of pure states in short-range spin glasses. Int. J. Modern Phys. B
24 (2010), no. 14, 2091–2106. MR 2659908 (2011g:82055).

Further development of (1997a); cf. (1998a). [Annot. 26 Aug 2012.]
(Phys: sg, fr)

Sang Nguyen
See P.L. Hammer.

Robert Nickel
See W. Hochstättler.

Rolf Niedermeier
See F. Hüffner.

Juhani Nieminen
1976a Weak balance: A combination of Heider’s theory and cycle and path-balance.

Control Cybernet. 5 (1976), 69–73. MR 55 #2639.
Sc denotes the “signed closure” of a signed digraph S. S is “weakly bal-

anced” if in Sc all directed digons and all induced transitive triangles are
positive. Thm.: S is weakly balanced iff it is path- and cycle-balanced.

(SD: Bal)

Peter Nijkamp
See F. Brouwer.

Vladimir Nikiforov
See L.S. de Lima.

Yuri Nikolayevsky
See G. Cairns.

Wouter de Nooy
1999a The sign of affection: Balance-theoretic models and incomplete signed digraphs.

Social Networks 21 (1999), 269–286.
Vertex ranking (a partial ordering) based on arc signs. Thm. 3 charac-

terizes equality of rank. Thm. 6 characterizes strict inequality. [Annot.
11 Sept 2010.] (SD: PsS, Bal, Clu)

2008a Signs over time: statistical and visual analysis of a longitudinal signed network.
J. Social Structure 9 (2008), Article 1, 32 pp. (SG: Fr, PsS)

Wouter de Nooy, Andrej Mrvar, and Vladimir Batagelj
2005a Exploratory Social Network Analysis with Pajek. Structural Anal. Soc. Sci., No.

27. Cambridge Univ. Press, Cambridge, Eng., 2005.
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Pajek is a computer package that analyzes networks, i.e., graphs, includ-
ing signed graphs. Ch. 4: “Sentiments and friendship.” Computation of
balance and clusterability of signed (di)graphs. §4.2: “Balance theory.”
Introductory. §4.4: “Detecting structural balance and clusterability.”
How to use Pajek to optimize clustering. §4.5: “Development in time.”
Pajek can look for evolution towards balance or clusterability.
§10.3: “Triadic analysis.” Types of balance and clusterability, with the

triads (order-3 induced subgraphs) that do or do not occur in each. Table
16, p. 209, “Balance-theoretic models”, is a chart of 6 related models.
§§10.7, 10.10: “Questions” and “Answers.” Some are on balance models.
§10.9: “Further reading.” [Annot. 28 Apr 2009.]

(SG, SD, PsS: Bal, Clu, Alg: Exp)

Robert Z. Norman
See also F. Harary.

Robert Z. Norman and Fred S. Roberts
1972a A derivation of a measure of relative balance for social structures and a char-

acterization of extensive ratio systems. J. Math. Psychology 9 (1972), 66–91.
MR 45 # 2121. Zbl 233.92006.

Circle (“cycle”) indices of imbalance: the proportion of circles that are
unbalanced, with circles weighted nonincreasingly according to length.

(SG: Fr(Circles))

1972b A measure of relative balance for social structures. In: Joseph Berger, Morris
Zelditch, Jr., and Bo Anderson, eds., Sociological Theories in Progress, Ch. 14,
pp. 358–391. Houghton Mifflin, Boston, 1972.

Exposition and application of (1972a). (SG: Fr(Circles): Exp, PsS)

Beth Novick and András Sebö
1995a On combinatorial properties of binary spaces. In: Egon Balas and Jens Clausen,

eds., Integer Programming and Combinatorial Optimization (4th Int. IPCO
Conf., Copenhagen, 1995, Proc.), pp. 212–227. Lect. Notes in Computer Sci.,
Vol. 920. Springer-Verlag, Berlin, 1995. MR 96h:0503.

The clutter of negative circuits of a signed binary matroid (M,σ).
Important are the lift and extended lift matroids, L(M,σ) and L0(M,σ),
defined as in signed graph theory. An elementary result: the clutter is
signed-graphic iff L0(M,σ)/e0 is graphic (which is obvious). There are
also more substantial but complicated results. [See Cornuéjols (2001a),
§8.4.] (SM, SG: M)

1996a On ideal clutters, metrics and multiflows. In: William H. Cunningham, S. Tho-
mas McCormick, and Maurice Queyrann, eds., Integer Programming and Com-
binatorial Optimization (5th Int. IPCO Conf., Vancouver, 1996, Proc.), pp.
275–287. Lect. Notes in Computer Sci., Vol. 1084. Springer-Verlag, Berlin,
1996. MR 98i:90075. (SM: M)

Marc Noy
See O. Giménez.

Cyriel van Nuffelen
1973a On the rank of the incidence matrix of a graph. Colloque sur la Theorie des

Graphes (Bruxelles, 1973). Cahiers Centre Etudes Rech. Oper. 15 (1973), 363–
365. MR 50 #162. Zbl 269.05116.

The theorem restated: unoriented incidence matrix has rank rkG(−Γ).
[Because the matrix represents G(−Γ): see Zaslavsky (1982a). In retro-
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spect, partially implicit in Stewart (1966a) and completely so in Stanley
(1973a).] (par: Incid, ec)

1976a On the incidence matrix of a graph. IEEE Trans. Circuits Systems CAS-23
(1976), 572. MR 56 #186.

Summarizes (1973a). (par: Incid, ec)

Koji Nuida
See also T. Abe.

2010a A characterization of signed graphs with generalized perfect elimination order-
ings. Discrete Math. 310 (2010), no. 4, 819–831. MR 2574831 (2011a:05140.
Zbl 1209.05119. arXiv:0712.4118. (SG: Str, Geom)

Yasuhide Numata
See T. Abe.

Mohammad Reza Oboudi
See S. Akbari.

M. Ocio
See E. Vincent.

Hidefumi Ohsugi and Takayuki Hibi
1998a Normal polytopes arising from finite graphs. J. Algebra 207 (1998), 409–426.

MR 1644250 (2000a:13010). Zbl 926.52017.
The odd-cycle condition of Fulkerson, Hoffman, and McAndrew (1965a)

is employed in polynomial algebra. “Graph polytope” = conv(columns
of H(−Γ)). [Problem. Generalize to signed graphs.] [Annot. 30 May
2011.] (sg: Par: Geom)

2003a Normalized volumes of configurations related with root systems and complete
bipartite graphs. Discrete Math. 268 (2003), 217–242. MR 1983280 (2004m:-
52018). Zbl 1080.14059.

A configuration consists of the vectors representing an acyclic orien-
tation of a complete bipartite signed graph. The volume is that of the
pyramid over the configuration with apex at the origin. (Successor to
Fong (2000a).) [Question. Is there a connection with the chromatic
polynomial?] (sg: Geom: Invar)

Ayao Okiji
See Y. Kasai.

E. Olaru
See St. Antohe.

Marián Olejár
See J. Širáň.

D.D. Olesky
See M. Catral and C.R. Johnson.

Carla Silva Oliveira
See also L.S. de Lima.

Carla Silva Oliveira, Leonardo Silva de Lima, Nair Maria Maia de Abreu, and
Pierre Hansen

2010a Bounds on the index of the signless Laplacian of a graph. Discrete Appl. Math.
158 (2010), no. 4, 355–360. MR 2588119 (2011d:05228). Zbl 1225.05174.

See Cvetković, Rowlinson, and Simić (2007a). (Par: Adj)
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Carla Silva Oliveira, Leonardo Silva de Lima, Nair Maria Maia de Abreu, and
Steve Kirkland

2010a Bounds on the Q-spread of a graph. Linear Algebra Appl. 432 (2010), no. 9,
2342–2351. MR 2599864 (2011k:05146). Zbl 1214.05082.

See Cvetković, Rowlinson, and Simić (2007a). (Par: Adj)

G.R. Omidi
See also F. Ayoobi and W.H. Haemers.

2009a On a signless Laplacian spectral characterization of T -shape trees. Linear Al-
gebra Appl. 431 (2009), no. 9, 1607–1615. MR 2555062 (2010m:05181). Zbl
1169.05351.

See Cvetković, Rowlinson, and Simić (2007a). (Par: Adj)

Gholam R. Omidi and Ebrahim Vatandoost
2010a Starlike trees with maximum degree 4 are determined by their signless Lapla-

cian spectra. Electron. J. Linear Algebra 20 (2010), 274–290. MR 2653539
(2011c:05205). Zbl 1205.05151.

See Cvetković, Rowlinson, and Simić (2007a). (Par: Adj)

Kenji Onaga
1966a Dynamic programming of optimum flows in lossy communication nets. IEEE

Trans. Circuit Theory CT-13 (1966), 282–287. (GN)

1967a Optimal flows in general communication networks. J. Franklin Inst. 283 (1967),
308–327. MR 36 #1189. Zbl (e: 203.22402). (GN)

Shmuel Onn
See also P. Kleinschmidt.

1997a Strongly signable and partitionable posets. European J. Combin. 18 (1997),
921–938. MR 99d:06007. Zbl 887.06003.

For “signability” see Kleinschmidt and Onn (1995a). A strong signing
is an exact signing that satisfies a recursive condition on lower intervals.

(Sgnd, Geom)

Rikio Onodera
1968a On signed tree-graphs and cotree-graphs. RAAG Res. Notes (3) No. 133 (1968),

ii + 29 pp. MR 38 #5671. Zbl 182, 582a (e: 182.58201).
The adjacency graph of trees of a graph is signed from a vertex signature

and is shown to be balanced. [Trivial.] [Annot. 24 July 2010.]
(SG: Bal)

The Open University
1981a Graphs and Digraphs. Unit 2 in Course TM361: Graphs, Networks and Design.

The Open University Press, Walton Hall, Milton Keynes, England, 1981. MR
none. Zbl none.

Social sciences (pp. 21–23). Signed digraphs (pp. 50–52). [Published
version: see Wilson and Watkins (1990a).] (SG, PsS, SD: Exp)

Peter Orlik and Louis Solomon
1980a Unitary reflection groups and cohomology. Invent. Math. 59 (1980), 77–94. MR

81f:32017. Zbl 452.20050.
Thm. (4.8): The characteristic polynomials of the Dowling lattices and

jointless Dowling lattices of Zr, computed via group theory as part of the
general treatment of finite unitary reflection groups. (gg: m, Geom)

1982a Arrangements defined by unitary reflection groups. Math. Ann. 261 (1982),
339–357. MR 84h:14006. Zbl 491.51018.



the electronic journal of combinatorics #DS8 229

In the intersection lattice of reflection hyperplanes of a finite uni-
tary reflection group, the characteristic polynomial of an upper inter-
val has an integral factorization. The proofs involve detailed study of
the group actions on Cl. Dictionary: Al(r) and Akl (r) are the arrange-
ments corresponding to the rank-l Dowling lattices and partially jointless
Dowling lattices of Zr. Relevant results: §2: “Monomial groups”: Cor.
(2.4) counts the flats, Prop. (2.5) and Cor. (2.7) gives the polynomi-
als for Al(r) [all known from Dowling (1973b)]. Cor. (2.10) counts the
flats, Prop. (2.13) gives the polynomial of Akl (r), Prop. (2.14) notes that
proper upper intervals are Dowling lattices [all fairly obvious via gain
graphs and coloring (Zaslavsky 1995b)]. (gg: m, Geom, Invar)

1983a Coxeter arrangements. In: Peter Orlik, ed., Singularities (Arcata, Calif., 1981),
Part 2, pp. 269–291. Proc. Sympos. Pure Math., Vol. 40. Amer. Math. Soc.,
Providence, R.I., 1983. MR 85b:32016. (gg: m, Geom, Invar)

James B. Orlin
See also R.K. Ahuja, M. Kodialam, and R. Shull.

1984a Some problems on dynamic/periodic graphs. In: Progress in combinatorial op-
timization (Proc. Conf., Waterloo, Ont., 1982), pp. 273–293. Academic Press,
Toronto, 1984. MR 86m:90058. Zbl 547.05060.

Problems on 1-dimensional periodic graphs (i.e., covering (di)graphs
of Z-gain graphs Φ) that can be solved in Φ: connected components,
strongly connected components, directed path from one vertex to an-
other, Eulerian trail (directed or not), bicolorability, and spanning tree
with minimum average cost.

(GG, GD: Cov: Paths, Circles, Col: Alg)

1985a On the simplex algorithm for networks and generalized networks. Math. Pro-
gramming Study 24 (1985), 166–178. MR 87k:90102. Zbl 592.90031.

(GN: M(Bases): Alg)

Charles E. Osgood and Percy H. Tannenbaum
1955a The principle of congruity in the prediction of attitude change. Psychological

Rev. 62 (1955), 42–55. (VS: PsS)

Eiji O’Shima
See M. Iri.

Katsuhiro Ota
See A. Nakamoto.

James G. Oxley
See also T. Brylawski, J. Geelen, J.P.S. Kung, and L.R. Matthews.

1992a Infinite matroids. In: Neil White, ed., Matroid Applications, Ch. 3, pp. 73–90.
Encycl. Math. Appl., Vol. 40. Cambridge Univ. Press, Cambridge, Eng., 1992.
MR 93f:05027. Zbl 766.05016.

See Exer. 3.20. (Bic: Exp)

1992b Matroid Theory. Oxford Univ. Press, Oxford, 1992. MR 1207587 (94d:05033).
Zbl 784.05002.

Thm. 6.6.3: proof from Brylawski (1975a). (gg: sw: Exp)

§10.3: Exer. 3 concerns the Dowling lattices of GF(q)×. §12.2: Exer.
13 concerns G(Ω). (gg: M: Exp)
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2011a Matroid Theory, 2nd ed. Oxford Grad. Texts Math., 21. Oxford Univ. Press,
Oxford, 2011.

§6.10, “Dowling geometries”: Frame (i.e., bias) matroid theory of bi-
ased graphs. Examples: gain and signed graphs, Dowling (1973a,b)
geometries, bicircular, even-circle (even-cycle, factor), and poise and an-
tidirection matroids. Representability of Dowling geometries. Kahn and
Kung’s (1982a) varieties. Other mentions of Dowling geometries in Prop.
14.10.22, §15.3 p. 590, §15.9 p. 605, and Appendix, “Some interesting
matroids”, p. 663; of bicircular matroids in Exer. 10.4.12, Prop. 11.1.6,
Exer. 11.1.7, Conj. 14.3.12, Thm. 14.10.19. Spikes and swirls (the lift
and frame matroids of biased 2Cn’s) are important in matroid structure
theory. [Annot. 21 Mar 2011.] (GG: M, Bic, EC: Exp, Exr)

James Oxley, Dirk Vertigan, and Geoff Whittle
1996a On inequivalent representations of matroids over finite fields. J. Combin. The-

ory Ser. B 67 (1996), 325–343. MR 97d:05052. Zbl 856.05021.
§5: Free swirls, G(2Cn,∅) (n ≥ 4), mentioning their relationship to

Dowling lattices, and complete free spikes, L0(2Cn,∅). (GG: M)

M.L. Paciello
See M. Falcioni.

Manfred W. Padberg
See E.L. Johnson

Steven R. Pagano
†1998a Separability and Representability of Bias Matroids of Signed Graphs. Doctoral

thesis, State Univ. of New York at Binghamton, 1998. MR 2697393 (no rev).
Ch. 1: “Separability”. Graphical characterization of bias-matroid k-

separations of a biased graph. Also, some results on the possibility of
k-separations in which one or both sides are connected subgraphs.

(GG: M: Str)
Ch. 2: “Representability”. The bias matroid of every signed graph is

representable over all fields with characteristic 6= 2. For which signed
graphs is it representable in characteristic 2 (and therefore representable
over GF(4), by the theorem of Geoff Whittle, A characterization of the
matroids representable over GF(3) and the rationals. J. Combin. Theory
Ser. B 65 (1995), 222–261. MR 96m:05046. Zbl 835.05015.)? Solved
(for 3-connected signed graphs having vertex-disjoint negative circles and
hence nonregular matroid). There are two essentially different types: (i)
two balanced graphs joined by three independent unbalanced digons;
(ii) a cylindrical signed graph, possibly with balanced graphs adjoined
by 3-sums. [See notes on Seymour (1995a) for definition of (ii) and for
Lovász’s structure theorem in the case without vertex-disjoint negative
circles.]

Furthermore, the representations of these graphs in characteristic not
2 are all canonical signed-graphic, while any representations over GF(4)
are canonical Z3-gain graphic. (SG: M: Incid, Str, Top)

Ch. 3: “Miscellaneous results”. (SG: M: Incid, Str)

1999a Binary signed graphs. Manuscript, ca. 1999. (SG: M: Incid, Str)

1999b Signed graphic GF(4) forbidden minors. Manuscript, ca. 1999. (SG: M)
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1999c GF(4)-representations of bias matroids of signed graphs: The 3-connected case.
Manuscript, ca. 1999. (SG: M: Incid, Str, Top)

Igor Pak
See S. Chmutov.

Edgar M. Palmer
See F. Harary and F. Kharari.

B.L. Palowitch, Jr.
See M.A. Kramer.

Rong-Ying Pan
See Y.H. Chen.

Yongliang Pan
See Y. Hou.

Ondřej Pangrác
See D. Král’.

Casian Pantea
See G. Craciun.

P. Paolucci
See S. Cabasino.

Gyula Pap
2005a Packing non-returning A-paths algorithmically. In: Stefan Felsner, ed., 2005

European Conference on Combinatorics, Graph Theory and Applications (Eu-
roComb ’05) (Berlin, 2005), pp. 139–144, electronic. Discrete Math. & Theor.
Computer Sci. Proceedings AE, 2005. Zbl 1192.05123.
http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/issue/view/77

(GG: Str, Paths, Alg)

2007a Packing non-returning A-paths. Combinatorica 27 (2007), no. 2, 247–251. MR
2008c:05148. Zbl 1136.05060.

Given: Φ with gain group S(Ω), the symmetric group of a set Ω, A ⊆ V ,
and ω : A → Ω. An A-path is a path P with endpoints v, w ∈ A and
internally disjoint from A; it is “returning” if ω(v)ϕ(P ) = ω(w). Thm.
The largest number of disjoint returning A-paths equals the minimum,
over all satisfied edge subsets F , of the maximum number of disjoint
[A∪V (F )]-paths in ‖Φ‖\F . [For “satisfied” edges see Zaslavsky (2009a).]
Generalizes and simplifies Chudnovsky et al. (2006a), which is the case
where the gains act regularly and ω = constant. (GG: Str, Paths)

2008a Packing non-returning A-paths algorithmically. Discrete Math. 308 (2008), no.
8, 1472–1488. MR 2392063 (2009e:05160). Zbl 1135.05060.

(GG: Str, Paths, Alg)

Christos H. Papadimitriou
See also E.M. Arkin and A.S. LaPaugh.

Christos H. Papadimitriou and Kenneth Steiglitz
1982a Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, En-

glewood Cliffs, N.J., 1982. MR 84k:90036. Zbl 503.90060.
See Ch. 10, Problems 6–7, p. 244, for bidirected graphs and flows in

relation to the matching problem. (sg: Ori: Flows)

1985a Kombinatornaya optimiztsiya. Algoritmy i Slozhnost’. Transl. V.B. Alekseev.
Mir, Moskva, 1985. MR 86i:90067. Zbl 598.90067.

Russian translation of (1982a). (sg: Ori: Flows)

http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/issue/view/77
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Konstantinos Papalamprou
See G. Appa and L. Pitsoulis.

Ojas Parekh
See E.G. Boman.

Giorgio Parisi
See also S. Cabasino, B. Coluzzi, M. Falcioni, L.A. Fernández, E. Marinari, and
M. Mézard.

1994a D-dimensional arrays of Josephson junctions, spin glasses and q-deformed har-
monic oscillators. J. Phys. A 27 (1994), 7555–7568. MR 1312271 (95m:82070).
Zbl 844.60095.

Physics on hypercube QD with complex unit gains ϕ (ϕ is a “U(1) gauge
field”). Spins ζ(v) can be (i) complex units or (ii) Gaussian random
complex numbers, or (iii) ζ can be a unit vector ∈ Cn; mainly, (ii).
Assumed: each square (“plaquette”) Cα,β (with vertices x, x+eα, x+eα+
eβ, x + eβ, x for any x ∈ V (QD)) has gain eiBσα,β in a fixed orientation,
where σα,β ∈ {+1,−1} determines which orientations have gains eiB

and e−iB. B = 0 gives balance; B = π gives all plaquette gains −1
(full frustration). If D ≤ 3, but not if D > 3, the choices of σ are
equivalent by switching in the gain group C×. The statistics of random
σ are investigated. [Annot. 19 Jun 2012.] (Phys, gg)

1996a A mean field theory for arrays of Josephson junctions. J. Math. Phys. 37 (1996),
no. 10, 5158–5170. MR 1411624 (97i:82029). Zbl 872.60038.

Complex unit gain graphs. The Hamiltonian is the quadratic form
z̄A(Φ)z. [Annot. 12 Aug 2012.] (GG: Phys)

M. Parvathi
2004a Signed partition algebras. Comm. Algebra 32 (2004), no. 5, 1865–1880. MR

2099708 (2005g:16060). Zbl 1081.20008.
They are the special case of Bloss (2003a) where G = {+,−}. [Annot.

21 Mar 2011.] (gg: Algeb, m)

M. Parvathi and M. Kamaraj
1998a Signed Brauer’s algebras. Comm. Algebra 26 (1998), no. 3, 839–855. MR

1606174 (99c:16028). Zbl 944.16015.
The algebra is generated by multiplying two-layer signed graphs (“Brau-

er graphs”). In the product Σ1Σ2 the bottom layer of Σ1 cancels with
the top layer of Σ2 using edge-sign product. (Signs are represented by
arrows [!].) [Annot. 5 Jun 2012.] (gg: Algeb, m)

2002a Matrix units for signed Brauer’s algebras. Southeast Asian Bull. Math. 26
(2002), no. 2, 279–297. MR 2047807 (2005b:16055). Zbl 1066.16014.

(gg: Algeb, m)

M. Parvathi and A. Joseph Kennedy
2004a G-vertex colored partition algebras as centralizer algebras of direct products.

Comm. Algebra 32 (2004), no. 11, 4337–4361. MR 2102453 (2005i:16068). Zbl
1081.20009. (gg: Algeb, m)

2004b Representations of vertex colored partition algebras. Southeast Asian Bull.
Math. 28 (2004), no. 3, 493–518. MR 2084740 (2006c:16051). Zbl 1081.20010.

(gg: Algeb, m)
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2005a Extended G-vertex colored partition algebras as centralizer algebras of symmet-
ric groups. Algebra Discrete Math. 2005, no. 2, 58–79. MR 2238218 (2007b:-
16068). Zbl 1091.20005. (gg: Algeb, m)

M. Parvathi and D. Savithri
2002a Representations of G-Brauer algebras. Southeast Asian Bull. Math. 26 (2002),

no. 3, 453–468. MR 2047837 (2005b:16056). Zbl 1065.20017. (gg: Algeb, m)

M. Parvathi and C. Selvararj
1999a Signed Brauer’s algebras as centralizer algebras. Comm. Algebra 27 (1999), no.

12, 5985–5998. MR 1726289 (2000j:16051). Zbl 944.16016. (gg: Algeb, m)

2004a Note on signed Brauer’s algebras. Southeast Asian Bull. Math. 27 (2004), no.
5, 883–898. MR 2175793 (2006i:16047). Zbl 1071.16010. (gg: Algeb, m)

2006a Characters of signed Brauer’s algebras. Southeast Asian Bull. Math. 30 (2006),
no. 3, 495–514. MR 2243691 (2007d:16068). Zbl 1150.16303. (gg: Algeb, m)

M. Parvathi and B. Sivakumar
2008a The Klein-4 diagram algebras. J. Algebra Appl. 7 (2008), no. 2, 231–262. MR

2417044 (2009b:16032). Zbl 1167.16012. (gg: Algeb, m)

2008b R-S correspondence for (Z2 × Z2) o Sn and Klein-4 diagram algebras. Elec-
tronic J. Combin. 15 (2008), no. 1, Research Paper R98, 28 pp. MR 2426161
(2009i:05233). Zbl 1163.05300. (gg: Algeb, m)

M. Parvathi, B. Sivakumar, and A. Tamilselvi
2007a R-S correspondence for the hyper-octahedral group of type Bn—a different

approach. Algebra Discrete Math. 2007 (2007), no. 1, 86–107. MR 2367517
(2008k:05203). Zbl 1164.05465. (gg: Algeb, m)

M. Parvathi and A. Tamilselvi
2007a Robinson-Schensted correspondence for the signed Brauer algebras. Electronic

J. Combin. 14 (2007), no. 1, Research Paper 49, 26 pp. MR 2336326 (2008e:-
05143). Zbl 1163.05336. (gg: Algeb, m)

2008a Robinson-Schensted correspondence for the G-Brauer algebras. In: S.K. Jain
and S. Parvathi, eds., Noncommutative rings, group rings, diagram algebras and
their applications (Proc. Int. Conf., Chennai, 2006), pp. 137–150. Contemp.
Math., Vol. 456. Amer. Math. Soc., Providence, R.I., 2008. MR 2416147
(2009m:16060). Zbl 1187.05085. (gg: Algeb, m)

S. Pati
See R.B. Bapat and S. Kalita.

Philippa Pattison
1993a Algebraic Models for Social Networks. Structural Analysis in the Social Sci-

ences, 7. Cambridge Univ. Press, Cambridge, 1993.
Ch. 8, pp. 258–9: “The balance model. The complete clustering model.”

Embedded in a more general framework.
(SG, Sgnd: Adj, Bal, Clu: Exp)

G.A. Patwardhan
See B.D. Acharya and M.K. Gill.

Debdas Paul
See S. Kirkland.

Vern I. Paulsen
See B.G. Bodmann and R.B. Holmes.
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Charles Payan
See also F. Jaeger.

1983a Perfectness and Dilworth number. Discrete Math. 44 (1983), no. 2, 229–230.
MR 689816 (84e:05090). Zbl 518.05053.

See Benzaken, Hammer, and de Werra (1985a). (SGc)

Edmund R. Peay
1977a Matrix operations and the properties of networks and directed graphs. J. Math.

Psychology 15 (1977), 89–101. MR 58 #20631. (SD, WD: Adj: Gen)

1977b Indices for consistency in qualitative and quantitative structures. Human Re-
lations 30 (1977), 343–361.

Proposes an index of nonclusterability for signed graphs and generalizes
to edges weighted by a linearly ordered set. (SG, Gen: Clu: Fr(Gen))

1980a Connectedness in a general model for valued networks. Social Networks 2
(1980), 385–410. MR 602317 (82h:92053) (q.v.).

Real-number edge weights; the value of a path is the minimum absolute
weight. [Annot. 11 Sept 2010.] (WG)

1982a Structural models with qualitative values. J. Math. Sociology 8 (1982), 161–
192. MR 83d:92107. Zbl 486.05060.

See mainly §3: “Structural consistency.” (sd: Gen: Bal, Clu)

Luke Pebody
See B. Bollobás.

Britta Peis
See W. Hochstättler and M. Lätsch.

Uri N. Peled
See S.R. Arikati, A. Bhattacharya, P.L. Hammer, T. Ibaraki, and N.V.R. Ma-
hadev.

Martin Pelikan and Alexander K. Hartmann
2007a Obtaining ground states of Ising spin glasses via optimizing bonds instead of

spins. (Extended abstract.) In: GECCO ’07: Genetic and Evolutionary Com-
putation Conference (GECCO 2007, London), p. 628. ACM, New York, 2007.

Announcement of (2007b). (SG, Phys: Fr: Alg)

2007b Obtaining ground states of Ising spin glasses via optimizing bonds instead of
spins. Report, Missouri Estimation of Distribution Algorithms Laboratory,
Dept. of Mathematics and Computer Science, University of Missouri–St. Louis,
2007. http://medal-cs.umsl.edu/ (SG, Phys: Fr: Alg)

Marcello Pelillo
See R. Glantz.

Francisco Pereira
See A.J. Hoffman.

Kavita S. Permi
See P. Siva Kota Reddy.

M. Petersdorf
1966a Einige Bemerkungen über vollständige Bigraphen. Wiss. Z. Techn. Hochsch.

Ilmenau 12 (1966), 257–260. MR 37 #1275. Zbl (e: 156.44302).
Treats signed Kn’s. Satz 1: maxσ l(Kn, σ) = b(n−1)2/4c with equality

iff (Kn, σ) is antibalanced. [From which follows easily the full Thm. 14
of Abelson and Rosenberg (1958a).] Also, some further discussion of

http://medal-cs.umsl.edu/
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antibalanced and unbalanced cases. [For extensions of this problem see
notes on Erdős, Győri, and Simonovits (1992a).] (SG: Fr)

Ion Petre
See A. Alhazov and T. Harju.

J.L. Phillips
1967a A model for cognitive balance. Psychological Rev. 74 (1967), 481–495.

Proposes to measure imbalance of a signed (di)graph by largest eigen-
value of a matrix close to I + A(Σ). (Cf. Abelson 1967a.) Possibly,
means to treat only graphs that are complete aside from isolated vertices.
[Somewhat imprecise.] Summary of Ph.D. thesis. (SG: Bal, Fr, Adj)

Nancy V. Phillips
See F. Glover.

Alberto Del Pia
See A. Del Pia.

Jean-Claude Picard and H. Donald Ratliff
1973a A graph-theoretic equivalence for integer programs. Operations Res. 21 (1973),

261–269. MR 50 #12240. Zbl 263.90021.
A minor application of signed switching to a weighted graph arising

from an integer linear program. (sg: sw)

Marcin Pilipczuk
See M. Cygan.

Micha lPilipczuk
See M. Cygan.

P. Pincus
See S. Alexander.

S. Pirzada
20xxa Signed degree sequences in signed graphs. Int. Workshop on Set-Valuations,

Signed Graphs, Geometry and Their Appl. (IWSSG-2011, Mananthavady, Ker-
ala, 2011). J. Combin. Inform. Syst. Sci., to appear.

(SG: ori: Invar: Exp)(SG: ori: Invar)

S. Pirzada and F.A. Dar
2007a Signed degree sets in signed 3-partite graphs. Mat. Vesnik 59 (2007), no. 3,

121–124. MR 2361920 (2008k:05095). Zbl 1224.05222. (SG: ori: Invar)

2007b Signed degree sequences in signed 3-partite graphs. J. Korean Soc. Ind. Appl.
Math. 11 (2007), no. 1, 9–14. (SG: ori: Invar)

S. Pirzada, T.A. Naikoo, and F.A. Dar
2007a Signed degree sets in signed graphs. Czech. Math. J. 57 (2007), no. 3, 843–848.

MR 2008g:05088. Zbl 1174.05059. arXiv:math/0609121.
The set, as opposed to sequence, of net degrees [cf. Chartrand, Gavlas,

Harary, and Schultz (1994a)] of a signed simple graph can be any finite
set of integers. Also, the smallest order of a signed graph with given net
degree set. (SG: ori: Invar)

2007b Signed degree sequences in signed bipartite graphs. AKCE Int. J. Graphs Com-
bin. 4 (2007), no. 3, 301–312. MR 2384886 (no rev). Zbl 1143.05307.

Characterization of net degree sequences of signed, simple, bipartite
graphs. [Annot. 15 Nov 2011.] (SG: ori: Invar)
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2008a A note on signed degree sets in signed bipartite graphs. Appl. Anal. Discrete
Math. 2 (2008), no. 1, 114–117. MR 2396733 (2009a:05092). Zbl 1199.05159.

Every finite set of integers is the signed degree set of some connected
signed bipartite graph. [Annot. 10 Sept 2010.] (SG: ori: Invar)

Tomaž Pisanski
See also V. Batagelj.

Tomaž Pisanski and Primož Potočnik
2004a Graphs on surfaces. In: Jonathan L. Gross and Jay Yellen, eds., Handbook of

Graph Theory, pp. 611–624. Discrete Math. Appl. (Boca Raton). CRC Press,
Boca Raton, Fla., 2004. MR 2004j:05001 (book). Zbl 1036.05001 (book).

Cryptic. Dictionary (my best guess): “signed edge” = oriented edge;
“signed boundary walk” (of a face) = directed face boundary walk; “sig-
nature” = set of negative edges of an embedding; “switch” = negative
(= orientation-reversing) edge of an embedding. (sg: Top)

Tomaž Pisanski and Jože Vrabec
1982a Graph bundles. Preprint Ser., Dept. Math., Univ. Ljubljana, 1982.

Definition (see Pisanski, Shawe-Taylor, and Vrabec (1983a)), examples,
superimposed structure, classification. (GG: Cov(Gen))

Tomaž Pisanski, John Shawe-Taylor, and Jože Vrabec
1983a Edge-colorability of graph bundles. J. Combin. Theory Ser. B 35 (1983), 12–19.

MR 85b:05086. Zbl 505.05034, (515.05031).
A graph bundle is, roughly, a covering graph with an arbitrary graph

Fv (the “fibre”) over each vertex v, so that the edges covering e : vw
induce an isomorphism Fv → Fw. (GG: Cov(Gen): ECol)

Leonidas Pitsoulis
See also G. Appa.

Leonidas Pitsoulis and Konstantinos Papalamprou
20xxa Decomposition of binary signed-graphic matroids. Submitted. arXiv:1011.6497.

A binary matroid is signed-graphic iff, for some copoint H, all the
bridges of H (in the sense of Tutte) are graphic aside from one that is
signed-graphic (and possibly graphic). (SG: M, Str)

Leonidas Pitsoulis, Konstantinos Papalamprou, Gautam Appa, and Balázs
Kotnyek

2009a On the representability of totally unimodular matrices on bidirected graphs.
Discrete Math. 309 (2009), no. 16, 5024–5042. MR 2548904 (2010m:05182).
Zbl 1182.05120.

Tour matrices of bidirected graphs are closed under 1-, 2-, and 3-sums.
Possibly, every totally unimodular matrix is a tour matrix.

(Ori: Incid(Gen))

Irene Pivotto
See B. Guenin.

Michael Plantholt
See F. Harary.

M.D. Plummer
See L. Lovász.

Oskar E. Polansky
See I. Gutman.
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Svatopluk Poljak
See also Y. Crama and B. Mohar.

Svatopluk Poljak and Daniel Turźık
1982a A polynomial algorithm for constructing a large bipartite subgraph, with an

application to a satisfiability problem. Canad. J. Math. 34 (1982), 519–524.
MR 83j:05048. Zbl 471.68041, (487.68058).

Main Theorem: For a simple, connected signed graph of order n and
size |E| = m, the frustration index l(Σ) ≤ 1

2
[m− 1

2
(n− 1)]. The proof is

algorithmic, by constructing a (relatively) small deletion set. Dictionary:
Σ is an “edge-2-colored graph” (G, c), E+ and E− are called E1 and E2,
a balanced subgraph is “generalized bipartite”, and m − l(Σ) is what
is calculated. [This gives an upper bound on D(Γ) := maxσ l(Γ, σ) for
a connected, simple graph, whereas Akiyama, Avis, Chvátal, and Era
(1981a) has a lower bound on D.] (SG: Fr, Alg)

1986a A polynomial time heuristic for certain subgraph optimization problems with
guaranteed worst case bound. Discrete Math. 58 (1986), 99–104. MR 87h:68131.
Zbl 585.05032.

Generalizes (1982a), with application to signed graphs in Cor. 3.
(SG: Fr, Alg)

1987a On a facet of the balanced subgraph polytope. Časopis Pěst. Mat. 112 (1987),
373–380. MR 89g:57009. Zbl 643.05059.

The polytope PB(Σ) (the authors write PBL) is the convex hull in
RE of characteristic vectors of balanced edge sets. It generalizes the
bipartite subgraph polytope PB(Γ) = PB(−Γ) (see Barahona, Grötschel,
and Mahjoub (1985a)), but is essentially equivalent to it according to
Prop. 2: The negative-subdivision trick preserves facets of the polytope.
Thm. 1 gives new facets, corresponding to certain circulant subgraphs.
(They are certain unions of two Hamilton circles, each having constant
sign.) (SG: Fr, Geom)

1992a Max-cut in circulant graphs. Discrete Math. 108 (1992), 379–392. MR 93k:05101.
Further development of (1987a) for all-negative Σ. The import for

general signed graphs is not discussed. (Par: Fr, Geom)

Svatopluk Poljak and Zsolt Tuza
1995a Maximum cuts and large bipartite subgraphs. In: W. Cook, L. Lovaśz, and P.

Seymour, eds., Combinatorial Optimization (Papers from the DIMACS Special
Year), pp. 181–244. DIMACS Ser. Discrete Math. Theor. Computer Sci., Vol.
20. Amer. Math. Soc., Providence, R.I., 1995. MR 95m:90008. Zbl 819.00048.

Surveys max-cut and weighted max-cut [that is, max size balanced sub-
graph and max weight balanced subgraph in all-negative signed graphs].
See esp. §2.9: “Bipartite subgraph polytope and weakly bipartite graphs”.
[The weakly bipartite classes announced by Gerards suggested that a
signed-graph characterization of weakly bipartite graphs is called for.
This is provided by Guenin (2001a).]
§1.2, “Lower bounds, expected size, and heuristics”, surveys results

for all-negative signed graphs that are analogous to results in Akiyama,
Avis, Chvátal, and Era (1981a) (q.v.), etc. [Problem. Generalize any of
these results, that are not already generalized, to signed simple graphs
and to simply signed graphs.] (par: Fr, tg(Sw): Exp, Ref)
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Y. Pomeau
See B. Derrida.

Dragos Popescu [Dragoş-Radu Popescu]
See Dragoş-Radu Popescu.

Dragoş-Radu Popescu [Dragos Popescu]
1979a Proprietati ale grafurilor semnate. [Properties of signed graphs.] (In Romanian.

French summary.) Stud. Cerc. Mat. 31 (1979), 433–452. MR 82b:05111. Zbl
426.05048.

A signed Kn is balanced or antibalanced or has a positive and a negative
circle of every length k = 3, . . . , n. For odd n, the signed Kn if not
balanced has at least n−1

2
negative Hamiltonian circles. For even n,

−Kn does not maximize the number of negative circles. A “circle basis”
is a set of the smallest number of circles whose signs determine all circle
signs. This is proved to have

(
n−1

2

)
members. Furthermore, there is a

basis consisting of k-circles for each k = 3, . . . , n. [A circle basis in this
sense is the same as a basis of circles for the binary cycle space. See
Zaslavsky (1981b), Topp and Ulatowski (1987a).] (SG: Fr)

1991a Cicluri ı̂n grafuri semnate. [Cycles in signed graphs.] (In Romanian; French
summary.) Stud. Cercet. Mat. 43 (1991), no. 3/4, 85–219. MR 92j:05114. Zbl
751.05060.

Ch. 1: “A-balance” (p. 91). Let F be a spanning subgraph of Kn and A
a signed Kn. The “product” of signed graphs is Σ1∗Σ2 whose underlying
graph is |Σ1|∪|Σ2|, signed as in Σi for an edge in only one Σi but with sign
σ1(e)σ2(e) if in both. Let GF denote the group of all signings of F ; let
GF (A) be the group generated by the set of restrictions to F of isomorphs
of A. A member of GF (A) is “A-balanced”; other members of GF are A-

unbalanced. We let Σ̂ denote the coset of Σ and ≈ the “isomorphism”
of cosets induced by graph isomorphism, i.e., cosets are isomorphic if
they have isomorphic members. Let Σ̇ be the isomorphism class of Σ,
ˆ̂
Σ the isomorphism class of Σ̂, and

◦→ Σ :=
⋃ ˆ̂

Σ. Now choose a system
of representatives of the coset isomorphism classes, R = {Σ1, . . . ,Σl}.
Prop. 1.4.1. Each Σ̇ intersects exactly one Σ̂i. Let Ri = {Σi1, . . . ,Σiai}
be a system of representatives of Σ̂i/ ∼=, arranged so that |E−(Σij)|
is a minimum when j = 1. This minimum value is the “[line] index

of A-imbalance” of each Σ ∈ ◦→ Σi and is denoted by δA(Σ). (§2.1:
Taking A to be Kn with one vertex star all negative makes this equal
the frustration index l(Σ).) Prop. 1.5.1. δA(Σ) is the least number of
edges whose sign needs to be changed to make Σ A-balanced. Prop.
1.5.2. δA(Σ) = |E−(Σ)| iff |E−(Σ) ∩ E−(F, β)| ≤ 1

2
|E−(F, β)| for every

signing β) of F . Finally, for each Σ ∈ GF define the “Σ-relation” on coset

isomorphism classes
ˆ̂
Σi to be the relation generated by negating in Σ1 all

the edges of E−(Σ), extended by isomorphism and transitivity. This is
well defined (Prop. 1.6.1) and symmetric (Prop. 1.6.2) and is preserved
under negation of coset isomorphism classes (Prop. 1.6.4, 1.6.5). Self-

negative classes, such that
ˆ̂
Σ ≈ − ˆ̂

Σ, are the subject of Prop. 1.6.3.
Ch. 2: “Signed complete graphs” (p. 106). §2.5: “H-graphs”. If
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H is a signed Kh, a “standard H-graph” Σ is a signed Kn such that
Σ− ∼= H−∪· Kc

n−h. Prop. 2.5.3. Assume certain hypotheses on n, |X0| for
X0 ⊆ V (Σ), and a quantity D−(H) derived from negative degrees. Then
|E−| = l(Σ)⇒ the induced subgraph G:X0 is a standard H-graph with
|E−(Σ:X0)| = l(Σ:X0). The cases H− = K1, K2, and a 2-edge path are
worked out. For the former, Prop. 2.5.3 reduces to Sozański’s (1976a)
Thm. 3.

Ch. 3: “Frustration index” (p. 158). Some upper bounds.
Ch. 4: “Evaluations, divisibility properties” (p. 174). Similar to parts

of (1996a) and Popescu and Tomescu (1996b).
Ch. 5: “Maximal properties” (p. 198). §5.1: “Minimum number and

maximum number of negative stars, resp. 2-stars”. §5.2 is a special case
of Popescu and Tomescu (1996a), Thm. 2. §5.3: “On the maximum
number of negative cycles in some signed complete graphs”. Shows that
Conjecture 1 is false for even n ≥ 6. Some results on the odd case.

Conjecture 1 (Tomescu). A signed complete graph of odd order has
the most negative circles iff it is antibalanced. (Partial results are in
§5.3.) [This example maximizes l(Σ). A somewhat related conjecture is
in Zaslavsky (1997b).] Conjecture 2. See (1993a). Conjecture 3. Given k
and m, there is n(k,m) so that for any n ≥ n(k,m), a signed Kn with m
negative edges has (a) the most negative k-circles iff the negative edges
are pairwise nonadjacent; (b) the fewest iff the negative edges form a
star. (SG: Bal(Gen), KG, Fr, Enum: Circles, Paths)

1993a Problem 17. Research Problems at the Int. Conf. on Combinatorics (Keszthely,
1993). Unpublished manuscript. János Bolyai Math. Soc., Budapest, 1993.

Conjecture. An unbalanced signed complete graph has the minimum
number of negative circles iff its frustration index equals 1. (SG: Fr)

1996a Une méthode d’énumération des cycles négatifs d’un graphe signé. Discrete
Math. 150 (1996), 337–345. MR 97c:05077. Zbl 960.39919.

The numbers of negative subgraphs, especially circles and paths of
length k, in an arbitrarily signed Kn. Formulas and divisibility and
congruence properties. Extends part of Popescu and Tomescu (1996a).

(SG: KG, Enum: Circles, Paths)

1999a Balance in systems of finite sets. Proc. Annual Meeting Fac. Math. (Bucharest,
1999). Proc. Annual Meeting Faculty Math. (Bucharest, 1999). An. Univ.
Bucureşti Mat. Inform. 48 (1999), no. 2, 29–40. MR 1829295 (2002c:05082).

(SG: Bal, Gen)

2001a An inequality on the maximum number of negative cycles in complete signed
graphs. Math. Rep. (Bucur.) 3(53) (2001), no. 1, 53–60. MR 2002m:05193.
Zbl 1017.05099. (SG: Fr)

Dragoş-Radu Popescu and Ioan Tomescu
1996a Negative cycles in complete signed graphs. Discrete Appl. Math. 68 (1996),

145–152. MR 98f:05098. Zbl 960.35935.
The number cp of negative circles of length p in a signed Kn with s

negative edges. Thm. 1: For n sufficiently large compared to p and s,
cp is minimized if E− is a star (iff, when s > 3) and is maximized iff
E− is a matching. Thm. 2: cp is divisible by 2p−2−blog2(p−1)c. Thm. 3:
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If s ∼ λn and p ∼ µn and the negative-subgraph degrees are bounded
(this is essential), then asymptotically the fraction of negative p-circles
is 1

2
(1− e−4λµ). (SG: KG: Fr, Enum: Circles)

1996b Bonferroni inequalities and negative cycles in large complete signed graphs.
European J. Combin. 17 (1996), 479–483. MR 97d:05177. Zbl 861.05036.

A much earlier version of (1996a) with delayed publication. Contains
part of (1996a): a version of Thm. 1 and a restricted form of Thm. 3.

(SG: KG: Fr, Enum: Circles)

L. Pósa
See P. Erdős.

Alexander Postnikov
1997a Intransitive trees. J. Combin. Theory Ser. A 79 (1997), 360–366. MR 98b:05036.

Zbl 876.05042.
§4.2 mentions the lift matroid of {1} ~Kn, i.e., the integral poise gains

of a transitively oriented complete graph, represented by the Linial ar-
rangement. [See also Stanley (1996a).] (GG: M, Geom)

Alexander Postnikov and Richard P. Stanley
2000a Deformations of Coxeter hyperplane arrangements. J. Combin. Theory Ser. A

91 (2000), 544–597. MR 2002g:52032. Zbl 962.05004.
The arrangements are the canonical affine-hyperplane lift representa-

tions of certain additive real gain graphs. Characteristic polynomials of
the former, equalling zero-free chromatic polynomials of the latter, are
calculated. And much more. (gg: Geom, M, Invar)

B. Prashanth
See P. Siva Kota Reddy.

Primož Potočnik
See T. Pisanski.

K.O. Price, E. Harburg and T.M. Newcomb
1966a Psychological balance in situations of negative interpersonal attitudes. J. Per-

sonality Social Psychol. 3 (1966), pp. 265–270. (PsS)

Geert Prins
See F. Harary.

Sharon Pronchik
See L. Fern.

Andrzey Proskurowski
See A.M. Farley.

J. Scott Provan
1983a Determinacy in linear systems and networks. SIAM J. Algebraic Discrete Meth-

ods 4 (1983), 262–278. MR 84g:90061. Zbl 558.93018. (QSol, GN)

1987a Substitutes and complements in constrained linear models. SIAM J. Algebraic
Discrete Methods 8 (1987), 585–603. MR 89c:90072. Zbl 645.90049.

§4: “Determinacy in a class of network models.” [Fig. 1 and Thm.
4.7 hint at a possible digraph version of the signed-graph or gain-graph
frame matroid.] (sg?, gg: m(bases?): gen)

Teresa M. Przytycka and Józef H. Przytycki
1988a Invariants of chromatic graphs. Tech. Rep. No. 88-22, Univ. of British Columbia,

Vancouver, B.C., 1988.
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Generalizing concepts from Kauffman (1989a). [See also Traldi (1989a)
and Zaslavsky (1992b).] (SGc: Gen: Invar, Knot)

1993a Subexponentially computable truncations of Jones-type polynomials. In: Neil
Robertson and Paul Seymour, eds., Graph Structure Theory (Proc., Seattle,
1991), pp. 63–108. Contemp. Math., Vol. 147. Amer. Math. Soc., Providence,
R.I., 1993. MR 95c:57016. Zbl 812.57010.

A “chromatic graph” is a graph with edges weighted from the set
Z × {d, l}, Z being [apparently] an arbitrary set of “colors”. A “dichro-
matic graph” has Z = {+,−}. Such graphs have general dichromatic
polynomials [see Przytycka and Przytycki (1988a), Traldi (1989a), and
Zaslavsky (1992b)], as [partially] anticipated by Fortuin and Kasteleyn
(1972a). I will not attempt to summarize this paper.

(SGc: Invar, Knot, Ref)

Jozef H. Przytycki
See K. Murasugi and T.M. Przytycka.

Vlastimil Ptak
See M. Fiedler.

Charles J. Puccia and Richard Levins
1986a Qualitative Modeling of Complex Systems: An Introduction to Loop Analysis

and Time Averaging. Harvard Univ. Press, Cambridge, Mass., 1986.
(SD: QM: QSta: Cycles)

William R. Pulleyblank
See J.-M. Bourjolly and M. Grötschel.

L. Pyber
See L. Lovász.

Jian Qi
See S.W. Tan.

Hongxun Qin
See also J.E. Bonin, P. Brooksbank, T. Dowling, and D.C. Slilaty.

2004a Complete principal truncations of Dowling lattices. Adv. Appl. Math. 32 (2004),
no. 1-2, 364–379. MR 2005e:06003. Zbl 1041.05019.

These matroids are determined by their Tutte polynomials, except that
only the order of the group can be determined. (gg: M: Incid)

Hongxun Qin, Daniel C. Slilaty, and Xiangqian Zhou
2009a The regular excluded minors for signed-graphic matroids. Combin. Prob. Com-

puting 18 (2009), 953–978. MR 2550378 (2010m:05062). Zbl 1231.05063.
The complete list of 31 forbidden minors that are regular matroids.

[Annot. 10 Sept 2010.] (SG: M: Str)

Wen-Yuan Qiu
See G. Hu.

Louis V. Quintas
See M. Gargano.

James P. Quirk
See also L. Bassett and J.S. Maybee.

1974a A class of generalized Metzlerian matrices. In: George Horwich and Paul A.
Samuelson, eds., Trade, Stability, and Macroeconomics: Essays in Honor of
Lloyd A. Metzler, pp. 203–220. Academic Press, New York, 1974. (QM: QSta: sd)
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1981a Qualitative stability of matrices and economic theory: a survey article. In:
Harvey J. Greenberg and John S. Maybee, eds., Computer-Assisted Analysis
and Model Simplification (Proc. Sympos., Boulder, Col., 1980), pp. 113–164.
Discussion, pp. 193–199. Academic Press, New York, 1981. MR 82g:00016
(book). Zbl 495.93001 (book).

Comments by W.M. Gorman (pp. 175–189) and Eli Hellerman (pp.
191–192). Discussion: see pp. 193–196. (QM: QSta: sd, bal: Exp)

James Quirk and Richard Ruppert
1965a Qualitative economics and the stability of equilibrium. Rev. Economic Stud.

32 (1965), 311–326. (QM: QSta: sd)

Nicole Radde, Nadav S. Bar, and Murad Banaji
2010a Graphical methods for analysing feedback in biological networks – A survey.

Int. J. Systems Sci. 41 (2010), no. 1, 35–46. MR 2599706 (no rev).
(SD, Biol: Exp)

Filippo Radicchi, Daniele Vilone, and Hildegard Meyer-Ortmanns
2007a Universality class of triad dynamics on a triangular lattice. Phys. Rev. E 75

(2007), 021118. (SG: Bal)

Filippo Radicchi, Daniele Vilone, Sooeyon Yoon, and Hildegard Meyer-Ort-
manns

2007a Social balance as a satisfiability problem of computer science. Phys. Rev. E (3)
75 (2007), no. 2, 026106, 17 pp. MR 2354025 (2008g:91190).

Antal, Krapivsky, and Redner (2005a) is generalized to k-cycle dynam-
ics. [Annot. 20 June 2011.] (SG: Bal: Alg)

W.M. Raike
See A. Charnes.

K.R. Rajanna
See P. Siva Kota Reddy.

R. Rammal
See F. Barahona and I. Bieche.

K. Ranganathan
See R. Balakrishnan.

R. Rangarajan
See also P. Siva Kota Reddy.

R. Rangarajan and P. Siva Kota Reddy
2008a Notions of balance in symmetric n-sigraphs. Proc. Jangjeon Math. Soc. 11

(2008), no. 2, 145–151. MR 2482598 (2010h:05143). Zbl 1205.05102.
Sn is a symmetric n-signed graph. Further definitions as in the notes

to Sampathkumar, Siva Kota Reddy, and Subramanya (2008a, 2010c).
§2, “Balance in an n-sigraph Sn = (G, σ).” Prop. 1 (generalizing Harary
(1953a) for signed graphs): Sn is balanced iff for each pair u, v ∈ V , every
uv-path has the same gain. [The simple proof of =⇒ , which depends
on the fact that the gain group has exponent 2, is the best I have seen.
The proof of ⇐ is incorrect.] Prop. 4: ΣSn is balanced iff V = V1 ∪·V2

such that an edge has identity gain iff it lies within V1 or V2. Good proof
via min as defined in the cited notes. §3, “Clustering in an n-sigraph
Sn = (G, σ).” Sn is “clusterable” if V has a partition π such that an edge
has identity gain iff it lies within a part of π. Prop. 5 generalizes Davis
(1967a) to n-signed graphs. §3.1: “Local balance (Local i-balance) in
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an n-sigraph Sn = (G, σ).” Prop. 6 generalizes Harary (1955a) on local
balance [with a good proof]. Prop. 8: A complete Sn is balanced iff
every triangle on one vertex is balanced. Prop. 9 [incorrect]: The same
for imbalance. Prop. 10 gives the number of balanced Sn = (Kk, σ)
[incorrect; the correct value is 2dk/2e(n−1)]. [The results are equally true,
mutatis mutandis, without assuming symmetry.] [Minor typos require
correction.] [Annot. 9 July 2009.] (SG(Gen), gg: Bal)

2009a Notions of balance and consistency on symmetric n-marked graphs. Bull. Pure
Appl. Math. 3 (2009), no. 1, 1–8. MR 2537685 (2010i:05156). Zbl 1200.05097.

(VS(Gen), SG(Gen), gg: Bal)

2010a The edge C4 signed graph of a signed graph. Southeast Asian Bull. Math. 34
(2010), 1066–1082. MR 2746741 (2011k:05100). Zbl 1240.05141.

Definitions as at Sampathkumar, Siva Kota Reddy, and Subramanya
(2008a, 2010c). The edge C4 signed graph E4(Σ) := (V ′, E ′, σS) where
V ′ := E and E ′ := {ef : ∃ C4 3 e, f in |Σ|}. Prop. 2.1: E4(Σ) is
balanced. Cor. 2.5: E4(Σ) = E4(−Σ). Prop. 2.3: Σ ' E4(Σ) iff Σ is a
balanced signing of Cn, n ≥ 5. Prop. 3.1: Σ′ is an E4(Σ) iff it is balanced
and |Σ′| is an E4(Γ). [Annot. 2 Aug 2009, rev 20 Dec 2010.]

(SG: Bal, Sw, LG(Gen))

R. Rangarajan, P. Siva Kota Reddy, and N.D. Soner
2009a Switching equivalence in symmetric n-sigraphs. II. J. Orissa Math. Soc. 28

(2009), no. 1–2, 1–12. MR 2664129 (2011k:05099).
Continuation of Rangarajan, Siva Kota Reddy, and Subramanya (2009a)

and Siva Kota Reddy and B. Prashanth (2009a). Definitions as at Sam-
pathkumar, Siva Kota Reddy, and Subramanya (2008a, 2010c). Φ is
a symmetric n-signed graph. Prop. 4: Φ is the (≤m)-distance graph
Dm(Φ′) of some Φ′ iff it is balanced and ‖Φ‖ is a (≤m)-distance graph.
[Sufficiency is incorrect.] Solved [possibly incorrectly]: Φc or ΛS(Φc) '
Dm(ΛS(Φ)); ΛS(Φ) or Λ2

S(Φ) ' Dm(Φ[c])[c] (except Λ2
S(Φ) ' Dm(Φc)c).

[The results are equally true without requiring symmetry.] [Annot. 3
Aug 2009.] (SG(Gen), gg: Sw, LG)

R. Rangarajan, P. Siva Kota Reddy, and M.S. Subramanya
2009a Switching equivalence in symmetric n-sigraphs. Adv. Stud. Contemp. Math.

(Kyungshang) 18 (2009), no. 1, 79–85. MR 2479750 (2011a:05141). Zbl 1183.-
05033.

Continuation of Siva Kota Reddy, Vijay, and Lokesha (2009a, 2010a).
Definitions as at Sampathkumar, Siva Kota Reddy, and Subramanya
(2008a). Prop. 4 characterizes CE(Φ). Solved: ΛS(Φ) ' Φ; Φ ' ΛS(Φ);
ΛS(Φ) ' CE(Φ); J(Φ) ' CE(Φ). [The results remain true without
assuming symmetry.] [Annot. 2 Aug 2009.] (SG(Gen), gg: Sw)

R. Rangarajan, M.S. Subramanya, and P. Siva Kota Reddy
2010a The H-line signed graph of a signed graph. Int. J. Math. Combin. 2 (2010),

37–43. Zbl 1216.05052.
H is a connected graph of order ≥ 3. HL(Σ) ⊆ ΛS(Σ) (defined

at Sampathkumar, Siva Kota Reddy, and Subramanya (2010c)); ef ∈
E(ΛS(Σ)) is in HL(Σ) iff e, f are in a copy of H in |Σ|. Σ′ is an HL(Σ)
iff it is balanced and |Σ′| is an H-line graph. Solved: HL(Σ) ' Σ for
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H = Ck, Pk, KrL(Σ) ' ΛS(Σ). Connections with graphs derived from
matrices. [Annot. 7 Jan 2011.] (SG: LG(Gen), Bal, Adj)

20xxa Neighborhood signed graphs. Southeast Asian Bull. Math., to appear.
Definitions as at Sampathkumar, Siva Kota Reddy, and Subramanya

(2008a, 2010c). The neighborhood signed graph or 2-path graph P2(Σ)
is (V,E2, σ

c) where E2 := {vw : ∃ vw-path of length 2}. Thm. 5:
P2(Σ) is balanced and the signature can be any balanced signature
(by appropriate choice of σ). Solved: Σ, P2(Σ) ' Σ; P2(Σ) ' Σc;
P2(Σ) ' ΛS(Σ). For connected Σ: P r

2 (Σ) ' ΛS(Σ); P2(Σ) ' JS(Σ).
Also, P r

2 (Σ) ' Λs
S(Σ) when |Σ| is unicyclic with circle length l and

r, s < l/2. [Annot. 2 Aug 2009.] (SG: Bal, Sw, LG(Gen))
§5, “(−1, 0, 1)-Matrices and neighborhood signed graphs”: Given a

(−1, 0, 1)-matrix A with columns a1, . . . , an. Let VA := [n], EA := {ij :
(∃ k) akiakj 6= 0}, and σA(ij) := µiµj where µi := product of nonzero
entries in ai. Thm. 20: This signed graph of A(Σ) is P2(Σ). [Annot. 10
Apr, 2 Aug 2009.] (SG: Adj: Bal)

M.R. Rao
See Y.M.I. Dirickx.

S.B. Rao
See also B.D. Acharya, P. Das, and [G.R.] Vijaya Kumar.

1984a Characterizations of harmonious marked graphs and consistent nets. J. Com-
bin. Inform. System Sci. 9 (1984), 97–112. MR 89h:05048. Zbl 625.05049.

A complicated solution, with a polynomial-time algorithm, to the prob-
lem of characterizing consistency in vertex-signed graphs (cf. Beineke
and Harary 1978b). Thm. 4.1 points out that graphs with signed ver-
tices and edges can be easily converted to graphs with signed vertices
only; thus harmony in graphs with signed vertices and edges is char-
acterized as well. [This paper was independent of and approximately
simultaneous with B.D. Acharya (1983b, 1984a).] [See Joglekar, Shah,
and Diwan (2010a) for the last word.] (SG, VS: Bal, Alg)

S.B. Rao, B.D. Acharya, T. Singh, and Mukti Acharya
2005a Graceful complete signed graphs. In: S. Arumugam, B.D. Acharya, and S.B. Rao,

eds., Graphs, Combinatorics, Algorithms and Applications (Proc. Nat. Conf.,
Anand Nagar, Krishnankul, India, 2004), pp. 123–124. Narosa Publishing
House, New Delhi, 2005.

Extended abstract without proofs. “Graceful” means (1, 1)-graceful,
r = 1, as at M. Acharya and Singh (2004a). Thm. 1: (Kn, σ) is graceful
iff n ≤ 3, n = 4 and |E−| 6= 3, or n = 5 and |E−| 6= 5 is odd and neither
Σ+ nor Σ− is K1,3. The proof involves a recursive labelling procedure.
[Annot. 21 July 2010.] (SG)

S.B. Rao, N.M. Singhi, and K.S. Vijayan
1981a The minimal forbidden subgraphs for generalized line graphs. In: S.B. Rao, ed.,

Combinatorics and Graph Theory (Proc. Sympos., Calcutta, 1980), pp. 459–
472. Lect. Notes in Math., 885. Springer-Verlag, Berlin, 1981. MR 83i:05062.
Zbl 494.05053.

These are the minimal forbidden induced subgraphs for an all-negative
signed simple graph to be the reduced line graph of a signed graph.

(sg: LG, par)
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Vasant Rao
See M. Desai.

A.M. Rappoport
See Ya.R. Grinberg.

Thomas Raschle and Klaus Simon
1995a Recognition of graphs with threshold dimension two. In: Proceedings of the

Twenty-Seventh Annual ACM Symposium on the Theory of Computing (Las
Vegas, 1995), pp. 650–661.

Expounded by Mahadev and Peled (1995a), §8.5 (q.v.). (par: ori, Alg)

Andre Raspaud and Xuding Zhu
2011a Circular flow on signed graphs. J. Combin. Theory Ser. B 101 (2011), 464–479.

MR 2832812 (2012j:05191).
Thm. 1: Σ has a nowhere-zero integral and circular [i.e., real] 4-flow

if it is edge 4-connected. It has a nowhere-zero circular r-flow with
r < 4 if it is edge 6-connected. A signed cut D [cf. Chen and Wang
(2009a)] is described by a signed subset X = X+ ∪·X− of V . Lemma 3:
Σ has a circular r-flow iff it has an orientation such that 1/(r − 1) ≤
|∂+(X)|/|∂−(X)| ≤ r − 1 for every X. Here ∂ε(X) is the set of ends in
X, of e ∈ D, that have a certain sign. [Annot. 23 March 2010.]

(SG: Ori, Flows)

Dieter Rautenbach and Bruce Reed
2001a The Erdös–Pósa property for odd cycles in highly connected graphs. Paul

Erdös and His Mathematics (Budapest, 1999). Combinatorica 21 (2001), no.
2, 267–278. MR 2002i:05073. Zbl 981.05066.

The smallest sufficient connectivity in Thomassen (2001a) is about
976k. [For more, see Hochstättler, Nickel, and Peis (2006a).]

(par: Fr: Circles)

H. Donald Ratliff
See J.-Cl. Picard.

Bertram H. Raven
See B.E. Collins.

E.V. Ravve
See E. Fischer.

D.K. Ray-Chaudhuri, N.M. Singhi, and G.R. Vijayakumar
1992a Signed graphs having least eigenvalue around −2. J. Combin. Inform. System

Sci. 17 (1992), 148–165. MR 94g:05056. (SG: Adj, Geom: Exp)

Igor Razgon
See G. Gutin.

Margaret A. Readdy
See also R. Ehrenborg.

2001a The Yuri Manin ring and its Bn-analogue. Adv. Appl. Math. 26 (2001), 154–167.
MR 2001k:13034. Zbl 989.13016.

P. 164: Lattice of signed compositions (“ordered signed partitions”),
from Ehrenborg and Readdy (1999a), §6. Pp. 164–165: Signed permu-
tahedron [equivalent to acyclotope of ±K•n]. (Sgnd)(sg: kg: Geom)

S. Redner
See T. Antal.
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P. Siva Kota Reddy
See Siva Kota Reddy (under ‘S’).

Bruce Reed
See C. Berge, S. Fiorini, J. Geelen, K. Kawarabayashi, and D. Rautenbach.

P. Reed
See A.J. Bray.

Nathan Reff
2012a Spectral properties of complex unit gain graphs. Linear Algebra Appl. 436

(2012), no. 9, 3165–3176.
T Complex unit gain graphs have gain group T := {z ∈ C : |z| = 1}.

Bounds on largest and smallest eigenvalues of A(Φ) (§3, “Eigenvalues of
the adjacency matrix”) and K(Φ) (§4, “Eigenvalues of the Laplacian ma-
trix”). Most (except Thm. 4.9, where the edge gains affect the bounds)
generalize known bounds for graphs, the “signless Laplacian” (K(−Γ)),
or signed graphs. Some generalizations are not obvious. Lemmas 3.1,
4.1: The spectrum of A or L depends only on the switching class. Lem-
mas 3.2, 4.2: If Φ is balanced, the spectra are the same as those of ‖Φ‖.
[Problem. Generalize B.D. Acharya (1980a) by proving the converse.]
Thm. 5.1: Exact eigenvalues for circle graphs. [Annot. 30 Oct 2011.]

(GG: Adj, Incid)

2012b Gain Graphs, Group-Oriented Hypergraphs, and Matrices. Doctoral disserta-
tion, Binghamton University (SUNY), 2012. (SG, GG, GH: Adj, Incid)

20xxa New bounds for the Laplacian spectral radius of a signed graph. In preparation.
arXiv:1103.4629. (SG: Adj)

F. Regonati
See E. Damiani.

Jörg Reichardt and Stefan Bornholdt
2006a Statistical mechanics of community detection. Phys. Rev. E 74 (2006), 016110,

14 pp. MR 2276596 (2007h:82089). (sg: kg: Phys, Clu)

Gerhard Reinelt
See F. Barahona, C. De Simone, and M. Grötschel.

Victor Reiner
See also P. Edelman.

1993a Signed posets. J. Combin. Theory Ser. A 62 (1993), 324–360. MR 94d:06011.
Zbl 773.06008.

They are equivalent to acyclic bidirected graphs.
(Sgnd, sg: Ori: Str, geom)

Élisabeth Remy
See also A. Naldi.

Élisabeth Remy and Paul Ruet
2007a On differentiation and homeostatic behaviours of Boolean dynamical systems.

In: Corrado Priami, ed., Transactions on Computational Systems Biology VIII,
pp. 92–101. Lect. Notes in Bioinformatics. Lect. Notes in Computer Sci., Vol.
4780. Springer, Berlin, 2007. MR 2303765. Zbl 1141.92330. (SD)

Élisabeth Remy, Paul Ruet, and Denis Thieffry
2006a Positive or negative regulatory circuit inference from multilevel dynamics. In:

Christian Commault et al., eds., Positive Systems (Proceedings of the second
multidisciplinary international symposium on positive systems: Theory and
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applications, POSTA 06, Grenoble, 2006), pp. 263–270. Lect. Notes in Control
and Inform. Sci., Vol. 341. Springer, Berlin, 2006. MR 2250264 (2007e:92032).
Zbl 1132.93305. (SD)

2008a Graphic requirements for multistability and attractive cycles in a Boolean dy-
namical framework. Adv. Appl. Math. 41 (2008), no. 3, 335–350. MR 2449595
(2010j:37018). Zbl 1169.05333. (SD)

Qing Jun Ren
See also H.S. Du.

2001a A note on the quasi-Laplacian spectra of graphs. (In Chinese.) J. Nanjing
Normal Univ. Nat. Sci. Ed. 24 (2001), no. 2, 23–25. MR 1849157 (no rev). Zbl
984.05059. (Par: Adj)

Raghunathan Rengaswamy
See M. Bhushan and M.R. Maurya.
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2009a Positive circuits and maximal number of fixed points in discrete dynamical

systems. Discrete Appl. Math. 157 (2009), no. 15, 3281–3288. MR 2554797
(2010m:05132). Zbl 1193.05085. (SG)

2010a Negative circuits and sustained oscillations in asynchronous automata net-
works. Adv. Appl. Math. 44 (2010), 378–392. MR 2600786 (2011a:92007).
Zbl 1201.37117. (SD)

2011a Local negative circuits and fixed points in non-expansive Boolean networks.
Discrete Appl. Math. 159 (2011), no. 11, 1085–1093. (SD)

Adrien Richard and Jean-Paul Comet
2007a Necessary conditions for multistationarity in discrete dynamical systems. Dis-

crete Appl. Math. 155 (2007), no. 18, 2403–2413. MR 2365052 (2008m:37032).
Zbl 1125.37062. (SG)

J. Richelle
See R. Thomas.

Daniel J. Richman
See J.S. Maybee.

R.J. Riddell
1951a Contributions to the Theory of Condensation. Dissertation, University of Michi-

gan, Ann Arbor, 1951.
Includes the number of labelled simple 1-trees of order n. [Sequence

A057500 in N.J.A. Sloane, The On-Line Encyclopedia of Integer Se-
quences, http://oeis.org/.]
[Cf. Neudauer, Meyers, and Stevens (2001a).] (bic: Invar(bases))

Heiko Rieger
See M.J. Alava and B. Coluzzi.

Robert G. Rieper
See J. Chen.

M.J. Rigby
See A.C. Day.

Arnout van de Rijt
See A. van de Rijt (under V).

James E. Riley
1969a An application of graph theory to social psychology. In: G. Chartrand and S.F.

http://oeis.org/
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Kapoor, eds., The Many Facets of Graph Theory (Proc., Kalamazoo, 1968), pp.
275–280. Lecture Notes in Mathematics, Volume 110. MR 252266 (40 #5487).

(PsS: SG: Exp)

Chong S. Rim
See H. Choi.

G. Rinaldi
See C. De Simone and J. Lukic.
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See also M.J. Lipman.
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51 #9842. (TG)
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See also N. Hartsfield and M. Jungerman.
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(gg: M: Invar)
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Zbl 662.90002.
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Several characterizations of consistent vertex signatures of a graph. Γ
is “markable” iff it has a consistent vertex signature that is not all +.
Thm.: 3-connected Γ is markable iff it is bipartite. Thm.: A classification
of markable 2-connected graphs with girth≤ 5. [See also Hoede (1992a).]
[Annot. 27 Apr 2009.] (VS: Bal)

1999a On balanced signed graphs and consistent marked graphs. Ordinal and Sym-
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Harary (7), Roberts and Xu (2003a), Acharya (3), Rao(34). §6: “Fun-
damental cycles and cycle bases”. Hoede’s (1992a) characterization of
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§8: “Open questions”. [Annot. 27 Apr 2009.]
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Question 1. Does a given digraph D have an even cycle? Question
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2. Can a given digraph D be signed so that every cycle is negative?
(These problems are easily seen to be equivalent.) The main theorem
(the “Even Dicycle Thm.”) is a structural characterization of digraphs
that have a signing in which every cycle is negative. (These were pre-
viously characterized by forbidden minors in Seymour and Thomassen
(1987a).)

The main theorem is proved also in McCuaig (2004a). See the joint
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Schwenk (1977a), are scattered about the article. (SD, VS, SG: Enum)
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Algebra Appl. 433 (2010), no. 7, 1388–1409. MR 2680266 (2011h:05163). Zbl
1194.05095.
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Section III, “Relaxed problem”: The frustration index of a bipartite
signed graph is NP-complete. Thm. 4.1: The frustration index of a
signed Kn,n (where n is a variable) is NP-complete. The proofs use
the bipartite adjacency matrix of the signed graph. The latter prob-
lem is polynomially reduced to the former by a construction using Kro-
necker product and a Hadamard matrix. The problems are interpreted
as nearest-neighbor decoding of the Gale–Berlekamp code of order n.

Section V, “Decoding algorithm over the BSC”: A polynomial-time
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“Quelques utilisations concretes des k-flots.” (GN: m(circuit): Exp)
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§4, “Quality transfer”, concerns the existence of a satisfied state (called
“quality translation” in Ryshkov and Rybnikov 1997a) in a permutation
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gain graph Φ, where G acts on a set Q. P. 487, top: A satisfied state
exists iff Φ is balanced [Ryshkov and Rybnikov (1997a); necessity is
incorrect]. Lemma 4.1 appears to mean that a satisfied state exists iff it
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quality transfer goes back to Voronŏı in 1908. [See Rybnikov (1999a)
and Rybnikov and Zaslavsky (2005a) for more.]
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Sufficiency in Thm. 3 is applied to lifting of tilings of Euclidean and
spherical space. Thm. 4 (1996a, Thm. 9): Balance (“canonical defi-
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A generalized Kasteleyn matrix is the left-right adjacency matrix B
of a bipartite gain graph with the complex units as gain group. (A
Kasteleyn matrix has for gain group the sign group.) The object is to
interpret combinatorially the coefficients or eigenvalues of BBT. The
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v∈X µ(v). µ
is “p-balanced” if ∂µ ≡ +. Thm. 1: ∂µ ≡ + iff µ = ∂σ for some σ.
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then there exist all-negative, pairwise edge-disjoint paths connecting the
∂σ-negative vertices in pairs. [Quick proof: ∂µ ≡ + iff µ has evenly
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Ri1 · · ·Rir -balance for every i1, . . . , ir ∈ [k]. Problem 11: Characterize
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2008a Jump symmetric n-sigraph. Proc. Jangjeon Math. Soc. 11 (2008), no. 1, 89–95.

MR 2429334 (2009j:05107). Zbl 1172.05028.
In the n-fold sign group {+,−}n an element is “symmetric” if it is its

own reverse. A (symmetric) n-signed graph is a gain graph Φ = (Γ, ϕ)
which has (symmetric) gains ϕ(e) ∈ {+,−}n. [Equivalent to having
arbitrary gains in {+,−}dn/2e.] Only symmetric n-signed graphs are
treated.

ΣΦ [The mapping min : {+,−}n → {+,−} by min(a1, . . . , an) = + if all
ai = + and = − otherwise gives a signed graph ΣΦ with signs σΦ(e) :=
min(ϕ(e)).]
Def.: Φ1 ' Φ2 (“cycle isomorphism”) if there is an isomorphism ‖Φ1‖ ∼=
‖Φ2‖ that preserves circle gains. Prop. 3: Symmetric n-signed graphs
are cycle isomorphic iff they are switching isomorphic—generalizing n =
1 due to Sozański (1980a), Zaslavsky (1981b). [The proof (omitted)
requires that the gain group have exponent 2.]

ϕS Let ϕS(ef) := ϕ(e)ϕ(f) for e, f ∈ E. [Generalizing σ× of M. Acharya
(2009a).]

JS The jump graph is JS(Φ) := (Λ(Γ)c, ϕS). Solutions of Φ ' JS(Φ),
Φt ' JS(Φ), JS(Φt) ' JS(Φ), where at := at for a, t ∈ {+,−}n and t
is one of three special n-signs. [The last solution extends to arbitrary
t ∈ {+,−}n.]

Dictionary: “identity balance”, “i-balance” = balance in Φ; “balance”
= balance in ΣΦ; P (~C) := ϕ(C) in the indicated direction.

[The results remain true without assuming symmetry.] [Continued
in (2010c, 2010d), Sampathkumar, Subramanya, and Siva Kota Reddy
(2011a), and papers of Siva Kota Reddy.] [Annot. 2 Aug 2009, 20 Dec
2010.] (SG(Gen), gg: LG, Sw, Bal)

2008b (3, d)-Sigraph and its applications. Adv. Stud. Contemp. Math. (Kyungshang)
17 (2008), no. 1, 57–67. MR 2428537 (2009g:05073).

The n = 3 case of (2010b). [Annot. 10 Apr 2009.]
(SG(Gen), gg: Bal, Sw)
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2009a Directionally n-signed graphs. II. Int. J. Math. Combin. 2009 (2009), vol. 4,
89–98 (2010). MR 2598676 (no rev). (GG: Gen: Bal)

2010a (4, d)-Sigraph and its applications. Adv. Stud. Contemp. Math. (Kyungshang)
20 (2010), no. 1, 115–124. MR 2597997 (2011i:05089). Zbl 1192.05067.

The n = 4 case of (2010b). [Annot. 9 Sept 2010.]
(SG(Gen), gg: Bal, Sw)

2010b Directionally n-signed graphs. In: B.D. Acharya, G.O.H. Katona, and J. Ne-
setril, eds., Advances in Discrete Mathematics and Applications: Mysore, 2008
(Proc. Int. Conf. Discrete Math., ICDM-2008, Mysore, India, 2008), pp. 153–
160. Ramanujan Math. Soc. Lect. Notes Ser., No. 13. Ramanujan Mathemati-
cal Soc., Mysore, India, 2010. MR 2766915 (2012g:05097). Zbl 1231.05119.

The gain group is the n-fold sign group {+,−}n, with reversing au-
tomorphism (a1, . . . , an)r := (an, . . . , a1). The gains satisfy ϕ(e−1) =
ϕ(e)r. For t ∈ {+,−}n, the t-complement of Φ is ‖Φ‖ with gains ϕt(e) :=
tϕ(e). Elementary results on balance, t-complementation, switching, and
isomorphism. Dictionary: “identity balance” = “i-balance” = balance in
Φ; “balance” = balance in ΣΦ defined at (2008a); P (~C) := ϕ(C) in the
indicated direction. [An interesting form of skew gain graph. The ideas
should be pursued in directions suggested by Hage and Harju (2000a)
and Hage (1999a).] [Annot. 10 Apr 2009.] (SG(Gen), gg: Bal, Sw)

2010c The line n-sigraph of a symmetric n-sigraph. Southeast Asian Bull. Math. 34
(2010), no. 5, 953–958. MR 2746762 (2012a:05142).

ΛS The line graph is ΛS(Φ) := (Λ(Γ), ϕS) [generalizing Λ× of M. Acharya
(2009a)]. For other definitions and notation see (2008a).

Line graphs and jump graphs in the sense of (2008a) are character-
ized, respectively, as balanced symmetric n-signings of (unsigned) line
graphs and their complements. [The characterizations remain true for
unsymmetric n-signatures.] There are remarks about the t-complement
tϕ (2010b) for three t ∈ {+,−}n.

µϕ = ∂ϕ, ϕc The “complement” Φc is (Γc, ϕc) defined by µϕ(v) :=
∏

uv∈E ϕ(uv)
(“canonical marking”) (cf. Sampathkumar 1984a) and ϕc(uv) := µϕ(u) ·
µϕ(v) [= product of gains of all edges incident in Φ to u or v but not
both]. [Gains ϕc are clearly balanced.] Prop. 7: A symmetric n-signed
graph is a line graph iff it is a balanced, symmetric n-signature of an
unsigned line graph. [Because ϕS is arbitrary balanced gains.] Prop. 9:
ΛS(Φ)c ∼ JS(Φ). [Because both are balanced and the underlying graphs
are the same.] Prop. 10 solves ΛS(Φ) ' JS(Φ), generalizing M. Acharya
and Sinha (2003a). [The solutions to such graph equations, here and
in related papers of Rangarajan, Sampathkumar, Siva Kota Reddy, et
al., are easy corollaries of the similar results for unsigned graphs.] [All
results remain true without assuming symmetry.] Dictionary: Their µσ
is my ∂σ. [Annot. 10 Apr, 1 Aug 2009, 20 Dec 2010.]

(SG, gg: LG, Sw, Bal)

2010d Common-edge signed graph of a signed graph. J. Indones. Math. Soc. 16 (2010),
no. 2, 105–112. MR 2752773 (no rev). Zbl 1236.05098.
CE See (2008a), Sampathkumar, Subramanya, and Siva Kota Reddy (2011a)
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for definitions. The common-edge signed graph CE(Σ) is Λ2
×(Σ). Prop. 4:

Σ0 is a common-edge signed graph iff it is balanced and |Σ0| is a common-
edge graph. [Incorrect. Λ2

×(Σ) does not have arbitrary balanced signs.
E.g., |Σ| = C4.] Equations solved [possibly incorrectly]: Σ ' Ck

E(Σ) and
Σ ' Λk

×(Σ) [this includes the preceding]. Λk
×(Σ) ' Cr

E(Σ). The jump
graph (2008a) JS(Σ) ' CE(Σ). [Λ× as in M. Acharya (2009a).] [Annot.
12 Apr 2009.]

“Smarandanchely k-signed/marked graphs” are defined as k-signed/-
marked graphs [and not used]. Signed/marked graphs are the case k = 2
[correctly: k = 1].

[Smarandanche has absolutely nothing to do with this.] [Annot. 7 Jan
2011.] (SG: Bal, Sw, LG)

E. Sampathkumar and M.A. Sriraj
20xxa Vertex labeled/colored graphs, matrices and signed graphs. Int. Workshop

on Set-Valuations, Signed Graphs, Geometry and Their Appl. (IWSSG-2011,
Mananthavady, Kerala, 2011). J. Combin. Inform. Syst. Sci., to appear. (SG)

E. Sampathkumar, M.S. Subramanya, and P. Siva Kota Reddy
2011a Characterization of line sidigraphs. Southeast Asian Bull. Math. 35 (2011), no.

2, 297–304. MR 2866547 (2012j:05193). Zbl 1240.05143.
The line signed graph is Λ×(Σ) [see M. Acharya (2009a)]. Prop. 3: A

signed graph is a line signed graph of this kind iff it is a line graph with
balanced signs.

The line signed digraph is ΛS(~Γ, σ) := the Harary–Norman line digraph

of ~Γ, signed by σc defined as ϕc in Sampathkumar, Siva Kota Reddy,
and Subramanya (2010c). Prop. 11: A signed digraph is a line signed
digraph of this kind iff it is a Harary–Norman line digraph with (undi-

rectedly) balanced signs. (~Γ, σ) is switching isomorphic to ΛS(~Γ, σ) iff
each component is a balanced directed cycle. [Annot. 4 Sep 2010.]

(SG, SD: LG)

Yoshio Sano
See T.Y Chung.

Mark Sapir
See Victor Guba.

S.V. Sapunov
2002a Equivalence of marked graphs. [Or: Equivalence of labeled graphs.] (In Rus-

sian.) Proceedings of the Institute of Applied Mathematics and Mechanics [Tr.
Inst. Prikl. Mat. Mekh.], Vol. 7, pp. 162–167. Nats. Akad. Nauk Ukrainy
Inst. Prikl. Mat. Mekh., Donetsk, 2002. MR 2141811 (2006c:05070). Zbl
1081.68074.

Equivalence of signed graphs that model languages. [Annot. 28 Dec
2011.] (SG?)

Irasema Sarmiento
See also J.A. Ellis-Monaghan.

1999a A characterisation of jointless Dowling geometries. 16th British Combinatorial
Conf. (London, 1997). Discrete Math. 197/198 (1999), 713–731. MR 99m:-
51020. Zbl 929.05016.
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They are 4-closed (determined by their flats of rank 4). They are
characterized, among all matroids, by the statistics of flats of rank ≤ 7
and therefore by their Tutte polynomials. There are exceptions in rank
3. (GG: M: Invar)

Iwao Sato
See also H. Mizuno.

2008a The stochastic weighted complexity of a group covering of a digraph. Lin-
ear Algebra Appl. 429 (2008), 1905–1914. MR 2446628 (2009h:05137) . Zbl
1144.05322 .

§3, “Weighted zeta functions of group covering of digraphs”: The
covering graphs (“derived graphs”) of gain graphs (“voltage graphs”).

(GG)

Roman V. Satyukov
See I.E. Bocharova.

Lawrence Saul and Mehran Kardar
1993a Exact integer algorithm for the two-dimensional ±J Ising spin glass. Phys.

Rev. E 48 (1993), no. 5, R3221–R3224.
Announcement of (1994a) with some details, observations, and conclu-

sions. [Annot. 18 Aug 2012.] (SG: Phys, Fr: Alg)

1994a The 2D ±J Ising spin glass: exact partition functions in polynomial time.
Nuclear Phys. B 432 [FS] (1994), 641–667.

Algorithm for the energy distributions (the partition function) of the
states of a randomly signed square, toroidal lattice graph. Applied to
find statistical properties of such a signed graph. [Annot. 17 Aug 2012.]

(SG: Phys, Fr: Alg)

B. David Saunders
See also A. Berman.

B. David Saunders and Hans Schneider
1978a Flows on graphs applied to diagonal similarity and diagonal equivalence for

matrices. Discrete Math. 24 (1978), 205–220. MR 80e:15008. Zbl 393.94046.
(gg: Sw)

1979a Cones, graphs and optimal scalings of matrices. Linear Multilinear Algebra 8
(1979), 121–135. MR 80k:15036. Zbl 433.15005. (gg: Sw)(Ref)

James Saunderson
See T. Coleman.

D. Savithri
See M. Parvathi.

H.C. Savithri
See H.A. Malathi and P. Siva Kota Reddy.

R.H. Schelp
See P. Erdős.

Baruch Schieber
See L. Cai.

Rüdiger Schmidt
1979a On the existence of uncountably many matroidal families. Discrete Math. 27

(1979), 93–97. MR 80i:05029. Zbl 427.05024.
The “count” matroids of graphs (see Whiteley (1996a)) and an ex-

tensive further generalization of bicircular matroids that includes bias
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matroids of biased graphs. His “partly closed set” is a linear class of cir-
cuits in an arbitrary “count” matroid. (GG: MtrdF, Bic, EC: Gen)

Stephan Schmidt
See J. Kunegis.

Hans Schneider
See G.M. Engel, D. Hershkowitz, U.G. Rothblum, and B.D. Saunders.

Irwin E. Schochetman
See J.W. Grossman.

Rainer Schrader
See U. Faigle.

Alexander Schrijver
See also A.M.H. Gerards.

1986a Theory of Linear and Integer Programming. Wiley, Chichester, 1986. MR
88m:90090. Zbl 665.90063.

Remark 21.2 (p. 308) cites Truemper’s (1982a) definition of balance of
a 0,±1-matrix. (sg: par: Incid: Exp)

1989a The Klein bottle and multicommodity flows. Combinatorica 9 (1989), 375–384.
MR 92b:90083. Zbl 708.05019.

Assume Σ embedded in the Klein bottle. If Σ is bipartite, negative girth
= max. number of disjoint balancing edge sets. If Σ is Eulerian, frustra-
tion index = max. number of edge-disjoint negative circles. Proved via
polyhedral combinatorics. (SG: Top, Geom, Fr)

1990a Applications of polyhedral combinatorics to multicommodity flows and compact
surfaces. In: William Cook and P.D. Seymour, eds., Polyhedral Combinatorics,
pp. 119–137. DIMACS Ser. in Discrete Math. and Theor. Comp. Sci., Vol. 1.
Amer. Math. Soc. and Soc. Indust. Appl. Math., Providence, R.I., 1990. MR
92d:05057. Zbl 727.90025.

§2: “The Klein bottle,” surveys (1989a). (SG: Top, Geom, Fr: Exp)

1990b Homotopic routing methods. In: B. Korte, L. Lovász, H.J. Prömel, and
A. Schrijver, eds., Paths, Flows, and VLSI-Layout, pp. 329–371. Algorithms
and Combinatorics, Vol. 9. Springer-Verlag, Berlin, 1990. MR 92f:68139. Zbl
732.90087.

§4: “Edge-disjoint paths in planar graphs,” pp. 342–345, “The projec-
tive plane and the Klein bottle,” surveys (1989a).

(SG: Top, Geom, Fr: Exp)
§3: “Edge-disjoint paths and multicommodity flows,” pp. 334 ff. [This

work suggests there may be a signed-graph generalization with the the-
orems discussed corresponding to all-negative signatures.]

(par: Paths: Exp)

1991a Disjoint circuits of prescribed homotopies in a graph on a compact surface. J.
Combin. Theory Ser. B 51 (1991), 127–159. MR 92a:05048. Zbl 723.05050.

§2: “An auxiliary theorem on linear inequalities,” concerns feasibility
of inequalities with coefficient matrix containing incidence matrix of −Γ.
[See Hurkens (1988a).] (ec: Incid)

1991b (As “A. Skhrĕıver”) Teoriya linĕınogo i tselochislennogo programmirovaniya,
Vols. 1 and 2. Mir, Moscow, 1991. MR 94c:90003, 94g:90005.

Russian transl. of (1986a). (sg: par: Incid: Exp)
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2002a A short proof of Guenin’s characterization of weakly bipartite graphs. J. Com-
bin. Theory Ser. B 85 (2002), 255–260. MR 2003e:05119. Zbl 1024.05079.

A streamlined proof of the theorem of Guenin (2001a).
(SG: Geom, Str)

2003a Combinatorial Optimization: Polyhedra and Efficiency. Vol. A, Paths, Flows,
Matchings. Vol. B, Matroids, Trees, Stable Sets. Vol. C, Disjoint Paths, Hy-
pergraphs. Algor. Combin., Vol. 24 A, B, C. Springer, Berlin, 2003. MR
1956924 (2004b:90004a), 1956925 (2004b:90004b), 1956926 (2004b:90004c). Zbl
1041.90001, 1072.90030.

Vol. A, Ch. 36, “Bidirected graphs”.
Vol. C, Ch. 75, “Cuts, odd circuits, and multiflows”. Signed graphs,

weakly and strongly balanced signed graphs. Ch. 78, “Ideal hyper-
graphs”. §80.4, “On characterizing binary ideal hypergraphs”. Dic-
tionary: “Odd” = negative (edge or circle). “Bipartite” = balanced.
[Annot. 9 June 2011.] (sg: Ori: Incid, Geom)

Vol. C, Ch. 76, “Homotopy and graphs on surfaces”. [Annot. 9 June
2011.] (gg)

Michael W. Schroeder
See R.A. Brualdi.

Michelle Schultz
See G. Chartrand.

Gary K. Schwartz
2002a On the automorphism groups of Dowling geometries. Combin. Probab. Comput.

11 (2002), no. 3, 311–321. MR 2004c:20005. Zbl 1008.06007.
AutQn(G) factors in a certain natural way if, but also only if, G factors.

[Succeeds Bonin (1995a).] (gg: M: Aut)

W. Schwärzler and D.J.A. Welsh
1993a Knots, matroids and the Ising model. Math. Proc. Cambridge Philos. Soc. 13

(1993), 107–139. MR 94c:57019. Zbl 797.57002.
Tutte and dichromatic polynomials of signed matroids, generalized

from Kauffman (1989a); this is the 2-colored case of Zaslavsky’s (1992b)
strong Tutte functions of colored matroids. [For terminology see Za-
slavsky 1992b.] Applications to knot theory.
§2, “A matroid polynomial”, is foundational. Prop. 2.1 characterizes

strong Tutte functions of signed matroids by two equations connect-
ing their parameters and their values on signed coloops and loops. [If
the function is 0 on positive coloops, the proof is incomplete and the
functions = 0 except on M = ∅ are missed.] Prop. 2.2: The Tutte
(basis-expansion) polynomial of a function W of signed matroids is well
defined iff W is a strong Tutte function. Eq. (2.8) says W = the rank
generating polynomial QΣ (here also called W ) if certain variables are
nonzero; (2.9) shows there are only 3 essential variables since, generically,
only the ratio of parameters is essential [an observation that applies to
general strong Tutte functions]. Prop. 2.5 computes QΣ of a 2-sum.
§3 adapts QΣ to Kauffman’s and Murasugi’s (1989a) signed-graph poly-

nomials and simplifies some of the latter’s results (esp. his chromatic
degree). §4, “The anisotropic Ising model”, concerns the Hamiltonian
of a state of a signed graph. The partition function is essentially an
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evaluation of QΣ. §5, “The bracket polynomial”, and §6, “The span
of the bracket polynomial”: Certain substitutions reduce QΣ to 1 vari-
able; its properties are examined, esp. in light of knot-theoretic ques-
tions. Thm. 6.4 characterizes signed matroids with “full span” (a degree
property). §7, “Adequate and semi-adequate link diagrams”, generalizes
those notions to signed matroids. §8, “Zero span matroids”: when does
span(bracket) = 0? Yes if M = M(Σ) where Σ reduces by Reidemeister
moves to K1, but the converse is open (and significant if true).

(Sc(M), SGc: Invar, Knot, Phys)

Allen J. Schwenk
See Harary, Palmer, Robinson, and Schwenk (1977a).

András Sebö
See also F. Meunier and B. Novick.

1990a Undirected distances and the postman-structure of graphs. J. Combin. Theory
Ser. B 49 (1990), 10–39. MR 91h:05049. Zbl 638.05032.

See A. Frank (1996a). (SGw: Str)

J.J. Seidel
See also F.C. Bussemaker, P.J. Cameron, P.W.H. Lemmens, and J.H. van Lint.

1968a Strongly regular graphs with (−1, 1, 0) adjacency matrix having eigenvalue 3.
Linear Algebra Appl. 1 (1968), 281–298. MR 38 #3175. Zbl 159, 254 (e:
159.25403). Reprinted in Seidel (1991a), pp. 26–43. (tg)

1969a Strongly regular graphs. In: W.T. Tutte, ed., Recent Progress in Combinatorics
(Proc. Third Waterloo Conf. on Combinatorics, 1968), pp. 185–198. Academic
Press, New York, 1969. MR 54 #10047. Zbl 191, 552 (e: 191.55202). (TG)

1974a Graphs and two-graphs. In: F. Hoffman et al., eds., Proceedings of the Fifth
Southeastern Conference on Combinatorics, Graph Theory, and Computing
(Boca Raton, 1974), pp. 125–143. Congressus Numerantium X. Utilitas Math.
Publ. Inc., Winnipeg, Man., 1974. MR 51 #283. Zbl 308.05120. (TG)

†1976a A survey of two-graphs. In: Colloquio Internazionale sulle Teorie Combinatorie
(Roma, 1973), Tomo I, pp. 481–511. Atti dei Convegni Lincei, No. 17. Accad.
Naz. Lincei, Rome, 1976. MR 58 #27659. Zbl 352.05016. Reprinted in Seidel
(1991a), pp. 146–176. (TG: Adj, Cov, Aut)

1978a Eutactic stars. In: A. Hajnal and Vera T. Sós, eds., Combinatorics (Proc.
Fifth Hungar. Colloq., Keszthely, 1976), Vol. 2, pp. 983–999. Colloq. Math.
Soc. János Bolyai, 18. North-Holland, Amsterdam, 1978. MR 80d:05016. Zbl
391.05050.

1979a The pentagon. In: Allan Gewirtz and Louis V. Quintas, eds., Second Int. Conf.
on Combinatorial Mathematics (New York, 1978). Ann. New York Acad. Sci.
319 (1979), 497–507. MR 81e:05004. Zbl 417.51005. (TG: Adj)

1979b The pentagon. In: P.C. Baayen et al., eds., Proceedings, Bicentennial Congress,
Wiskundig Genootschaap (Amsterdam, 1978), Part I, pp. 80–96. Mathematical
Center Tracts, 100. Mathematisch Centrum, Amsterdam, 1979. MR 80f:51008.
Zbl 417.51005.

Same as (1979a), with photograph. (TG: Adj)

1991a Geometry and Combinatorics: Selected Works of J.J. Seidel. D.G. Corneil and
R. Mathon, eds. Academic Press, Boston, 1991. MR 92m:01098. Zbl 770.05001.

Reprints many articles on two-graphs and related systems.
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(TG: Sw, Adj, Geom)

1992a More about two-graphs. In: Jaroslav Nešetřil and Miroslav Fiedler, eds.,
Fourth Czechoslovakian Symposium on Combinatorics, Graphs and Complexity
(Prachatice, 1990), pp. 297–308. Ann. Discrete Math., Vol. 51. North-Holland,
Amsterdam, 1992. MR 94h:05040. Zbl 764.05036. (TG: Exp, Ref)

1995a Geometric representations of graphs. Linear Multilinear Algebra 39 (1995),
45–57. MR 97e:05149a. Zbl 832.05079. Errata. Linear Multilinear Algebra 39
(1995), 405. MR 97e:05149b. Zbl 843.05078.

§4, “Signed graphs”: The “intersection matrix” A + 2I of a signed
simple graph is the Gram matrix of a set of “root vectors” with respect
to an “inner product” that may not be positive definite. Explains origin
of local switching (cf. Cameron, Seidel, and Tsaranov 1994a and Busse-
maker, Cameron, Seidel, and Tsaranov 1991a). For a signed complete
graph, A+ 3I represents lines at angles cos−1 1/3; it is positive semidef-
inite only for few graphs, which are classified (implicit in Lemmens and
Seidel 1973a). (SG: Adj, Geom: Exp)

1995b Discrete non-Euclidean geometry. In: F. Buekenhout, ed., Handbook of In-
cidence Geometry: Buildings and Foundations, Ch. 15, pp. 843–920. North-
Holland (Elsevier), Amsterdam, 1995. MR 96m:52001. Zbl 826.51012.

§3.2: “Equidistant sets in elliptic (d − 1)-space.” §3.3: “Regular two-
graphs.” (TG: Adj, Geom: Exp)

J.J. Seidel and D.E. Taylor
1981a Two-graphs, a second survey. In: L. Lovász and Vera T. Sós, eds., Algebraic

Methods in Graph Theory (Proc. Int. Colloq., Szeged, 1978), Vol. II, pp. 689–
711. Colloq. Math. Soc. János Bolyai, 25. János Bolyai Math. Soc., Budapest,
and North-Holland, Amsterdam, 1981. MR 83f:05070. Zbl 475.05073. Re-
printed in Seidel (1991a), pp. 231–254. (TG)

J.J. Seidel and S.V. Tsaranov
1990a Two-graphs, related groups, and root systems. Algebra, Groups and Geome-

try. Bull. Soc. Math. Belg. Ser. A 42 (1990), 695–711. MR 95m:20046. Zbl
736.05048.

A group Ts(Σ) is defined from a signed complete graph Σ: its genera-
tors are the vertices and its relations are (uv−σ(uv))2 = 1 for each edge uv.
It is invariant under switching, hence determined by the two-graph of Σ.
A certain subgraph of a Coxeter group of a tree T is isomorphic to Ts(Σ)
for suitable ΣT constructed from T . [Generalized in Cameron, Seidel,
and Tsaranov (1994a). More on ΣT under Tsaranov (1992a). The con-
struction of ΣT is simplified in Cameron (1994a).] (TG: Adj, Geom)

Chelliah Selvaraj
See also M. Parvathi.

2007a Factor algebras of signed Brauer’s algebras. Kyungpook Math. J. 47 (2007), no.
4, 549–568. MR 2397479 (2009b:16076). Zbl 1187.16013. (gg: Algeb, m)

Charles Semple and Geoff Whittle
1996a Partial fields and matroid representation. Adv. Appl. Math. 17 (1996), 184–208.

MR 97g:05046. Zbl 859.05035.
§7: “Dowling group geometries”. A Dowling geometry of a group G

has a partial-field representation iff G is abelian and has at most one
involution. (gg: M: Incid)
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Masakazu Sengoku
1974a On hybrid tree graphs. Electron. Commun. Japan 57 (1974), no. 5, 18–23. MR

56 #15210.
A signed graph derived from trees and cotrees is balanced. [Annot.

24 July 2010.] (SG: Bal)

B. Seoane
See L.A. Fernández.

Ákos Seress
See P. Brooksbank.

James P. Sethna
2006a Statistical Mechanics: Entropy, Order Parameters, and Complexity. Oxford

Master Ser. in Physics, Vol. 14. Oxford Univ. Press, Oxford, 2006.
Textbook. P. 12, fn. 16: Frustration index (“spin-glass ground states”)

is polynomially equivalent to graph coloring. §12.3.4, “Glassy systems:
random but frozen”, mentions frustration due to negative circles (“a
loop with an odd number of antiferromagnetic couplings”). It is not yet
known how many equilibrium states exist. Fig. 12.17, “Frustration”: An
all-negative triangle with Ising spins (±1). [Annot. 28 Aug 2012.]

(Phys: SG: Fr: Exp)

E.C. Sewell
1996a Binary integer programs with two variables per inequality. Math. Programming

75 (1996), Ser. A, 467–476. MR 97m:90059. Zbl 874.90138.
See Johnson and Padberg (1982a) for definitions. §2, “Equivalence

to stable set problem”: Optimization on the bidirected stable set poly-
tope is reduced to optimization on a stable set polytope with no more
variables. Results of Bourjolly (1988a) and Hochbaum, Megiddo, Naor,
and Tamir (1993a) can thereby be explained. §3, “Perfect bigraphs”,
proves the conjectures of Johnson and Padberg (1982a): a transitively
closed bidirection of a simple graph is perfect iff its underlying graph is
perfect. [Also proved by Ikebe and Tamura (20xxa).] Dictionary: “Bi-
graph” = bidirected graph B. “Stable” set in B = vertex set inducing
no introverted edge. (SG: Ori: Incid, Geom, sw)

P.D. Seymour
See also M. Chudnovsky; J. Geelen; Gerards, Lovász, et al. (1990a); W. Mc-
Cuaig; and N. Robertson.

1974a On the two-colouring of hypergraphs. Quart. J. Math. Oxford (2) 25 (1974),
303–312. MR 51 #7927. Zbl 299.05122. (sd: Par: bal)

1977a The matroids with the max-flow min-cut property. J. Combin. Theory Ser. B
23 (1977), 189–222. MR 57 #2960. Zbl 375.05022.

The central example is Q6 = C−(−K4), the clutter of (edge sets of)
negative circles in −K4. P. 199: the extended lift matroid L0(−K4) =
F ∗7 , the dual Fano matroid. Result (3.4) readily generalizes (by the
negative-subdivision trick) to: every C−(Σ) is a binary clutter, that is, a
port of a binary matroid. [This is also immediate from the construction
of L0(Σ).]

P. 200, (i)–(iii): Amongst minor-minimal binary clutters without the
“weak MFMC property” are the circuit clutter of F ∗7 and C−(−K5) and
its blocker.
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Main Thm. (§5): A binary clutter is “Mengerian” (I omit the definition)
iff it does not have C−(−K4) as a minor. (See p. 200 for the antecedent
theorem of Gallai.)

[See Cornuéjols (2001a), Guenin (2001a) for more.]
(sg, Par: M, Geom)

1981a Matroids and multicommodity flows. European J. Combin. 2 (1981), 257–290.
MR 82m:05030. Zbl 479.05023.

Conjecture (based on (1977a)). A binary clutter has the weak MFMC
property iff no minor is either the circuit clutter of F7 or C−(−K5) or its
blocker. (sm, sg: M)

†1995a Matroid minors. In: R.L. Graham, M. Grötschel, and L. Lovász, eds., Hand-
book of Combinatorics, Vol. I, Ch. 10, pp. 527–550. North-Holland (Elsevier),
Amsterdam, and MIT Press, Cambridge, Mass., 1995. MR 97a:05055. Zbl
960.24825.

In Thm. 6.6, p. 546, interpreting G as a signed graph and an “odd-K4”
as a subdivision of −K4 gives the signed graph generalization, due to
Gerards and Schrijver (1986a) [also Gerards (1990a), Thm. 3.2.3]. Let Σ
be a signed simple, 3-connected graph in which no 3-separation has > 4
edges on both sides. Then Σ has no −K4 minor iff either (i) deleting
some vertex makes it balanced (the complete lift matroid of this type
is graphic); or (ii) it is cylindrical: it can be drawn on a cylindrical
surface that has a lengthwise red line so that an edge is negative iff
it crosses the red line an odd number of times [Note: the extended
lift matroid of this type is cographic, as observed by, I think, Gerards
and Schrijver or by Lovász]. [See Pagano (1998a) for another use of
cylindrical signed graphs.] [Problem. Find the forbidden topological
subgraphs, link minors, and Y∆ graphs for cylindrical signed graphs.]
[Question. Embed a signed graph in the plane with k distinguished faces
so that a circle’s sign is the parity of the number of distinguished faces
it surrounds. Cylindrical embedding is k = 1. For each k, which signed
graphs are so embeddable?] (SG: Str, Top)

Thm. 6.7, pp. 546–547, generalizes to signed graphs, interpreting G as
a signed graph and an “odd cycle” as a negative circle. Take a signed
simple, 3-connected, internally 4-connected graph. It has no two vertex-
disjoint negative circles iff it is one of four types: (i) deleting some vertex
makes it balanced; (ii) deleting the edges of an unbalanced triangle makes
it balanced; (iii) it has order ≤ 5; (iv) it can be orientation-embedded in
the projective plane. This is due to Lovász; see, if you can, Gerards et
al. (1990a). [A 2-connected Σ has no vertex-disjoint negative circles iff
G(Σ) is binary iff G(Σ) is regular iff the lift matroid L(Σ) is regular. See
Pagano (1998a) for classification of Σ with vertex-disjoint negative circles
according to representability of the bias matroid.] (SG: Str, m, Top)

Paul Seymour and Carsten Thomassen
1987a Characterization of even directed graphs. J. Combin. Theory Ser. B 42 (1987),

36–45. MR 88c:05089. Zbl 607.05037.
“Even” means every signing contains a positive cycle. A digraph is even

iff it contains a subdigraph that is obtained from a symmetric odd-circle
digraph by subdivision and a vertex-splitting operation. [Cf. Thomassen
(1985a).] (sd: par: Str)
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L. de Sèze
See J. Vannimenus.

Bryan L. Shader
See R.A. Brualdi and D.A. Gregory.

Nisarg Shah
See M. Joglekar.

Siamak Fayyaz Shahandashti
See S. Fayyaz Shahandashti (under F).

Hai-Ying Shan
See J.-Y. Shao and L. You.

Jia-Yu Shao
See also R. Manber and L. You.

1998a On digraphs and forbidden configurations of strong sign nonsingular matri-
ces. Linear Algebra Appl. 282 (1998), 221–232. MR 1648336 (99h:05086). Zbl
940.05044. (SD: QSol)

2000a On the digraphs of sign solvable linear systems. Linear Algebra Appl. 313
(2000), 115–126. MR 1770361 (2001e:05083). Zbl 958.15003.

Forbidden subgraphs used to characterize the signed digraphs. [Annot.
6 Mar 2011.] (SD: QSol)

Jia-Yu Shao, Jin-Ling He, and Hai-Ying Shan
2003a Number of nonzero entries of S2NS matrices and matrices with signed gen-

eralized inverses. Linear Algebra Appl. 373 (2003), 223–239. MR 1648336
(99h:05086). Zbl 1036.15005. (SG: QSol)

Yanling Shao
See also Y.-B. Gao.

Yanling Shao and Yubin Gao
2009a The local bases of primitive non-powerful signed symmetric digraphs with loops.

Ars Combin. 90 (2009), 357–369. MR 2489538 (2010c:05054). Zbl 1224.05223.
(SD, sg)

Yanling Shao, Jian Shen, and Yubin Gao
2009a The kth upper bases of primitive non-powerful signed digraphs. Discrete Math.

309 (2009), no. 9, 2682–2686. MR 2523775 (2010h:05144). Zbl 1207.05073.
(SD)

Ram Parkash Sharma and Vikram Singh Kapil

2011a Irreducible
−→
Sn-modules and a cellular structure of the signed Brauer alge-

bras. Southeast Asian Bull. Math. 35 (2011), no. 3, 497–522, MR 2856396
(2012h:16003). (gg: Algeb, m)

John Shawe-Taylor
See T. Pisanski.

Jia Sheng and MiaoLin Ye
2010a The spectral radius of signless Laplacian of a connected graph with given in-

dependence number. Math. Appl. (Wuhan) 23 (2010), no. 4, 709–712. MR
2765865 (no rev).

Jian Shen
See Y.-B. Gao and Y.L. Shao.

F.B. Shepherd
See A.M.H. Gerards.
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David Sherrington and Scott Kirkpatrick
See also S. Kirkpatrick.

1975a Solvable model of a spin-glass. Phys. Rev. Lett. 35 (1975), no. 26, 1792–1796.
Repr. in M. Mézard, G. Parisi, and M.A. Virasoro, Spin Glass Theory and
Beyond, pp. 104–108. World Scientific Lect. Notes in Physics, Vol. 9. World
Scientific, Singapore, 1987.

Announcement of part of Kirkpatrick and Sherrington (1978a). Intro-
duces the Sherrington–Kirkpatrick spin-glass model, a randomly signed
and (usually) weighted Kn. [Annot. 22 Aug 2012.] (Phys: sg: Fr)

Ronald G. Sherwin
1975a Structural balance and the sociomatrix: Finding triadic valence structures in

signed adjacency matrices. Human Relations 28 (1975), 175–189.
A very simple [but not efficient] matrix algorithm for counting different

types of circles in a signed (di)graph. [“Valence” means sign, unfortu-
nately.] (sg, SD: Bal: Alg)

Jeng-Horng Sheu
See I. Gutman.

Chuan-Jin Shi
1992a A signed hypergraph model of constrained via minimization. In: VLSI, 1992.

Proceedings of the Second Great Lakes Symposium on VLSI (Kalamazoo, Mich.,
1992), pp. 159–166. IEEE, 1992. (SH: Appl)

1992b A signed hypergraph model of constrained via minimization. Microelectronics
J. 23 (1992), no. 7, 533–542. (SH: Appl)

1993a Constrained via minimization and signed hypergraph partitioning. In: D.T. Lee
and M. Sarrafzadeh, eds., Algorithmic Aspects of VLSI Layouts, pp. 337–356.
World Scientific, Singapore, 1993. (SH: Appl: Exp)

1993b Optimum Logic Encoding and Layout Wiring for VLSI Design: A Graph-
Theoretic Approach. Ph.D. thesis, Univ. of Waterloo, 1993.

(SH: Incid, Bal, Alg, SG, Appl)

C.-J. Shi and J.A. Brzozowski
1999a A characterization of signed hypergraphs and its applications to VLSI via mini-

mization and logic synthesis. Discrete Appl. Math. 90 (1999), no. 1-3, 223–243.
MR 1666019 (99m:68155). Zbl 913.68104.

A signed hypergraph H = (V,E, ψ) is a hypergraph (V,E) with an
incidence signature ψ : V × E → {−1, 0, 1}. “Underlying graph” =
bipartite incidence graph with edge signs ψ. Sign of a path [or walk] =
product of incidence signs. Motivation: via minimization, i.e., minimize
the number of connections between different planar layers of a two-layer
circuit. [See Rusnak (2009a) for a different development of the same
definitions. Path signs are different; the normal sign for signed graphs
has an extra factor −1 for each edge.] e is “balanced” by a bipartition
V = V1∪·V2 when incidences of e are in the same Vi iff they have the same
sign. H is “balanced” if some bipartition balances every edge. Thm. 3.1:
H is balanced iff every circle is positive. [I.e., antibalance, since walk
signs are different from the norm.] Proof: Constructive [similar to but
less exact than algorithms for signed graphs as in Harary and Kabell
(1980a)], yielding Cor. 3.1: Testing balance takes linear time. Thm.
3.2: H is balanced iff its incidence dual is balanced. “Maximum balance
problem”: Minimize the number of unbalanced edges. Thm. 4.1: This
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is NP-complete, even for cubic graphs. [Known, as it contains the max-
cut problem.] Thm. 4.2: NP-complete for planar signed hypergraphs
with maximum degree > 3. (For max degree ≤ 3, polynomial-time algo-
rithms are given in Shi 1993b.) Problem: Minimum Covering: Find the
minimum number of bipartitions of V such that every edge is balanced
by one of the bipartitions. Equivalently, decompose H into the smallest
number of balanced subhypergraphs. [See Zaslavsky (1987b) for signed
graphs.] Thm. 5.1: NP-complete. Proof: Reduction to graph colorabil-
ity via decomposability of a graph into bipartite subgraphs [special case
of signed-graph decomposition as in Zaslavsky (1987b)].
§6, “Constrained via minimization”, summarizes connection with signed

hypergraphs, based on Shi (1992a,b). §7, “Constrained logic encoding”.
§8, “Related notions: Signed graphs and (0,±1)-matrices”. §8.1,

“Harary’s signed graphs”, compares their work with Harary (1953a) [no
mention of Harary and Kabell (1980a)]. §8.2, “Restricted unimodularity
and balanced (0,±1) matrices”: The incidence matrix of H(H) if H is a
graph [H(−H) in the normal definition] is totally unimodular iff −H is
balanced [essentially, Heller and Tompkins (1956a)].

[All problems and methods are equivalent to the similar problems for
the signed graph derived by replacing each hyperedge by a balanced
complete graph with Harary bipartition given by the sign bipartition of
the hyperedge’s incidences.] [Annot. 4 Nov 2010.]

(SH: Incid, Bal, Alg, SG)

C.-J. Shi, A. Vannelli, and J. Vlach
1990a A hypergraph partitioning approach to the via minimization problem. In: Pro-

ceedings of the Canadian Conference on VLSI (1990), pp. 2.7.1-2.7.8.
(SH: sg: Bal)

1997a Performance-driven layer assignment by integer linear programming and path-
constrained hypergraph partitioning. J. Heuristics 3 (1997), no. 3, 225–243.
Zbl 1071.90584. (SH: sg: Bal, Alg: Appl)

Jinsong Shi
See R.L. Li.

Yongtang Shi
See B.F. Hou.

Young-hee Shin
See J.H. Kwak.

K. Shivashankara
See P. Siva Kota Reddy.

Elizabeth G. Shrader and David W. Lewit
1962a Structural factors in cognitive balancing behavior. Human Relations 15 (1962),

265–276.
For Γ ⊂ Kn and signing σ of Γ, “plausibility” = mean and “differentia-

bility” = standard deviation of f(Kn, σ
′) over all extensions of σ to Kn,

where f is any function that measures degree of balance. Proposed: ten-
dency toward balance is high when plausibility and differentiability are
high. A specific f , based on triangles and quite complicated, is studied
for n = 4, with experiments. (sg, fr, PsS)
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Mohan S. Shrikhande
See Y.J. Ionin.

Jinlong Shu
See G.L. Yu and M.Q. Zhai.

Alan Shuchat
See R. Shull.

Randy Shull, James B. Orlin, Alan Shuchat, and Marianne L. Gardner
1989a The structure of bases in bicircular matroids. Discrete Appl. Math. 23 (1989),

267–283. MR 90h:05040. Zbl 698.05022.
[See Coullard, del Greco, and Wagner (1991a).] (Bic(Bases))

Randy Shull, Alan Shuchat, James B. Orlin, and Marianne Lepp
1993a Recognizing hidden bicircular networks. Discrete Appl. Math. 41 (1993), 13–53.

MR 94e:90122. Zbl 781.90089. (GN: Bic: Incid, Alg)

1997a Arc weighting in hidden bicircular networks. Proc. Twenty-eighth Southeast-
ern Int. Conf. on Combinatorics, Graph Theory and Computing (Boca Raton,
Fla., 1997). Congressus Numer. 125 (1997), 161–171. MR 98m:05181. Zbl
902.90157. (GN: Bic: Incid, Alg)

E.E. Shult
See P.J. Cameron.

R. Shwartz
See M. Amram.

Jana Šiagiová
See J. Širáň.

Heike Siebert
2008a Local structure and behavior of boolean bioregulatory networks. In: Katsuhisa

Horimoto et al., eds., Algebraic Biology (Third Int. Conf., AB 2008, Castle of
Hagenberg, Austria, 2008), pp. 185–199. Lect. Notes in Computer Sci., Vol.
5147. Springer, Berlin, 2008. Zbl 1171.92303. (SD)

2009a Deriving behavior of Boolean bioregulatory networks from subnetwork dynam-
ics. Math. Computer Sci. 2 (2009), no. 3, 421–442. MR 2507427 (2010g:92009).
Zbl 1205.37097. (SD)

2011a Analysis of discrete bioregulatory networks using symbolic steady states. Bull.
Math. Biology 73 (2011), no. 4, 873–898. MR 2785148 (2012c:92006). Zbl
1214.92033. (SD)

Heike Siebert and Alexander Bockmayr
2006a Incorporating time delays into the logical analysis of gene regulatory networks.

In: Corrado Priami, ed.,Computational Methods in Systems Biology (Proc. Int.
Conf. CMSB 2006, Trento, Italy), pp. 169–183. Lect. Notes in Computer Sci.,
Vol. 4210. Springer, Berlin, 2006. MR 2288350 (2007k:92067). (SD)

2007a Context sensitivity in logical modeling with time delays. In: Muffy Calder and
Stephen Gilmore, eds., Computational Methods in Systems Biology (Proc. Int.
Conf. CMSB 2007, Edinburgh, 2007), pp. 64–79. Lect. Notes in Computer Sci.,
Vol. 4695. Springer, Berlin, 2007. (SD)

2008a Temporal constraints in the logical analysis of regulatory networks. Theoretical
Computer Sci. 391 (2008), no. 3, 258–275. MR 2386791 (2008k:92035). Zbl
1133.68041. (SD)
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2008b Relating attractors and singular steady states in the logical analysis of bioregu-
latory networks. In: Hirokazu Anai et al., eds., Algebraic Biology (Second Int.
Conf., AB 2007, Castle of Hagenberg, Austria, 2007), pp. 36–50. Lect. Notes
in Computer Sci., Vol. 4545. Springer, Berlin, 2008. Zbl 1127.92002. (SD)

B. Simeone
See C. Benzaken, J.-M. Bourjolly, P.L. Hammer, and P. Hansen.

Slobodan K. Simić
See also M. And́elić, F. Belardo, D.M. Cardoso, D.M. Cvetković, and X.Y. Geng.

1980a Graphs which are switching equivalent to their complementary line graphs I.
Publ. Inst. Math. (Beograd) (N.S.) 27(41) (1980), 229–235. MR 82m:05077.
Zbl 531.05050. (TG: LG)

1982a Graphs which are switching equivalent to their complementary line graphs II.
Publ. Inst. Math. (Beograd) (N.S.) 31(45) (1982), 183–194. MR 85d:05207. Zbl
531.05051. (TG: LG)

Slobodan K. Simić and Zoran Stanić
2008a Q-integral graphs with edge-degrees at most five. Discrete Math. 308 (2008),

4625–4634. MR 2438168 (2010g:05229). Zbl 1156.05037. (Par: Adj)

2009a On some forests determined by their Laplacian or signless Laplacian spectrum.
Comput. Math. Appl. 58 (2009), no. 1, 171–178. MR 2535979 (2010j:05252).
Zbl 1189.05106 .

See Cvetković, Rowlinson, and Simić (2007a). (Par: Adj)

Rodica Simion
2000a Combinatorial statistics on type-B analogues of noncrossing partitions and re-

stricted permutations Electronic J. Combin. 7 (2000), Research Paper R9, 27
pp. MR 2000k:05013. Zbl 938.05003.

“Type-B noncrossing partitions” are certain signed partial partitions
of the ground set; i.e., certain elements of the Dowling lattice of {±}.

(gg: M)

R. Simion and D.-S. Cao
1989a Solution to a problem of C. D. Godsil regarding bipartite graphs with unique

perfect matching. Combinatorica 9 (1989), 85–89. MR 90f:05113. Zbl 688.05056.
Answering Godsil (1985a): |Σ| = Γ iff Γ consists of a bipartite graph

with a pendant edge attached to every vertex. [Surely there is a signed-
graphic generalization of Godsil’s and this theorem in which bipartite-
ness becomes balance or something like it.] (sg: Adj, bal)

J.M.S. Simões-Pereira
1972a On subgraphs as matroid cells. Math. Z. 127 (1972), 315–322. MR 47 #6522.

Zbl 226.05016, (243.05022).
“Cell” = circuit. Along with Klee (1971a), invents the bicircular ma-

troid (here, for finite graphs) (Thm. 1). Suppose we have matroids on
the edge sets of all [simple] graphs, such that the class of circuits is a
[nonempty] union of homeomorphism classes of connected graphs. Thm.
2: The circle and bicircular matroids [and free matroids] are the only
such matroids. (MtrdF, Bic)

1973a On matroids on edge sets of graphs with connected subgraphs as circuits. Proc.
Amer. Math. Soc. 38 (1973), 503–506. MR 47 #3214. Zbl 241.05114, 264.05126.
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A family of (isomorphism types of) [simple] connected graphs is “ma-
troidal” if for any Γ the class of subgraphs of Γ that are in the family
constitute the circuits of a matroid on E(Γ). Bicircular and even-cycle
matroids are the two nicest examples. A referee contributes the even-
cycle matroid [cf. Tutte (1981a), Doob (1973a)]. Thm.: The family
cannot be finite [unless it is void or consists of K2]. [See Marcu (1987a)
for a valuable new viewpoint.] (MtrdF, Bic, EC, Gen)

1975a On matroids on edge sets of graphs with connected subgraphs as circuits II.
Discrete Math. 12 (1975), 55–78. MR 54 #7298. Zbl 307.05129.

Partial results on describing matroidal families of simple, connected
graphs. Five basic types: free [omitted in the paper], cofree, circle,
bicircular, and even-cycle. If the family does not correspond to one of
these, then every member has ≥ 3 independent circles and minimum
degree ≥ 3. (MtrdF, Bic, EC: Gen)

1978a A comment on matroidal families. In: Problèmes Combinatoires et Théorie des
Graphes (Colloq. Int., Orsay, 1976), pp. 385–387. Colloques Int. du CNRS,
260. Editions du C.N.R.S., Paris, 1978. MR 81b:05031. Zbl 412.05023.

Two small additions to (1973a, 1975a); one is that a matroidal family
not one of the five basic types must contain Kp,q(p) for each m ≥ 3, with
q(p) ≥ p. (MtrdF, Bic, EC: Gen)

1992a Matroidal families of graphs. In: Neil White, ed., Matroid Applications, Ch. 4,
pp. 91–105. Encycl. Math. Appl., Vol. 40. Cambridge Univ. Press, Cambridge,
Eng., 1992. MR 93c:05036. Zbl 768.05024.

“Count” matroids (see N. White (1996a)) in §4.3; Schmidt’s (1979a)
remarkable generalization in §4.4.

(GG: MtrdF, Bic, EC: Gen: Exp, Exr, Ref)

Klaus Simon
See T. Raschle.

C. De Simone
See C. De Simone under D.

M. Simonovits
See B. Bollobás, J.A. Bondy, and P. Erdős.

Alistair Sinclair
See M. Jerrum.

Rajiv R.P. Singh
See M.E. Fisher.

Tarkeshwar Singh
See also M. Acharya and S.B. Rao.

2003a Advances in the Theory of Signed Graphs. Doctoral dissertation, University of
Delhi, India.

Fairly complete accounts of Acharya and Singh (various) and Singh
(20xxa), supplemented with background, appendix, etc. Ch. II, “Grace-
ful signed graphs”, is in Acharya and Singh (2003a, 2004a, 2005a, 20xxd,
20xxe). Ch. III, “Skolem graceful sigraphs”: Announced in Acharya and
Singh (2003b). Thm. 3.12: See Acharya and Singh (2010a). Also: Thm.
3.13: A necessary condition for Skolem-gracefulness of signed multi-
ple stars. Thm. 3.14: A sufficient condition for two signed stars. Ch.
IV, “Negation-switching invariant sigraphs”: See Acharya and Singh
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(20xxc). Also: A binary encoding of signed circles. App., “A catalog of
assorted labelled sigraphs”. [Annot. 20 July 2009.]

(SGc)(SG: Sw, LG)

2008a Skolem and hooked Skolem graceful sigraphs. In: B.D. Acharya, S. Arumugam,
and Alexander Rosa, eds., Labelings of Discrete Structures and Applications
(Mananthavady, Kerala, 2006), pp. 155–164. Narosa, New Delhi, 2008. MR
2391786 (2009e:05281) (book). Zbl 1161.05340.

[Cf. Acharya and Singh (2004a, 2003b). Generalizing the definition:
Given: a graph with r-colored edges, mi of color i; a list L of n integers.
Required: A bijection λ : V → L such that, if f(vw) := |λ(v) − λ(w)|,
then f restricted to color class i is a bijection to [mi].] Signed graphs
are the case r = 2. Skolem gracefulness is the case where λ exists for
L = [n]. Hooked Skolem gracefulness is the case where λ exists for
L = [n + 1] \ {n}. Results from Acharya and Singh (2010a) and Singh
(20xxa), examples, some proofs. (SGc: Exp)

2009a Graceful signed graphs on Ck
3 . Fifth Int. Workshop on Graph Labelings (IWOGL

2009) (Krishnankoil, 2009). AKCE Int. J. Graphs Combin. 6 (2009), no. 1,
201–208. MR 2533200 (2010g:05330). Zbl 1210.05155.

“Graceful” means (1, 1)-graceful, r = 1, as at M. Acharya and Singh
(2004a). Ck

3 is the windmill with k blades. Let Σ have ν negative rim
edges, 1 ≤ ν ≤ k/2, and no other negative edges. Thm. 10: Σ is
graceful if k ≡ 0 mod 4 and ν is even. Thms. 11, 12: Σ is graceful if
k ≡ 1, 2 mod 4. [Annot. 21 July 2010.] (SGc)

20xxa A note on hooked Skolem graceful sigraphs and its application. Submitted.
See (2008a). Thm.: A signed k-edge matching is hooked Skolem grace-

ful iff k ≡ 0 (mod 4) and |E−| is odd, or k ≡ 2 (mod 4) and |E−| is
even, or k ≡ 3 (mod 4). Curiously complementary to the theorem of
Acharya and Singh (2010a). (SGc)

Tarkeshwar Singh and Natasha D’Souza
2010a Some results in graceful signed tree. In: International Conference on Recent

Trends in Graph Theory and Combinatorics (ICRTBC-2010) (Cochin, 2010)
[Summaries], p. 169. Dept. of Mathematics, Cochin Univ. of Science and
Technology, 2010.

Abstract. Some graceful signed trees (see M. Acharya and Singh 2004a).
Every signed tree is an induced subgraph of a graceful signed tree. [An-
not. 31 Aug 2010.] (SGc)

N.M. Singhi
See also S.B. Rao, D.K. Ray-Chaudhuri, and G.R. Vijayakumar.

N.M. Singhi and G.R. Vijayakumar
1992a Signed graphs with least eigenvalue < −2. European J. Combin. 13 (1992),

219–220. MR 93e:05069. Zbl 769.05065.
A short proof that every such signed simple graph contains an induced

subgraph with least eigenvalue = −2. [Their M := 2I + A(Σ) is the
Kirchhoff matrix of −Σ.] (SG: adj)

Deepa Sinha
See also M. Acharya.
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2005a New Frontiers in the Theory of Signed Graphs. Doctoral dissertation, Univer-
sity of Delhi, 2005.

[Partial description] Σ is “sign compatible” if ∃ X ⊆ V such that
E− = E:X. [Annot. 12 Oct 2010.] (SG)

Deepa Sinha and Ayushi Dhama
20xxa Sign-compatibility of common-edge sigraphs and 2-path sigraphs. Submitted.

(SG: LG: Gen)

Deepa Sinha and Pravin Garg
2010a Consistency of semi-total signed graphs. In: International Conference on Re-

cent Trends in Graph Theory and Combinatorics (ICRTBC-2010) (Cochin,
2010) [Summaries], p. 153. Dept. of Mathematics, Cochin Univ. of Science
and Technology, 2010.

Abstract. Consistency of the canonical vertex signature of certain
graphs related to the line graph and total graph of Σ; see e.g. (2011f).
[Annot. 31 Aug 2010.] (SG: VS: Bal)

2011a Canonical consistency of signed line structures. Graph Theory Notes N. Y. 59
(2011), 22–27. MR 2849400 (2012g:05098).

Thm. 2: Consistency of the canonical vertex signature of two kinds of
line graph: (Thm. 2) ΛBC(Σ) (Behzad–Chartrand 1969a) and (Thm. 8)
Λ×(Σ) (M. Acharya 2009a). [Annot. 25 Mar 2011.]

(SG: LG: VS: Bal)

2011b Balance and consistency of total signed graphs. Indian J. Math. 53 (2011), no.
1, 71–81. MR 2809572 (2012d:05174).
T (Σ) Characterizes balance and consistency of the total graph T (Σ). The ver-

tex signs are µ1(v) := σ(E(v)) (E(v) := the vertex star), µ1(e) = σ(e).
The edge signs are σT (uv) := σ(euv), σT (ue) := σ(e)µ1(u), σT (ef) :=
σ(e)σ(f) [thus T (Σ) ⊇ Λ×(Σ) of M. Acharya (2009a)]. [Annot. 13 Oct
2009, 20 Dec 2010.] (SG, VS: Bal)

2011c On the regularity of some signed graph structures. AKCE Int. J. Graphs Com-
bin. 8 (2011), no. 1, 63–74. MR 2839176 (2012f:05126).
T (Σ) Σ is regular if Σ+ and Σ− are regular graphs. For the edge signs of line

graphs and total graph see (2011b). Characterizes Σ such that ΛBC or
Λ× or T is regular. Dictionary: “signed-regular” = regular. [Annot. 25
July 2011.] (SG: LG)

2011d Characterization of total signed graph and semi-total signed graphs. Int. J.
Contemp. Math. Sci. 6 (2011), no. 5-8, 221–228. MR 2797063 (no rev). Zbl
1235.05058. (SG: LG: Gen)

2011e On the unitary Cayley signed graphs. Electron. J. Combin. (2011), Article
P229, 13 pp.

The unitary Cayley graph Xn = (Zn, {ab : ∃ (b− a)−1}). Sn = (Xn, σ)
where σ(ab) = − iff 6 ∃ a−1, b−1. Thm. 4: Sn is balanced iff n is even or a
prime power. Cor. 5: Sn is antibalanced iff n is even. Cor. 7: ΛBC(Sn) is
balanced iff n is a prime power. Thm. 20: Let n have at most 2 distinct
odd prime factors. Sn is canonically consistent iff n is odd, evenly even,
2, or 6. [Annot. 16 Jan 2012.] (SG: Bal)

2011f Some results on semi-total signed graphs. Discuss. Math. Graph Theory 31
(2011), no. 4, 625–638.
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Similar to (2011b), but for T2(Σ) := T (Σ) without line-graph edges.
[Annot. 13 Oct 2009.] (SG, VS: LG: Gen: Bal)

20xxd Canonical consistency of semi-total signed graphs. Submitted.
(SG, VS: LG: Gen)

20xxe A characterization of canonically consistent total signed graphs. Submitted.
(SG, VS: LG: Gen)

Jozef Širáň
See also D. Archdeacon, P. Gvozdjak, and C.H. Li.

1991a Characterization of signed graphs which are cellularly embeddable in no more
than one surface. Discrete Math. 94 (1991), 39–44. MR 92i:05086. Zbl
742.05035.

A signed graph orientation-embeds in only one surface iff any two circles
are vertex disjoint. (SG: Top)

1991b Duke’s theorem does not extend to signed graph embeddings. Discrete Math.
94 (1991), 233–238. MR 92j:05065. Zbl 742.05036.

Richard A. Duke (The genus, regional number, and Betti number of
a graph. Canad. J. Math. 18 (1966), 817–822. MR 33 #4917.) proved
that the (orientable) genus range of a graph forms a contiguous set of
integers. Stahl (1978a) proved the analog for nonorientable embeddings.
Širáň shows this need not be the case for the demigenus range of an
unbalanced signed graph. However, any gaps consist of a single inte-
ger each. The main examples with gaps are vertex amalgamations of
balanced and uniquely embeddable unbalanced signed graphs, but a 3-
connected example is +W6 together with the negative diameters of the
rim. Question 1 (Širáň). Do all gaps occur at the bottom of the demi-
genus range? [Question 2. Can one in some way derive almost all signed
graphs with gaps from balanced ones?] (SG: Top)

Jozef Širáň, Jana Šiagiová, and Marián Olejár
2009a Graph coverings and graph labellings. Special Issue on Graph Labelings. Fifth

Int. Workshop on Graph Labelings (IWOGL 2009) (Krishnankoil, 2009). AKCE
Int. J. Graphs Combin. 6 (2009), no. 1, 127–133. MR 2533240 (2010g:05331).
Zbl 1210.05129.

Connectivity and automorphisms of a covering graph of a gain graph
(“voltage graph”). [Annot. 21 July 2010.] (GG: Cov: Aut, Exp)

Jozef Širáň and Martin Škoviera
††1991a Characterization of the maximum genus of a signed graph. J. Combin. Theory

Ser. B 52 (1991), 124–146. MR 92b:05033. Zbl 742.05037.
The maximum demigenus dM(Σ) = the largest demigenus of a closed

surface in which Σ orientation embeds. Two formulas are proved for
dM(Σ): one a minimum and the other a maximum of readily com-
putable numbers. Thus dM(Σ) has a “good” (polynomial) characteri-
zation. Along the way, several results are proved about single-face em-
beddings. Problem (§11). Characterize those edge-2-connected Σ such
that Σ and all Σ\e have single-face embeddings. [A complex and lovely
paper.] (SG: Top)

P. Siva Kota Reddy
See also V. Lokesha, R. Rangarajan, E. Sampathkumar, and M.S. Subramanya.
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2010a t-path sigraphs. Tamsui Oxford J. Math. Sci. 26 (2010), no. 4, 433–441. MR
2840769 (2012g:05096). (SG)

20xxa Switching invariant t-path sigraphs. Submitted.
In the t-path signed graph (Σ)t, u, v are adjacent when joined by a path

of length t, with signature σc (see Sampathkumar, Siva Kota Reddy,
and Subramanya (2010c)). (The signature differs from that of Gill and
Patwardhan (1986a) and M. Acharya (1988a).) Solved: Σ ' (Σ)2, (Σ)3.
[Annot. 10 Apr 2009.] (SG: Sw, LG(Gen))

20xxb A note on characterization of jump signed graphs. Submitted. (SG: LG)

P. Siva Kota Reddy, V. Lokesha, and Gurunath Rao Vaidya
2010a The line sigraph of a symmetric n-sigraph. II. Proc. Jangjeon Math. Soc. 13

(2010), no. 3, 305–312. Zbl 1223.05109.
Definitions as at Sampathkumar, Siva Kota Reddy, and Subramanya

(2008a). (GG: LG)

2010b The line n-sigraph of a symmetric n-sigraph—III. Int. J. Open Problems Com-
puter Sci. Math. 3 (2010), no. 5, 172–178.

Definitions as at Sampathkumar, Siva Kota Reddy, and Subramanya
(2008a). (GG: LG)

2011a Switching equivalence in symmetric n-sigraphs—III. Int. J. Math. Sci. Engi-
neering Appl. 5 (2011), no. 1, 95–101. MR 2791536 (2012a:05141).

Definitions as at Sampathkumar, Siva Kota Reddy, and Subramanya
(2008a). (GG: Sw)

P. Siva Kota Reddy, K.M. Nagaraja, and M.C. Geetha
2012a The line n-sigraph of a symmetric n-sigraph–IV. Int. J. Math. Combin. 2012

(2012), vol. 1, 106–112. (SG: Gen: LG)

P. Siva Kota Reddy, Kavita S. Permi, and K.R. Rajanna
2012a Combinatorial aspects of a measure of rank correlation due to Kendall and its

relation to complete signed digraphs. Int. J. Math. Combin. 2012 (2012), vol.
1, 74–77. (SD)

P. Siva Kota Reddy and B. Prashanth
2009a Switching equivalence in symmetric n-sigraphs. I. Adv. Appl. Discrete Math. 4

(2009), no. 1, 25–32. MR 2555623 (2010k:05122). Zbl 1176.05034.
Continuation of Rangarajan, Siva Kota Reddy, and Subramanya (2009a).

Definitions as at Sampathkumar, Siva Kota Reddy, and Subramanya
(2008a). Solved for an n-signed graph Φ: ΛS(Φ) ' Φc; Λk

S(Φ) ' Φc. [The
results remain true without assuming symmetry.] (SG, gg: Sw, LG)

P. Siva Kota Reddy, B. Prashanth, and T.R. Vasanth Kumar
2011a Antipodal signed digraphs. Adv. Stud. Contemp. Math. (Kyungshang) 21 (2011),

no. 4, 355–360. (SD)

P. Siva Kota Reddy, B. Prashanth, and V. Lokesha
20xxa A note on switching in symmetric n-sigraphs. Submitted.

Switching multiple signs σ(e) ∈ {+,−}k by signs µ(v) ∈ {+,−}.
[Equivalent to restricted switching, where µ(v) ∈ {±(+, . . . ,+)}.] Char-
acterized by cutset negation. [Annot. 7 Jan 2011.] (SG(Gen): Sw)

P. Siva Kota Reddy, B. Prashanth, and Kavita S. Permi
2011a A note on antipodal signed graphs. Int. J. Math. Combin. 2011 (2011), vol. 1,
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107–112. MR 2829740 (2012d:05173). (SG)

P. Siva Kota Reddy, R. Rangarajan, and M.S. Subramanya
2011a Switching invariant neighborhood signed graphs. Proc. Jangjeon Math. Soc. 14

(2011), no. 2, 249–258. MR 2829740 (2012d:05173). Zbl 1238.05121.
(SG, VS: LG)

P. Siva Kota Reddy, E. Sampathkumar, and M.S. Subramanya
2010a Common-edge signed graph of a signed graph. J. Indonesian Math. Soc. 16

(2010), no. 2, 105–113. MR 2752773 (no rev). (SG)

P. Siva Kota Reddy, K. Shivashankara, and K.V. Madhusudhan
2010a Negation switching equivalence in signed graphs. Int. J. Math. Combin. 3

(2010), 85–90. Zbl 1238.05122.
Solved: −Σ, Λk

×(Σ) ' Λ2
×(Σ), based on existing solutions for unsigned

isomorphism. (See M. Acharya (2009a) for Λ×.) [Annot. 6 Feb 2011.]
(SG: LG, Sw)

P. Siva Kota Reddy and M.S. Subramanya
2007a A characterization of symmetric 3-sigraphs whose line symmetric 3-sigraphs are

switching equivalent. J. Appl. Math. Anal. Appl. 3 (2007), no. 1, 23–31. MR
2479512 (2009m:05080).

2009b Signed graph equation LK(S) ∼ S̄. Int. J. Math. Combin. 4 (2009), 84–88
(2010). MR 2598675 (no rev).

Definitions as at Sampathkumar, Siva Kota Reddy, and Subramanya
(2008a). Solved: Σc ' Λ2

×(Σ); Λk
×(Σ) ' Σc. [Λ× as in M. Acharya

(2009a).] [Continued in Siva Kota Reddy, Vijay, and Lokesha (2009a,
2010a)]. [Annot. 3 Aug 2009.] (SG: Bal, Sw, LG)

2009c Note on path signed graphs. Notes Number Theory Discrete Math. 15 (2009),
no. 4, 1–6.

V (Pk(Σ)) := {paths}, PP ′ ∈ E(Pk(Σ)) iff P ∪ P ′ is a path of order
k + 1 or a Ck, σ(PP ′) = σ(P )σ(P ′). This is balanced. Solved: Σ '
P3(Σ), P4(Σ). [Annot. 7 Jan 2011.] (SG: LG(Gen), Bal)

P. Siva Kota Reddy and S. Vijay
2010a Total minimal dominating signed graph. Int. J. Math. Combin. 3 (2010), 11–16.

Zbl 1238.05124.
The intersection graph Mt of all total minimal dominating sets of
|Σ| is signed to be balanced using the canonical vertex signature of Σ.
Such signed graphs are characterized. Mt ' Σ,−Σ are solved, based on
existing solutions for unsigned isomorphism. [Annot. 6 Feb 2011.]

(SG)

20xxa The super line signed graph Lr(S) of a signed graph. Southeast Asian Bull.
Math., to appear.

V (Lr(Σ)) := Pr(E) with edge PQe,f ∈ E(Lr(Σ)) for each adjacent
e ∈ P, f ∈ Q and σL(PQe,f ) = σ(P )σ(Q). This is balanced. Solved:
Σ,Λ×(Σ) ' L2(Σ), Σ ∼= L2(Σ), et al. [Annot. 7 Jan 2011.]

(SG: LG(Gen), Bal)

P. Siva Kota Reddy, S. Vijay, and V. Lokesha
2009a nth power signed graphs. Proc. Jangjeon Math. Soc. 12 (2009), no. 3, 307–313.

MR 2582796 (2011e:05109). Zbl 1213.05121.
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Definitions and notation as in Sampathkumar, Siva Kota Reddy, and
Subramanya (2008a, 2010c).

Dm The “mth power signed graph” Σm [I will say “≤ m-distance signed
graph” Dm(Σ)] is the graph of distance ≤ m in |Σ| with signature
σc. Prop. 5: Σ has the form Dm(Σ′) iff it is balanced and |Σ| is a
(≤m)-distance graph. [Sufficiency is incorrect.] Solved [possibly in-
correctly]: Σc or Λ×(Σc) ' Dm(Λ×(Σ)); Λ×(Σ)c ' Dm(Σc); Λ2

×(Σ) '
Dm(Σ), Dm(Σ)c, Dm(Σc). [Λ× as in M. Acharya (2009a).] [Annot. 12
Apr 2009.] (SG: Bal, Sw, LG)

2010a The nth power signed graphs. II. Int. J. Math. Combin. 1 (2010), 74–79. MR
2662418 (no rev). Zbl 1207.05074.

Continuing (2009a) with: Λ×(Σ) ' Dm(Σ[c]); Λ×(Σ)c ' Dm(Σ). [An-
not. 10 Apr 2009.] (SG: Bal, Sw, LG)

P. Siva Kota Reddy, S. Vijay, and B. Prashanth
2009a The edge C4 n-sigraph of a symmetric n-sigraph. Int. J. Math. Sci. Eng. Appl.

3 (2009), no. 2, 21–27. (SG(Gen), gg: LG(Gen))

P. Siva Kota Reddy, S. Vijay, and H.C. Savithri
2010a A note on path signed digraphs. Int. J. Math. Combin. 2010 (2010), vol. 1,

42–46. MR 2662415 (no rev). Zbl 1203.05065. (SD: LG: Gen)

B. Sivakumar
See also M. Parvathi.

2009a Matrix units for the group algebra kGf = k((Z2 × Z2) o Sf ). Asian-Eur. J.
Math. 2 (2009), no. 2, 255–277. MR 2532703 (2010g:16043). Zbl 1198.20013.

(gg: m: Algeb)

Vaidy Sivaraman
See J. Maharry.

A. Skhrĕıver [A. Schrijver]
See A. Schrijver.

Bjarke Skjernaa
See J.M. Byskov.

Martin Škoviera
See also A. Malnič, R. Nedela, and J. Širáň.

1983a Equivalence and regularity of coverings generated by voltage graphs. In: Miroslav
Fiedler, ed., Graphs and Other Combinatorial Topics (Proc. Third Czechoslo-
vak Sympos. on Graph Theory, Prague, 1982), pp. 269–272. Teubner-Texte
Math., 59. Teubner, Leipzig, 1983. MR 85e:05064. Zbl 536.05019.

(GG: Top, Cov, Sw)

1986a A contribution to the theory of voltage graphs. Discrete Math. 61 (1986), 281–
292. MR 88a:05060. Zbl 594.05029.

Automorphisms of covering projections of canonical covering graphs of
gain graphs. (GG: Top, Cov, Aut, Sw)

1992a Random signed graphs with an application to topological graph theory. In:
Alan Frieze and Tomasz Luczak, eds., Random Graphs, Vol. 2 (Proc., Poznań,
1989), Ch. 17, pp. 237–246. Wiley, New York, 1992. MR 93g:05126. Zbl
817.05059.
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The model: each edge is selected with probability p, positive with
probability s. Under mild hypotheses on p and s, Σ is almost surely
unbalanced and almost surely has a 1-face orientation embedding. [Re-
lated: Frank and Harary (1979a).] (SG: Rand, Enum, Top)

Daniel Slilaty
See also H. Qin.

2000a Orientations of Biased Graphs and Their Matroids. Doctoral dissertation, State
University of New York at Binghamton, 2000. MR 2701091 (no rev).

Introducing orientation of biased graphs and biased signed graphs by
means of proper circle orientations and their generalization, “graphical
orientation schemes”. The definition is chosen so as to produce orien-
tations of the bias and complete lift matroids and (though not in the
thesis) to model the orientation of the bias or complete lift matroid of,
respectively, an R×- or R+-gain graph induced by its canonical bias or
lift representation (Zaslavsky 2003b). Characterizations of equivalence
of different orientation schemes. The completeness question: when do
graphical orientation schemes yield all orientations of the bias matroid?
Always, for additively biased (i.e., signed) graphs and for some other
kinds of biased graphs. (GG: Ori, M, OG, SG)

2002a Matroid duality from topological duality in surfaces of nonnegative euler char-
acteristic. Combin. Probab. Computing 11 (2002), no. 5, 515–528. MR 1930356
(2003i:05034). Zbl 1009.05036.

Duality of matroids of biased graphs, obtained by defining gains through
embedding in a surface and dualizing the graph in the surface.

(GG, SG: M, D, Top)

2005a On cographic matroids and signed-graphic matroids. Discrete Math. 301 (2005),
no. 12, 207–217. MR 2171313 (2007c:05049). Zbl 1078.05017. (SG: M, Top)

2006a Bias matroids with unique graphical representations. Discrete Math. 306 (2006),
no. 12, 1253–1256. MR 2245651 (2007b:05044). Zbl 1093.05015. (GG: M: Str)

†2007a Projective-planar signed graphs and tangled signed graphs. J. Combin. Theory
Ser. B 97 (2007), no. 5, 693–717. MR 2344133 (2008j:05161). Zbl 1123.05046.

Thm.: The signed graphs with no two vertex-disjoint negative circles
are those with a balancing vertex, or obtained from a projective-planar
signed graph (cf. Zaslavsky 1993a) or from [−K5] by t-summation with
balanced signed graphs for t = 1, 2, 3. (Previously announced in less
general form by Lovász (see Seymour 1995a) but the proof was incor-
rect.) [Major Problem. Characterize the biased graphs having no two
vertex-disjoint unbalanced circles. Lovász (1965a, q.v.) solved the con-
trabalanced case.] (SG: Top, Str)

2010a Integer functions on the edges and cycle space of a graph. Graphs Combin. 20
(2010), no. 2, 293–299. MR 2606501 (2011b:05092). Zbl 1230.05142.

Integral gains ϕ : E → Z induce a cycle-space homomorphism ϕ̂ :
Z1(Γ) → Z. Let f : Z1(Γ) → Z. Thm. 3: f(W ) ≤ k|W | for every walk
W iff f = ϕ̂ for some ϕ satisfying max |ϕ(e)| ≤ k. Thm. 2: For odd k, if
also f(W ) ≡ |W |mod 2, there is ϕ which assumes only odd values; and
conversely. [Annot. 5 Sept 2010.] (GG)

20xxa Connectivity in signed-graphic matroids. Submitted. (SG: M: Str)
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Daniel C. Slilaty and Hongxun Qin
2007a Decompositions of signed-graphic matroids. Discrete Math. 307 (2007), no.

17-18, 2187–2199. MR 2340600 (2008f:05032). Zbl 1121.05055. (SG: M: Str)

2008a The signed-graphic representations of wheels and whirls. Discrete Math. 308
(2008), no. 10, 1816–1825. MR 2394450 (2009c:05043). Zbl 1173.05311.

All frame matroids (of biased graphs) that are wheels and whirls, char-
acterized topologically by embeddings in the projective plane (wheels)
and the cylinder (whirls). (GG: M: Str)

2008b Connectivity in frame matroids. Discrete Math. 308 (2008), no. 10, 1994–2001.
MR 2394467 (2009e:05139). Zbl 1170.05323.

Graphical biconnectivity of Ω vs. matroid connectivity of G(Ω), gener-
alizing concepts developed by Wagner (1985a) for the bicircular matroid.

(GG: M: Str)

Daniel C. Slilaty and Thomas Zaslavsky
20xxa Construction of line-consistent signed graphs. Submitted.

A constructive proof of Acharya, Acharya, and Sinha’s (2009a) criterion
for consistency of Λ(Σ). [Annot. 14 Oct 2009.] (SG, VS: LG: Bal)

N.J.A. Sloane
See P.C. Fishburn, R.L. Graham, and C.L. Mallows.

Chris Smyth
See J. McKee.

J. Laurie Snell
See J. Berger and J.G. Kemeny.

Lynea Snyder
See Y. Duong.

Moo Young Sohn
See J. H. Kwak.

Alan D. Sokal
2005a The multivariate Tutte polynomial (alias Potts model) for graphs and ma-

troids. In: Bridget S. Webb, ed., Surveys in Combinatorics 2005, pp. 173–226.
Cambridge University Press, Cambridge, Eng., 2005. MR 2006k:05052. Zbl
1110.05020.

The parametrized dichromatic polynomial with parameters de = 1,
called the “multivariate Tutte polynomial”. Partly expository, partly
new. [See Zaslavsky (1992b).] (SGw: Gen: Invar, Exp)

James P. Solazzo
See D.M. Duncan.

Patrick Solé and Thomas Zaslavsky
1994a A coding approach to signed graphs. SIAM J. Discrete Math. 7 (1994), 544–

553. MR 95k:94041. Zbl 811.05034.
Among other things, improves some results in Akiyama, Avis, Chvátal,

and Era (1981a). Thm. 1: For a loopless graph with c components,

D(Γ) ≥ 1
2
m −

√
1
2

ln 2
√
m(n− c). Thm. 2: For a simple, bipartite

graph, D(Γ) ≤ 1
2
(m −

√
m). Conjecture. The best general asymp-

totic lower bound is D(Γ) ≥ 1
2
m − c1

√
mn + o(

√
mn) where c1 is some

constant between
√

1
2

ln 2 and 1
2
π. Question. What is c1 for, e.g., k-
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connected graphs? Thm. 4 gives girth-based upper bounds on D(Γ).
§5, “Embedded graphs”, has bounds for several examples obtained by
surface duality. All proofs are via covering radius of the cutset code of
Γ. (SG: Fr, Top)

Extends to r = 5 the exact values of D(Kr,s) for r ≤ 4 in Brown and
Spencer (1971a). [But r = 5 has errors. Extended correctly to all r by
Bowlin (2009).] [Annot. Rev. 14 Feb 2011.] (SG: Fr)

Louis Solomon
See P. Orlik.

N.D. Soner
See R. Rangarajan.

Sang-Oak Song
See G. Lee.

Song Yi-Zhe
See B. Xiao.

Eduardo Sontag
See also D. Angeli, C. Craciun, B. Dasgupta and G.A. Enciso.

2007a Monotone and near-monotone systems. In: I. Queinnec, S. Tarbouriech, G.
Garcia, and S.-I. Niculescu, eds., Biology and Control Theory: Current Chal-
lenges, pp. 79–122. Lect. Notes in Control and Inform. Sci., Vol. 357. Springer-
Verlag, Berlin, 2007. MR 2352229 (2008k:92021). (sg: Biol)

C.M. Soukoulis
See D. Blankschtein.

B.W. Southern, S.T. Chui, and G. Forgacs
1980a Non-universality for two-dimensional frustrated lattices? J. Phys. C 13 (1980),

L827–L830.
Physics of signed square lattice graph, fully frustrated (all positive

except for all-negative alternating vertical lines). Reduced to the “8-
vertex” physics model by taking alternating sites (vertices) and observ-
ing they are 4-valent and all or half positive. [Cf. Garel and J.M. Maillard
(1983a).] [Annot. 16 June 2012.] (Phys: sg)

Cid C. de Souza
See R.M.V. Figueiredo.

Natasha D’Souza
See T. Singh.

Tadeusz Sozański
1976a Processus d’équilibration et sous-graphes équilibrés d’un graphe signé complet.

Math. Sci. Humaines, No. 55 (1976), 25–36, 83. MR 58 #27613.
Σ denotes a signed Kn. The “level of balance” (“indice du niveau

d’équilibre”) ρ(Σ) := maximum order of a balanced subgraph. [Com-
plement of the vertex deletion number.] Define distance d(Σ1,Σ2) :=
|E1+ 4 E2+|. Say Σ is p-clusterable if Σ+ consists of p disjoint cliques
[its “clusters”]. Thm. 1 evaluates the frustration index of a p-clusterable
Σ. Thm. 2 bounds l(Σ) in terms of n and ρ(Σ). A negation set U for Σ
“conserves” a balanced induced subgraph if they are edge-disjoint; it is
“(strongly) conservative” if it conserves some (resp., every) maximum-
order balanced induced subgraph. Thm. 3: Every minimum negation
set conserves every balanced induced subgraph of order > 2

3
n. Thm. 4:
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A minimum negation set can be ordered so that, successively negating
its edges one by one, ρ never decreases. (SG: KG: Fr, Clu)

1980a Enumeration of weak isomorphism classes of signed graphs. J. Graph Theory
4 (1980), 127–144. MR 81g:05070. Zbl 434.05059.

“Weak isomorphism” = switching isomorphism. Principal results: The
number of switching nonisomorphic signedKn’s. (Cf.Mallows and Sloane
(1975a).) The number that are switching isomorphic to their negations.
The number of nonisomorphic (not switching nonisomorphic!) balanced
signings of a given graph. (SG, KG: Sw: Enum)

1982a Model rownowagi strukturalnej. Teoria grafow oznakowanych i jej zastosowania
w naukach spotecznych. [The structural balance model. The theory of signed
graphs and its applications in the social sciences.] (In Polish.) Ph.D. thesis,
Jagellonian Univ., Krakow, 1982. (SG, PsS: Bal, Fr, Clu, Aut, Adj, Ref)

Edward Spence
See W.H. Haemers.

Joel Spencer
See T.A. Brown.

Aravind Srinivasan
2011a Local balancing influences global structure in social networks. Proc. Nat. Acad.

Sci. (U.S.A.) 108 (2011), no. 5, 1751–1752.
Summary and commentary on Marvel, Kleinberg, Kleinberg, and Stro-

gatz (2011a). [Annot. 7 Feb 2011.] (SG: KG: Fr)

Murali K. Srinivasan
See also A. Bhattacharya.

1998a Boolean packings in Dowling geometries. European J. Combin. 19 (1998), 727–
731. MR 99i:05059. Zbl 990.10387.

Decomposes the Dowling lattice Qn(G) into Boolean algebras, indexed
in part by integer compositions, that are cover-preserving and centered
above the middle rank. (GG: M)

R. Srinivasan
See V. Kodiyalam.

Saul Stahl
1978a Generalized embedding schemes. J. Graph Theory 2 (1978), 41–52. MR 58

#5318. Zbl 396.05013.
A generalized embedding scheme for a graph is identical to a rotation

system for a signing of the graph. Thm. 2: Signed rotation systems
describe all cellular embeddings of a graph. Thm. 4: Embeddings are
homeomorphic iff their signed rotation systems are switching equivalent.
Thm. 5: An embedding is orientable iff its signature is balanced. Com-
pare Ringel (1977a). Dictionary: λ is the signature. “λ-trivial” means
balanced. (sg: Top, Sw)

1978b The embeddings of a graph—a survey. J. Graph Theory 2 (1978), 275–298.
MR 80a:05085. Zbl 406.05027. (sg: Top)

David P. Stanford
See C.R. Johnson.

Zoran Stanić
See also S.K. Simić.
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2007a Some Reconstructions in Spectral Graph Theory and Q-Integral Graphs. (In
Serbian.) Doctoral Thesis, Faculty of Math., Belgrade, 2007. (Par: Adj)

2007b There are exactly 172 connected Q-integral graphs up to 10 vertices. Novi Sad
J. Math. 37 (2) (2007), 193–205. MR 2401613 (no rev). Zbl 1164.05046.

(Par: Adj)

2009a On determination of caterpillars with four terminal vertices by their Lapla-
cian spectrum. Linear Algebra Appl. 431 (2009), 2035–2048. MR 2567810
(2010j:05253). Zbl 226.05165.

§5: SpecK(−Γ) is mentioned. [Annot. 16 Jan 2012.] (Par: Adj)

Richard P. Stanley
See also P. Doubilet and A. Postnikov.

1973a Linear homogeneous diophantine equations and magic labelings of graphs. Duke
Math. J. 40 (1973), 607–632. MR 47 #6519. Zbl 269.05109.

P. 630 restates Stewart (1966a), Cor. 2.4 in a clear way and observes
that, if Γ is bipartite, then dimV = |E| − n+ 2. These two statements
are equivalent to van Nuffelen (1973a). (par: incid, ec)

1985a Reconstruction from vertex-switching. J. Combin. Theory Ser. B 38 (1985),
132–138. MR 86f:05096. Zbl 572.05046.

From the 1-vertex switching deck (the multiset of isomorphism types
of signed graphs resulting by separately switching each vertex) of Σ =
(Kn, σ), Σ can be reconstructed, provided that 4 - n. The same for
i-vertex switchings, provided that the Krawtchouk polynomial Kn

i (x)
has no even zeros from 0 to n. When i = 1, the negative-subgraph
degree sequence is always reconstructible. All done in terms of Seidel
(graph) switching of unsigned simple graphs. [See Ellingham; Ellingham
and Royle; Krasikov; Krasikov and Roditty for further developments.
Problem 1. Generalize to signings of other highly symmetric graphs.
Problem 2. Prove a similar theorem for switching of a bidirected Kn.]

(kg: sw, TG)

1986a Enumerative Combinatorics, Volume I. Wadsworth and Brooks/Cole, Mon-
terey, Cal., 1986. MR 87j:05003. Zbl 608.05001.

Ch. 3, “Partially ordered sets”: Exercise 51, pp. 165 and 191, concerns
the Dowling (1973a,b) lattices of a group and mentions Zaslavsky’s gen-
eralizations [signed and biased graphs]. (GG: M, Invar: Exr, Exp)

1990a (As “R. Stenli”) Perechislitel’naya kombinatorika. “Mir”, Moscow, 1990. MR
91m:05002.

Russian translation of Stanley (1986). (GG: M, Invar: Exr, Exp)

1991a A zonotope associated with graphical degree sequences. In: Peter Gritzmann
and Bernd Sturmfels, eds., Applied Geometry and Discrete Mathematics: The
Victor Klee Festschrift, pp. 555–570. DIMACS Ser. Discrete Math. and Theor.
Computer Sci., Vol. 4. American Mathematical Soc. and Assoc. for Computing
Machinery, Providence and Baltimore, 1991. MR 92k:52020. Zbl 737.05057.

All-negative complete graphs (implicit in §3) and signed colorings (§4)
are used to find the number of ordered degree sequences of n-vertex
graphs and to study their convex hull. (SG: Geom, Col)

1996a Hyperplane arrangements, interval orders, and trees. Proc. Nat. Acad. Sci.
USA 93 (1996), 2620–2625. MR 97i:52013. Zbl 848.05005.
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Deformed braid hyperplane arrangements, i.e., canonical affine hyper-
planar lift representations of Latb Φ where ‖Φ‖ = Kn and edge ij has
gain li ∈ Z when i < j. In particular (§4), all li = 1. Also (§5), the Shi

arrangement, which represents Latb{0, 1} ~Kn.
(gg: Geom, M, Invar: Exp)

1997a Enumerative Combinatorics, Volume 1. Corrected reprint. Cambridge Stud.
Adv. Math., Vol. 49. Cambridge University Press, Cambridge, Eng., 1997. MR
98a:05001. Zbl 970.29805, 945.05006.

Additional exercises, some updating, some corrections to (1986a).
(GG: M, Invar: Exr, Exp)

1998a Hyperplane arrangements, parking functions and tree inversions. In: B.E. Sagan
and R. Stanley, eds., Mathematical Essays in Honor of Gian-Carlo Rota, Pro-
gress in Math., Vol. 161, pp. 359–375. Birkhäuser, Boston, 1998. MR 99f:05006.
Zbl 980.39546. (gg: Geom, M, Invar: Exp)

1999a Enumerative Combinatorics, Volume 2. Cambridge Stud. Adv. Math., Vol. 62.
Cambridge University Press, Cambridge, Eng., 1999. MR 2000k:05026. Zbl
928.05001.

Exercise 5.50: The Shi arrangement [the affinographic hyperplane rep-

resentation of {0, 1} ~Kn with gain group Z+]. Exercise 5.41(h–i): The
Linial arrangement and its characteristic polynomial [= χ∗{1} ~Kn

(λ)]. Ex-

ercise 6.19(lll) conceals the Catalan arrangement [representing {0,±1} ~Kn].
Exercise 5.40(b): Counts two-graphs that 6⊇ [C5].

(gg: Geom, m, Invar, TG: Exr, Exp)

2012a Enumerative Combinatorics, Volume 1. Second edition. Cambridge Stud. Adv.
Math., Vol. 49. Cambridge University Press, Cambridge, Eng., 2012.

Vastly enlarged from (1986a, 1997a). Ch. 3, “Partially ordered sets”:
Exercise 115b, solution, p. 434, mentions Zaslavsky (1981a). Exercise
117, solution, p. 435, mentions Zaslavsky (2002a). Exercise 131, pp.
385 and 439–440, concerns the Dowling (1973a,b) lattices of a group
and mentions Zaslavsky’s generalizations to signed and gain [and biased]
graphs. [Annot. 14 Jun 2012.] (GG: M, Invar: Exr, Exp)

Kenneth Steiglitz
See C.H. Papadimitriou.

Arthur Stein
See B. Healy.

Daniel L. Stein
See also C.M. Newman.

1989a Spin glasses. Scientific American 261 (July, 1989), no. 1, 52–59.
Informally describes frustration in spin glasses in terms of randomly

ferromagnetic and antiferromagnetic interactions (see Toulouse (1977a))
and gives some history and applications. (Phys: sg: bal, Rand: Exp)

R. Stenli [Richard P. Stanley]
See R.P. Stanley.

Dragan Stevanović
2007a Research problems from the Aveiro Workshop on Graph Spectra. Linear Alge-

bra Appl. 423 (2007), no. 1, 172–181. MR 2312333.
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Two problems by Krzysztof Zwierzyński on the “signless Laplacian”
matrix K(−Γ) (see Cvetković, Rowlinson, and Simić 2007a) are: Prob-
lem AWGS.1, “The maximum clique and the signless Laplacian”. Com-
pare the clique number with the min eigenvalue. Problem AWGS.2,
“Integral graphs”. For which graphs are all eigenvalues (of K(−Γ), in
particular) integral? [Annot. 15 Sept 2010.] (Par: Adj)

Brett Stevens
See N.A. Neudauer.

B.M. Stewart
1966a Magic graphs. Canad. J. Math. 18 (1966), 1031–1059. MR 33 #5523. Zbl 149,

214 (e: 149.21401).
In R1+E = R × RE with x0 the first coordinate, let σv(x) =

∑
{xe :

e is incident to v}, and let V = {x ∈ RE : σv(x) = x0,∀v ∈ V }.
Cor. 2.4 (p. 1059): If Γ is connected and contains an odd circle, then
dimV = |E| − n+ 1. [Restated as in Stanley (1973a). Since V ∩ {x0 =
0} = null space of the incidence matrix H(−Γ), this cryptically and
partially anticipates the first calculation of rank(H(−Γ)), by van Nuffelen
(1973a).] (par: incid, ec)

William J. Stewart
See N. Liu.

Allen H. Stix
1974a An improved measure of structural balance. Human Relations 27 (1974), 439–

455. (SG: Fr)

Daniel Stolarski
See J. Carlson.

Douglas Stone
See W. Kocay.

J. Randolph Stonesifer
1975a Logarithmic concavity for a class of geometric lattices. J. Combin. Theory Ser.

A 18 (1975), 216–218. MR 50 #9637. Zbl 312.05019.
The second kind of Whitney numbers of a Dowling lattice are binomially

concave, hence strongly logarithmically concave, hence unimodal. [Cf.
Damiani, D’Antona, and Regonati (1994a) and Benoumhani (1999a).]
[Famous Problem (Rota). Generalize this.] [Annot. Rev 30 Apr 2012.]

(gg: M: Invar)

Steven H. Strogatz
See also S.A. Marvel.

2010a The enemy of my enemy. New York Times, online edition, February 14, 2010,
the Opinionator blog. http://opinionator.blogs.nytimes.com/2010/02/
14/the-enemy-of-my-enemy/

A gentle explanation of negatives and negation, with special reference
to balance in signed graphs. [Annot. 21 March 2010.] (SG: Bal: Exp)

Jeffrey Stuart
See also Q.A. Li.

Jeffrey Stuart, Carolyn Eschenbach, and Steve Kirkland
1999a Irreducible sign k-potent sign pattern matrices. Linear Algebra Appl. 294

(1999), 85–92. MR 1693935 (2000f:15017). Zbl 935.15008. (QM: SD)

http://opinionator.blogs.nytimes.com/2010/02/14/the-enemy-of-my-enemy/
http://opinionator.blogs.nytimes.com/2010/02/14/the-enemy-of-my-enemy/
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Bernd Sturmfels
See A. Björner.

J. Stutz
See F. Glover.

S.P. Subbiah
2008a A Study of Graph Theory: Topology, Steiner Domination and Semigraph Con-

cepts. Ph.D. thesis, Madurai Kamaraj Univ., 2008.
Contains material summarized in Subbiah and Swaminathan (2009a).

[Annot. 2 Aug 2010.] (SG)

S.P. Subbiah and V. Swaminathan
2009a Properties of topological spaces associated with sigraphs. In: K. Somasun-

daram, ed., Graph Theory and its Applications (Proc. ), pp. 233–241. Macmil-
lan Publishers India, Delhi, 2009. MR 2574613.

Topologies τ+, τ− on V ←→ Σε, ε = +,− for a signed graph Σ [not nec-
essarily simple or finite]. Σ 7→ (τ±): τε = {unions of subsets of π(Σε)},
π(Γ) := connected-component partition of V in Γ. “Exclusive property”:
If u, v ∈ same component of Σε, they are not in the same component
of Σ−ε, for ε = ±. “Transitivity”: Every component of Σ± is a clique.
Thm. 1: Bijection between topology pairs (τ+, τ−) and transitive signed
graphs on a set V (Subbiah 2008a). Further results [made elementary
by observing that topology pairs are equivalent to partitions π+, π− of
V . Exclusivity is π+ ∧ π− = 0V and is equivalent to simplicity of |Σ|.
Topology is an epiphenomenon]. [It is not always clear when |Σ| is meant
to be simple.] [Annot. 2 Aug 2010.] (SG)

2009b Properties of topological spaces associated with sigraphs. Int. Conf. Graph
Theory Appl. (Coimbatore, 2008). Electron. Notes Discrete Math. 33 (2009),
59–66. MR 2574613.

Shorter version of (2009a). [Annot. 2 Aug 2010.] (SG)

M.S. Subramanya
See also R. Rangarajan, E. Sampathkumar, and P. Siva Kota Reddy.

M.S. Subramanya and P. Siva Kota Reddy
2008a On balance and clusters in graph structures. Int. J. Phys. Sci. 20(1) (2008),

159-162.
A “graph structure” (due to E. Sampathkumar in 2005) is G := (V,R)

where R = {R1, . . . , Rk), k ≥ 2, Ri ⊆ P(2)(V ), and the Ri are disjoint.
Let S ⊆ R and ‖S‖ :=

⋃
{R : R ∈ S}. Define ‖G‖ := (V, ‖S‖) and

let Σ(S) be the signed ‖G‖ with negative edge set ‖S‖. [Σ(S) is not
defined but is implicit.] G is “S-balanced” if Σ(S) is balanced, and “S-
clusterable” if Σ(S) is clusterable. Prop. 3 [hard to interpret] seems to be
Harary’s (1953a) theorem for Σ(S). Thm. 4: G is S-balanced for all S iff
it is {Ri}-balanced for all i. Thm. 7 is Davis’s (1967a) characterization
of clusterability applied to S-clusterability. Thm. 8 has three conditions
equivalent to S-clusterability, assuming

⋃k
1 Ri = P(2)(V ) and no Ri = ∅.

[k = 2, |S| = 1 is signed Kn.] Thm. 9: G is S-clusterable for all S iff it
is {Ri}-clusterable [the paper says “balanced”] for all i. [Annot. 1 Aug
2009.] (sg, SG(Gen), gg: Bal, Sw, Clu)

2009a Triangular line signed graph of a signed graph. Adv. Appl. Discrete Math. 4
(2009), no. 1, 17–23. MR 2555622 (2010m:05136). Zbl 1176.05036.
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Definitions as at Sampathkumar, Siva Kota Reddy, and Subramanya
(2008a, 2010c). Let T (Γ) := (E,ET ) where ET := {ef : e, f ∈ C3 in Γ}.
The triangular line signed graph is T (Σ) := (T (|Σ|), σc). Solved: T (Σ) '
Λ×(Σ), T k(Σ) ' T 2(Σ). [Λ× as in M. Acharya (2009a).] [Annot. 3 Aug
2009.] (SG: Bal, Sw, LG(Gen), LG)

Benjamin Sudakov
See G. Gutin.

N. Sudharsanam
See R. Balakrishnan.

Zhi Ren Sun
See X.X. Zhu.

V.S. Sunder
See V. Kodiyalam.

Masuo Suzuki
1991a Lee-Yang complex-field systems and frustrated Ising models. J. Phys. Soc.

Japan 60 (1991), no. 2, 441–449. MR 1104390 (92h:82034) (q.v.).
§2, “Equivalence of Villain’s frustrated system to Lee-Yang’s complex-

field systems”: (2.3) summarizes Villain’s (1977a) “fully frustrated”
signed-graphic Ising model. [Annot. 17 Jun 2012.] (Phys: SG)

V. Swaminathan
See S.P. Subbiah.

Chaitanya Swamy
2004a Correlation clustering: Maximizing agreements via semidefinite programming.

In: Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA) (New Orleans, 2004), pp. 526–527. Assoc. for Computing
Machinery, New York, and SIAM, Philadelphia, 2004. MR 2291092.

(SG: WG: Clu: Alg)

Ed Swartz
See P. Hersh.

Itiro Syôzi
See also Y. Kasai.

1950a The statistics of honeycomb and triangular lattice. II. Progress Theor. Phys. 5
(1950), 341–351. MR 039629 (12, 576g).

Physics of the all-negative (“antiferromagnetic”) toroidal honeycomb
(§7) and triangular (§9) lattices. The former is similar to all-positive
(“ferromagnetic”) [because balanced] while the latter is not [because un-
balanced]. [See also R.M.F. Houtappel (1950a,b), G.F. Newell (1950b),
G.H. Wannier (1950a).] [Annot. 21 Jun 2012.] (Phys, sg: Fr)

Edward Szczerbickl
1996a Signed directed graphs and reasoning for agents and multi-agent systems. Int.

J. Syst. Sci. 27 (1996), no. 10, 1009–1015. Zbl 860.90071. (SD: Appl)

Janusz Szczypula
See P. Doreian.

Stefan Szeider
See N. Alon.

E. Szemerédi
See B. Bollobás.

Z. Szigeti
See A.A. Ageev.
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Bosiljka Tadić, Krzysztof Malarz, and Krzysztof Ku lakowski
2005a Magnetization reversal in spin patterns with complex geometry. Phys. Rev.

Letters 94 (2005), article 137204. (sg: par: Fr)

B. Taglienti
See M. Falcioni.

Shingo Takahashi
See T. Inohara.

Michel Talagrand
1998a Huge random structures and mean field models for spin glasses. Proc. Int.

Congress of Mathematicians, Vol. I (Berlin, 1998). Documenta Math., Extra
Vol. ICM 1998 (1998), Vol. I, pp. 507–536. MR 2000c:60164. Zbl 902.60089.
(sg: Gen: fr)

Irving Tallman
1967a The balance principle and normative discrepancy. Human Relations 20 (1967),

341–355. (PsS: ECol)

Ilan Talmud
See Z. Maoz.

Bit-Shun Tam, Yi-Zheng Fan, and Jun Zhou
See also T.-J. Chang [T.-C. Chang] and Y.Z. Fan.

2008a Unoriented Laplacian maximizing graphs are degree maximal. Linear Algebra
Appl. 429 (2008), 735–758. MR 2428127 (2009c:05143). Zbl 1149.05034.

The matrix is the Kirchhoff matrix of −Γ. “Maximizing” graphs are
those whose degree sequences are maximal in the majorization ordering.
[Annot. 23 Mar 2009.] (Par: Adj)

Bit-Shun Tam and Shu-Hui Wu
2010a On the reduced signless Laplacian spectrum of a degree maximal graph. Linear

Algebra Appl. 432 (2010), no. 7, 1734–1756. MR 2592914 (2011c:15041). Zbl
1230.05202.

See Cvetković, Rowlinson, and Simić (2007a). (Par: Adj)

A. Tamilselvi
See also M. Parvathi.

2010a Robinson-Schensted correspondence for the G-vertex colored partition algebra.
Asian-Eur. J. Math. 3 (2010), no. 2, 369–385. MR 2669040 (2011j:16057). Zbl
1230.05010. (gg: Algeb, m)

Arie Tamir
See also D. Hochbaum.

1976a On totally unimodular matrices. Networks 6 (1976), 373–382. MR 57 #12553.
Zbl 356.15020. (SD: Bal)

Akihisa Tamura
See also Y.T. Ikebe and D. Nakamura.

1997a The generalized stable set problem for perfect bidirected graphs. J. Operations
Res. Soc. Japan 40 (1997), 401–414. MR 99e:05063. Zbl 894.90156.

Problem: maximize an integral weight function over the bidirected
stable set polytope (cf. Johnson and Padberg (1982a)). §3 concerns
the effect on perfection of deleting all incoming edges at a vertex. §4
reduces the “generalized stable set problem” for bidirected graphs to the
maximum weighted stable set problem for ordinary graphs, whence the
problem for perfect bidirected graphs is solvable in polynomial time.



the electronic journal of combinatorics #DS8 289

(sg: Ori: Incid, Geom, Sw, Alg)

2000a Perfect (0,±1)-matrices and perfect bidirected graphs. Combinatorics and Op-
timization (Okinawa, 1996). Theor. Comput. Sci. 235 (2000), no. 2, 339–356.
MR 2001i:15019. Zbl 938.68061.

The stable set problem associated with bidirected graphs.
(sg: Ori: Geom, Alg)

Shang Wang Tan
See also L. Feng, X.L. Wu, and D.L. Zhang.

2010a On the Laplacian spectral radius of weighted trees with a positive weight set.
Discrete Math. 310 (2010), no. 5, 1026–1036. MR 2575820 (2011e:05156).

The results on K(Γ, w) with edge weights w : E → R>0 are deduced
from results on K(−Γ, w). [Problem. Show the same reasoning applies
to all signatures of Γ.] [Annot. 20 Jan 2012.] (par: WG: Adj)

2010b On the weighted trees with given degree sequence and positive weight set.
Linear Algebra Appl. 433 (2010), no. 2, 380–389. MR 2645091 (2011e:05157).
Zbl 1209.05054.

Similar to (2010a). [Annot. 20 Jan 2012.] (par: WG: Adj)

Shang-wang Tan, Ji-ming Guo, and Jian Qi
2003a The spectral radius of Laplacian matrices and quasi-Laplacian matrices of

graphs. Gongcheng Shuxue Xuebao [Chinese J. Engineering Math.] 20 (2003),
no. 6, 69–74. MR 2031534 (2004k:05137). (Par: Adj)

Shang-Wang Tan and Jing-Jing Jiang
2011a On the Laplacian spectral radius of weighted trees with fixed diameter and

weight set. Linear Multilinear Algebra 59 (2011), no. 2, 173–192. MR 2773649
(2012a:05202). Zbl 1226.05169.

The “(signless) Laplacian” of a graph with positive edge weights, (Γ, w)
where w : E → R>0, is K(−Γ, w) := D(Γ, w) + A(Γ, w) (but called R).
The spectral radius is that of K(−Γ, w). [Problem. Generalize to all
weighted signed graphs.] [Annot. 11 Jan 2011, 21 Jan 2012.]

(par: WG, Adj)

Shang Wang Tan and Xing Ke Wang
2009a On the largest eigenvalue of signless Laplacian matrix of a graph. J. Math.

Res. Exposition 29 (2009), no. 3, 381–390. MR 2510212 (2010h:05183). Zbl
1212.05164.

See Cvetković, Rowlinson, and Simić (2007a). (Par: Adj)

Xuezhong Tan
See also M.H. Liu.

Xuezhong Tan and Bolian Liu
2006a On the spectrum of the quasi-Laplacian matrix of a graph. Australasian J.

Combin. 34 (2006), 49–55. MR 2195309 (2006i:05106). Zbl 1102.05039.
(Par: Adj, ec)

Ying-Ying Tan
See also Y.-Z. Fan.

Ying Ying Tan and Yi Zheng Fan
2008a On edge singularity and eigenvectors of mixed graphs. Acta Math. Sinica

(English Ser.) 24 (2008), no. 1, 139–146. MR 2384238 (2008k:05134). Zbl
1143.05058.
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Relations between least Laplacian eigenvalue, its eigenvector, and l(Σ).
Properties of the eigenvector when l = 1, e.g., λ1 ≤ (4/n)l. Dictionary:
“mixed graph” = signed graph, “edge singularity” = frustration index
l(Σ). [Generalized in Bapat, Kalita, and Pati (2012a).] [Annot. 28 Oct
2011, 20 Jan 2012.] (sg: Fr, Adj)

Wenliang Tang
See E.L. Wei.

Shin-ichi Tanigawa
20xxa Matroids of gain graphs in applied discrete geometry. Submitted. arXiv:1207.-

3601. (GG: M: Gen)

Tetsuji Taniguchi
See T.Y. Chung.

Percy H. Tannenbaum
See C.E. Osgood.

Éva Tardos
See also A.V. Goldberg.

Èva Tardos and Kevin D. Wayne
1998a Simple generalized maximum flow algorithms. In: Robert E. Bixby, E. Andrew

Boyd, and Roger Z. Ŕıos-Mercado, eds., Integer Programming and Combina-
torial Optimization (6th Int. IPCO Conf., Houston, 1998, Proc.), pp. 310–
324. Lect. Notes in Computer Sci., Vol. 1412. Springer, Berlin, 1998. MR
2000i:90111. Zbl 911.90156.

Max. flow in a network with positive rational gains. Multiple sources
and sinks are allowed. “Relabeling” is switching the gains. Useful refer-
ences to previous work. (GN: Sw, Alg, Ref)

Robert E. Tarjan
See A.V. Goldberg.

Michael Tarsi
See F. Jaeger.

B. Tayfeh-Rezaie
See F. Ayoobi and A. Mohammadian.

D.E. Taylor
See also J.J. Seidel.

1977a Regular 2-graphs. Proc. Lond. Math. Soc. (3) 35 (1977), 257–274. MR 57
#16147. Zbl 362.05065.

Introducing two-graphs and regular two-graphs (defined by G. Higman,
unpublished). [See Seidel (1976a) etc. for more.] A “two-graph” is the
class C3− of negative triangles of a signed complete graph (Kn, σ). (See
§2. p. 258, where the group is Z2

∼= {+,−} and the definition is in
terms of the 2-coboundary operator.) Two-graphs and switching classes
of signed complete graphs are equivalent concepts. (Stated in terms of
Seidel switching in §2, p. 260.) A two-graph is “regular” if every edge
lies in the same number of negative triangles. Thm.: C3− is regular iff
A(Kn, σ) has at most two eigenvalues. Various parameters of regular
two-graphs are calculated. (TG: Adj. Geom)

Graeme Taylor
2011a Cyclotomic matrices and graphs over the ring of integers of some imaginary
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quadratic fields. J. Algebra 331 (2011), no. 1, 523–545. MR 2774674 (2012b:-
15058). Zbl 1238.05166. arXiv:1011.2737. (SG)

Herbert Taylor
See P. Erdős.

Howard F. Taylor
1970a Balance in Small Groups. Van Nostrand Reinhold, New York, 1970.

A thorough and pleasantly written survey of psychological theories
of balance, including formalizations by signed graphs (Chs. 3 and 6),
experimental tests and critical evaluation of the formalisms, and so
forth. Ch. 2: “Substantive models of balance”, takes the perspective
of social psychology. §2.2: “Varieties of balance theory”, reviews the
theories of Heider (1946a) (the source of Harary’s (1953a) invention of
signed graphs), Osgood and Tannenbaum (1955a), and others. §2.2e:
“The Rosenberg-Abelson modifications”, discusses their introduction of
the “cost” of change of relations, which led them (Abelson and Rosen-
berg 1958a) to propose the frustration index as a measure of imbalance.
(PsS: SG, WG: Exp, Ref)

Ch. 3: “Formal models of balance”, reviews various graph-theoretic
models: signed and weighted signed, different ways to weigh imbalance,
etc., the relationship to theories in social psychology being constantly
kept in mind. §3.1: “Graph theory and balance theory”, presents the ba-
sics of balance, measures of degree of balance by circles (Cartwright and
Harary (1956a)), circles with strengths of edges (Morrissette (1958a)), lo-
cal balance and N -balance (Harary (1955a)), edge deletion and negation
(Abelson and Rosenberg (1958a), Harary (1959b)), vertex frustration
number (Harary (1959b)). §3.2: “Evaluation of formalizations: strong
points”, and §3.3: “Evaluation of formalizations: weak points”, judged
from the applied standpoint. §3.3a: “Discrepancies between cycles or
subsets of cycles”, suggests that differing degrees of imbalance among
certain different subsets of the vertices may be significant [Is this rea-
sonable?] and proposes measures, e.g., a variance measure (p. 71), of
this “discrepancy”. (PsS: SG, WG: Bal, Fr: Exp)

Ch. 6: “Issues involving formalization”, goes into more detail. §6.1:
“Indices of balance”, compares five indices, in particular Phillips’ (1967a)
eigenvalue index (also in Abelson (1967a)) with examples to show that
the index differentiates among different balanced signings of the same
graph. §6.2: “Extrabalance properties”, discusses Davis’s (1967a) clus-
tering (§6.2b) and indices of clustering (§6.2c). §6.3: “The problem of
cycle length and non-local cycles”. Are long circles less important? Do
circles at a distance from an actor (that is, a vertex) have less effect on
the actor in balancing processes?

[Reviewed in Doreian (1970a).] (PsS: SG: Fr, Adj: Exp)

M. Teicher
See M. Amram.

Hidetaka Terasaka
See S. Kinoshita.

Lesley G. Terris
See Z. Maoz.
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Denis Thieffry
See A. Naldi and É. Remy.

Morwen B. Thistlethwaite
1988a On the Kauffman polynomial of an adequate link. Invent. Math. 93 (1988),

285–296. MR 89g:57009. Zbl 645.57007.
A 1-variable Tutte-style polynomial ΓΣ of a sign-colored graph. Fix

an edge ordering. For each spanning tree T and edge e, let µT (e) =
−A3τT (e)σ(e) if e is active with respect to T , AτT (e)σ(e) if it is inactive,
where τT (e) = +1 if e ∈ T , −1 if e /∈ T . Then ΓΣ(A) =

∑
T

∏
e∈T µT (e).

[In the notation of Zaslavsky (1992a), ΓΣ(A) = QΣ with aε = A−ε, bε =
Aε for ε = ±1 and u = v = −(A2 + A−2).] §§3 and 4 show ΓΣ is
independent of the ordering. Other sections derive consequences for
knot theory. [This marks the invention of a Tutte-style polynomial of
a colored, or parametrized or weighted, graph or matroid, developed in
Kauffman (1989a) and successors.] (SGc: Knot: Invar)

A.D. Thomas
See F.W. Clarke.

René Thomas
R. Thomas and J. Richelle

1988a Positive feedback loops and multistationarity. Discrete Appl. Math. 19 (1988),
381–386. MR 936224 (89g:92007). Zbl 639.92003. (sd: bal)

Robin Thomas
See W. McCuaig and N. Robertson.

Andrew Thomason
1988a A graph property not satisfying a “zero-one law”. European J. Combin. 9

(1988), 517–521. MR 90e:05051. Zbl 675.05057.
The property is the existence of an Eulerian cut. The asymptotic prob-

ability is .57 . . .. [Problem. Generalize to gain graphs with finite gain
group, esp. to signed graphs. The property is that of being switchable
so that the identity-gain edges form an Eulerian subgraph. (This has
various meanings.) Variation: The property is that of having a maximal
balanced subgraph that is Eulerian. One expects the asymptotic prob-
abilities to be the same for both problems and to depend only on the
group’s order.] (par: Rand)

Carsten Thomassen
See also P.D. Seymour.

1985a Even cycles in directed graphs. European J. Combin. 6 (1985), 85–89. MR
86i:05098. Zbl 606.05039.

It is an NP-complete problem to decide whether a given signed digraph
has a positive but not all-positive cycle, even if there are only 2 negative
arcs. This follows from Lemma 3 of Steven Fortune, John Hopcroft, and
James Wyllie, The directed subgraph homeomorphism problem (Theor.
Computer Sci. 10 (1980), 111–121. MR 81e:68079. Zbl 419.05028.) by
the simple argument in the proof of Prop. 2.1 here.
To decide whether a specified arc of a digraph lies in an even cycle, or in

an odd cycle, are NP-complete problems (Prop. 2.1). To decide existence
of an even cycle [hence, by the negative subdivision trick, of a positive
cycle in a signed digraph] is difficult [but is solvable in polynomial time;
see Robertson, Seymour, and Thomas (1999a)], although existence of an
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odd cycle [resp., of a negative cycle] is easy, by a trick here attributed
to Edmonds (unpublished). Prop. 2.2: Deciding existence of a positive
cycle in a signed digraph is polynomial-time solvable if |E−| is bounded.
Thm. 3.2: If the outdegrees of a digraph are all > log2 n, then every
signing has a positive cycle, and this bound is best possible; restricting
to the all-negative signature, the lower bound might (it’s not known)
go down by a factor of up to 2, but certainly (Thm. 3.1) a constant
minimum on outdegree does not imply existence of an even cycle. [See
(1992a) for the effect of connectivity.] (SD, Par: Bal, Alg)

1986a Sign-nonsingular matrices and even cycles in directed graphs. Linear Algebra
Appl. 75 (1986), 27–41. MR 87k:05120. Zbl 589.05050. Erratum. Linear
Algebra Appl. 240 (1996), 238. MR 1387301 (no rev).

(QM, sd: par: QSol, bal, Alg)

1988a Paths, circuits and subdivisions. In: Lowell W. Beineke and Robin J. Wilson,
eds., Selected Topics in Graph Theory 3, Ch. 5, pp. 97–131. Academic Press,
London, 1988. MR 93h:05003 (book). Zbl 659.05062.

§8: “Even directed circuits and sign-nonsingular matrices.”
(SD, QM: Bal, QSol: Exp)

§§8–10 treat even cycles in digraphs. (SD: Bal: Exp)
[General Problem. Generalize even-cycle and odd-cycle results to pos-

itive and negative cycles in signed digraphs, the unsigned results corre-
sponding to all-negative signatures.]

1988b On the presence of disjoint subgraphs of a specified type. J. Graph Theory 12
(1988), 101–111. MR 89e:05174. Zbl 662.05032.

There is an algorithm for detecting a balanced circle in a Zm-gain graph.
Balance of such a gain graph is characterized. (gg: Bal, Circles: Alg)

1989a When the sign pattern of a square matrix determines uniquely the sign pattern
of its inverse. Linear Algebra Appl. 119 (1989), 27–34. MR 90f:05099. Zbl
673.05067. (QM, SD: QSol, Adj)

1990a Embeddings of graphs with no short noncontractible cycles. J. Combin. Theory
Ser. B 48 (1990), 155–177. MR 91b:05069. Zbl 704.05011.

§5 describes the “fundamental cycle method”, a simple algorithm for
a shortest unbalanced circle in a biased graph (Thm. 5.1). Thus the
method finds a shortest noncontractible circle (Thm. 5.2). A notewor-
thy linear class: the surface-separating (“Π-separating”) circles (p. 166).
Dictionary: “3-path-condition” on a class F of circles = property that
F c is a linear class. “Möbius cycle” = negative circle in the signature
induced by a nonorientable embedding. (gg, sg: Alg, Top)

1992a The even cycle problem for directed graphs. J. Amer. Math. Soc. 5 (1992),
217–229. MR 93b:05064. Zbl 760.05051.

A digraph that is strongly connected and has all in- and out-degrees
≥ 3 contains an even cycle. (sd: par: bal)

1993a The even cycle problem for planar digraphs. J. Algorithms 15 (1993), 61–75.
MR 94d:05077. Zbl 784.68045.

A polynomial-time algorithm for deciding the existence of an even cycle
in a planar digraph. (sd: par: bal: Alg)
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1994a Embeddings of graphs. Graphs and Combinatorics (Qawra, 1990). Discrete
Math. 124 (1994),217–228. MR 95f:05035. Zbl 797.05035.

P. 225 and Thm. 6.3: the “3-path-condition” and shortest unbalanced
circle algorithm from (1990a). Examples mentioned (under other names)
are parity bias (all-negative signs), poise bias, and noncontractible or
orientation-reversing embedded circles. (gg, par: Exp)

2001a The Erdös–Pósa property for odd cycles in graphs of large connectivity. Paul
Erdös and his mathematics (Budapest, 1999). Combinatorica 21 (2001), no. 2,
321–333. MR 2002c:05108. Zbl 989.05062.

Given k there exists K such that every sufficiently connected graph has
k vertex-disjoint odd circles or K vertices whose deletion leaves a bipar-
tite graph. [There follows by the negative-subdivision trick the corollary:
Given k there exists K (the same K) such that every sufficiently con-
nected signed graph has k vertex-disjoint negative circles or K vertices
whose deletion leaves a balanced graph.] (par: Fr: Circles)

2001b Totally odd K4-subdivisions in 4-chromatic graphs. Combinatorica 21 (2001),
no. 3, 417–443. MR 2002e:05058. Zbl 1012.05064.

Proves Zang (1998a): Every 4-chromatic graph, when signed all nega-
tive, contains a subdivided −K4. (par: Col)

G.L. Thompson
See V. Balachandran.

Christopher Thraves
See A.-M. Kermarrec.

Gui-Xian Tian, Ting-Zhu Huang, and Bo Zhou
2009a A note on sum of powers of the Laplacian eigenvalues of bipartite graphs. Linear

Algebra Appl. 430 (2009), no. 8-9, 2503–2510. MR 2508309 (2010e:05191). Zbl
1165.05020.

A lower bound on
∑

i λi(K(Γ))α, over nonzero eigenvalues, for bipar-
tite Γ and α ∈ R×. [Question. Is there a nonbipartite generalization
involving K(−Γ)?] [Annot. 23 Jan 2012.] (par: Adj)

Xiao-Jun Tian, Xiao-Peng Zhang, Feng Liu, and Wei Wang
2009a Interlinking positive and negative feedback loops creates a tunable motif in gene

regulatory networks. Phys. Rev. E 80 (2009), no. 1, 011926. (SD: Biol)

Yi Tian
See S.C. Li.

Shailesh Tipnis
See H. Jordon.

R.L. Tobin
1975a Minimal complete matchings and negative cycles. Networks 5 (1975), 371–387.

MR 52 #16578. Zbl 348.90151.

Bjarne Toft
See T.R. Jensen.

Sivan Toledo
See E.G. Boman and D. Chen.

Ioan Tomescu
See also D.R. Popescu.

1973a Note sur une caracterisation des graphes dont le degré de deséquilibre est maxi-
mal. Math. Sci. Humaines, No. 42 (1973), 37–40. MR 51 #3003. Zbl 266.05115.
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Independent proof of Petersdorf’s (1966a) Satz 1. Also, treats similarly
a variation on the frustration index. (SG: Fr)

1974a La réduction minimale d’un graphe à une réunion de cliques. Discrete Math.
10 (1974), 173–179. MR 51 #247. Zbl 288.05127. (SG: Bal, Clu)

1976a Sur le nombre des cycles négatifs d’un graphe complet signé. Math. Sci. Hu-
maines, No. 53 (1976), 63–67. MR 56 #15493. Zbl 327.05119.

The parity of the number of negative triangles = that of n|E−|. The
number of negative t-gons is even when n, t ≥ 4 [strengthened in Popescu
(1991a), (1996a)]. (SG: Bal)

1978a Problem 2. In: A. Hajnal and Vera T. Sós, eds., Combinatorics (Proc. Fifth
Hungarian Colloq., Keszthely, 1976), Vol. 2, p. 1217. Colloq. Math. Soc. János
Bolyai, 18. János Bolyai Math. Soc., Budapest, and North-Holland, Amster-
dam, 1978. MR 80a:05002 (book). Zbl 378.00007. (SG: Bal)

Mark Tomforde
See B.G. Bodmann.

Joanna Tomkowicz and Krzysztof Ku lakowski
20xxa Scaling of spin avalanches in growing networks. Preprint. arXiv:0904.2697.

(par: Fr)

C.B. Tompkins
See I. Heller.

J. Topp and W. Ulatowski
1987a On functions which sum to zero on semicycles. Zastosowanie Mat. (Applica-

tiones Math.) 19 (1987), 611–617. MR 89i:05138. Zbl 719.05044.
An additive real gain graph is balanced iff every circle in a circle basis is

balanced, iff the gains are induced by a vertex labelling [in effect, switch
to 0], iff every two paths with the same endpoints have the same gains. A
digraph is gradable (Harary, Norman, and Cartwright (1965a); also see
Marcu (1980a)) iff ϕ1 is balanced, where for each arc e, ϕ1(e) = 1 ∈ Z
(Thm. 3). The Windy Postman Problem (Thms. 4, 5). (GG, GD: Bal)

Aleksandar Torgašev
See also D.M. Cvetković.

1982a The spectrum of line graphs of some infinite graphs. Publ. Inst. Math. (Beograd)
(N.S.) 31(45) (1982), 209–222. MR 85d:05175. Zbl 526.05039.

An infinite analog of Doob’s (1973a) characterization via the even-
cycle matroid of when a line graph has −2 as an eigenvalue. [Problem.
Generalize to line graphs of infinite signed graphs.] (par: Adj(LG))

1983a A note on infinite generalized line graphs. In: D. Cvetković et al., eds., Graph
Theory (Proc. Fourth Yugoslav Seminar, Novi Sad, 1983), pp. 291–297. Univ.
Novom Sadu, Inst. Mat., Novi Sad, 1984. MR 85i:05168. Zbl 541.05042.

An infinite graph is a generalized line graph iff its least “limit” eigen-
value ≥ −2. [Problem. Generalize to line graphs of infinite signed
graphs.] (par: Adj(LG))

Dejan V. Tošić
See M. And́elić.

Gérard Toulouse
See also B. Derrida and J. Vannimenus.
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1977a Theory of the frustration effect in spin glasses: I. Commun. Phys. 2 (1977), 115–
119. Repr. in M. Mézard, G. Parisi, and M.A. Virasoro, Spin Glass Theory and
Beyond, pp. 99–103. World Scientific Lect. Notes in Physics, Vol. 9. World
Scientific, Singapore, 1987.

Introduces the notion of imbalance (“frustration”) of a signed graph to
account for inherent disorder in an Ising model (here synonymous with
a signed graph, usually a lattice graph). (Positive and negative edges
are called “ferromagnetic and antiferromagnetic bonds”.) Observes that
switching the edge signs from all positive (the model of D.D. Mattis,
Phys. Letters 56A (1976), 421–?) makes no essential difference. In a
planar lattice [or any plane graph] frustration of face boundaries (“pla-
quettes”) can be thought of as curvature, i.e., failure of flatness. Pro-
poses two kinds of asymptotic behavior of frustration as a circle encloses
more plaquettes. The planar-duality approach for finding the states
with minimum frustration (i.e., switchings with fewest negative edges);
the number of such states is the “ground-state degeneracy” and is impor-
tant. Ideas are sketched; no proofs. [A foundational paper. See Wannier
(1950a) and, e.g., Villain et al. (all), Hoever, Wolff, and Zittartz (1981a),
Barahona, Maynard, Rammal, and Uhry (1982a), van Hemmen (1983a),
Wolff and Zittartz (1983a), Mézard, Parisi, and Virasoro (1987a), Fis-
cher and Hertz (1991a), Schwärzler and Welsh (1993a).]

(SG: Phys, Sw, Bal)

1979a Symmetry and topology concepts for spin glasses and other glasses. Non-
perturbative Aspects in Quantum Field Theory (Proc. Les Houches Winter
Adv. Study Inst., 1978). Phys. Rep. 49 (1979), no. 2, 267–272. MR 518399
(82j:82063).

Mainly for signed lattice graphs, with spins s(v) ∈ Sn−1 having sym-
metry group SO(n); n = 1 (Ising model) gives SO{+1,−1}; n = 2 is

planar spins; n = 3 is Heisenberg spins. Two symmetry groups: Z|V |2
acts on Σ (the “microscopic level”); SO(n) or O(n) acts on states s (the
“macroscopic level”). [An edge is satisfied if s(w) = σ(vw)s(v), other-
wise frustrated.] A “ground state” (where the most edges are satisfied)
has a topology of frustrated plaquettes [negative girth circles], whose
nature, depending on the lattice dimension, is described intuitively. Re-
gions (“packets”) of relatively fixed spins can be identified. Topology of
frustrated plaquettes leads to the homotopy groups of O(n). The effect
on thermodynamic phases is discussed. Dictionary: “Local transforma-
tion” = switching. [Annot. 20 Aug 2012.]

(Phys, CSG: CFr, CSw: CExp, CRef)

1981a Spin glasses with special emphasis on frustration effects. In: Claudio Castellani
et al., eds., Disordered Systems and Localization (Rome, 1981), pp. 166–173.
Lect. Notes in Phys., Vol. 149. Springer, Berlin, 1981.

§3, “Frustration”: in signed graphs [after normalization to bond strength
1]. “Frustration function” of circles [= σ(C)] determines physical prop-
erties because they are “gauge [= switching] invariant”, if no external
magnetic field. §3.i, “Periodic frustrated models” [= toroidally embed-
ded graphs]. §3.ii, “Fully frustrated models”, where every “plaquette”
[girth circle] is negative: overblocking effect, i.e., positive density of pla-
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quettes with more than one negative edge. [A mathematically interest-
ing concept, not understood today.] §3.iii, “Systems with finite resid-
ual entropy”: e.g., antiferromagnetic [all-negative] Potts models. §3.iv,
“Approach to spin glasses, by dilution of periodic frustrated systems”
[embedding an unbalanced toroidal graph in a larger balanced graph?].
§3.v, “Connections with gauge theories; topological defects and their hy-
drodynamics”: cf., e.g., (1979a). §3.vi, “Random frustration (J = ±1)
models, in various space dimensions”: comparing random signs ±1 with
Gaussian random edge weights (centered at 0, hence with signs and mag-
nitudes). For signed Kn’s (“Sherrington–Kirkpatrick model”), “in the
thermodynamic limit [both] have the same physics.” [Annot. 20 Aug
2012.] (Phys: Csg, CFr, CSw: CExp, CRef)

Gérard Toulouse and Jean Vannimenus
1977a La frustration: un monde semé de contradictions. La Recherche, No. 83, Vol.

8 (Nov., 1977), 980–981.
Popular exposition of the elements of frustration in relation to the Ising

model [evidently based on Toulouse (1977a)]. Briefly mentions the social
psychology application. [See also Stern (1989a).]

(Phys: SG, Bal: Exp)(SG: PsS: Exp)

1980a On the connection between spin glasses and gauge field theories. Phys. Rep. 67
(1980), no. 1, 47–54.

Annealed and quenched models on a square lattice are compared. An-
nealed: edge weights Jij (“bond strengths”) are random variables; this is
randomly weighted, randomly signed graphs. Quenched, edge weights =
±J ; this is signed graphs. The annealed model “grossly underestimates
frustration effects.” Proposed corrective: introduce Lagrange multipliers
for the plaquettes. This leads to unexplored theory. App. (c), “The frus-
tration model”: randomly signed graphs, especially regular graphs; com-
pared to models with Gaussian random edge weights and signs. [Annot.
20 Aug 2012.] (Phys: Csg, CFr)(Phys: Csg, CFr: Exp)

V.A. Traag and Jeroen Bruggeman
2009a Community detection in networks with positive and negative links. Phys. Rev.

E 80 (2009), article 036115. arXiv:0811.2329.
Generalizes a Potts model for positive links to signed graphs. Method

is more general than the clustering model for signed graphs. [Applied in
Yoshikawa, Iino, and Iyetomi (2012a).] (SG: Clu, PsS)

Lorenzo Traldi
See also J. Ellis-Monaghan.

1989a A dichromatic polynomial for weighted graphs and link polynomials. Proc.
Amer. Math. Soc. 106 (1989), 279–286. MR 90a:57013. Zbl 713.57003.

Generalizing Kauffman’s (1989a) Tutte polynomial of a sign-colored
graph, Traldi’s “weighted dichromatic polynomial” Q(Γ; t, z) is Zaslav-
sky’s (1992b) QΓ(1, w; t, z), in which the deletion-contraction parame-
ters ae = 1 and be = w(e), the weight of e. Thm. 2 gives the Tutte-
style spanning-tree expansion. Thm. 4: Kauffman’s Tutte polynomial
Q[Σ](A,B, d) = d−1A|E

+|B|E
−|Q|Σ|(1, w; d, d) for connected Σ, with w(e)

= (AB−1)σ(e). [See Kauffman (1989a) for other generalizations. Traldi
gives perhaps too much credit to Fortuin and Kasteleyn (1972a).]
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P. 284: Invariance under Reidemeister moves of type II constrains the
weighted dichromatic polynomial to, in essence, equal Kauffman’s. Thus
no generalization is evident in connection with general link diagrams.
There is an interesting application to special link diagrams.

(SGc: Gen: Invar, Knot)

2004a A subset expansion of the coloured Tutte polynomial. Combin. Probab. Com-
put. 13 (2004), no. 2, 269–275.

The corank-nullity expansion of the usual Tutte polynomial general-
izes to colored Tutte polynomials in the universal sense of Bollobás and
Riordan (1999a). (SGc: Gen: M: Invar)

2005a Parallel connections and coloured Tutte polynomials. Discrete Math. 290 (2005),
no. 2–3, 291–299. MR 2005j:05033. Zbl 1069.05021.

The Tutte polynomial of a parallel connection of colored graphs or
matroids. (SGc: Gen: M: Invar)

2006a On the colored Tutte polynomial of a graph of bounded treewidth. Discrete
Appl. Math. 154 (2006), no. 6, 1032–1036. MR 2212555 (2006j:05199). Zbl
1091.05027.

Polynomial-time computability for colored graphs of bounded tree
width. [Also see Makowsky (2005a).] (SGc: Gen: Invar: Alg, Knot)

Marián Trenkler
See S. Jezný.

Nenad Trinajstić
See also A. Graovac.

1983a Chemical Graph Theory. 2 vols. CRC Press, Boca Raton, Florida, 1983. MR
86g:92044.

Vol. I: Ch. 3, § VI: “ Möbius graphs.” Ch. 5, § VI: “Extension of Sachs
formula to Möbius systems.” § VII: “The characteristic polynomial of a
Möbius cycle.” Ch. 6, § VIII: “Eigenvalues of Möbius annulenes.”

(SG: Chem, Adj: Exp)

1992a Chemical Graph Theory, Second Ed. CRC Press, Boca Raton, Florida, 1992.
MR 93g:92034.

Ch. 3, § V.B: “Möbius graphs.” Ch. 4, § I: “The adjacency ma-
trix”: see pp. 42–43. Ch. 5: “The characteristic polynomial of a graph”,
§ II.B: “The extension of the Sachs formula to Möbius systems”; § III.D:
“Möbius cycles”. Ch. 6, § VIII: “Eigenvalues of Möbius annulenes” (i.e.,
unbalanced circles); § IX: “A classification scheme for moncyclic sys-
tems” (i.e., characteristic polynomials of circles). (SG: Adj, Chem)

Ch. 7: “Topological resonance energy,” § V.C: “Möbius annulenes”;
§ V.G: “Aromaticity in the lowest excited state of annulenes”. (Chem)

K. Truemper
See also Gerards et al. (1990a).

1976a An efficient scaling procedure for gain networks. Networks 6 (1976), 151–159.
MR 56 #10882. Zbl 331.90027. (gg: GN, sg: Bal, Sw)

1977a On max flows with gains and pure min-cost flows. SIAM J. Appl. Math. 32
(1977), 450–456. MR 55 #5197. Zbl 352.90069. (GG, OG, GN, Bal)

1977b Unimodular matrices of flow problems with additional constraints. Networks 7
(1977), 343–358. MR 58 #20352. Zbl 373.90023. (sg: Incid: Bal)
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1978a Optimal flows in nonlinear gain networks. Networks 8 (1978), 17–36. MR 57
#5041. Zbl 381.90039. (GN)

††1982a Alpha-balanced graphs and matrices and GF(3)-representability of matroids.
J. Combin. Theory Ser. B 32 (1982), 112–139. MR 83i:05025. Zbl 478.05026.

A 0,±1-matrix is called “balanced” if it contains no submatrix that is
the incidence matrix of a negative circle. More generally, α-balance of
a 0,±1-matrix corresponds to prescribing the signs of holes in a signed
graph. Main theorem characterizes the sets of holes (chordless circles)
in a graph that can be the balanced holes in some signing. [A major
result. See Conforti and Kapoor (1998a) for a new proof and discussion
of applications.] (sg: Bal, Incid)

1992a Matroid Decomposition. Academic Press, San Diego, 1992. MR 93h:05046. Zbl
760.05001.

§12.1: “Overview.” §12.2: “Characterization of alpha-balanced graphs,”
exposition of (1982a). (sg: Bal, Sw)

1992b A decomposition theory for matroids. VII. Analysis of minimal violation ma-
trices. J. Combin. Theory Ser. B 55 (1992), 302–335. MR 93e:05021. Zbl
809.05024.

According to Cornuéjols (2001a), this paper contains the following the-
orem: A bipartite graph is “balanceable” (has a ±1-weighting (mod 4)
in which all polygons have sum 0 (mod 4)) iff it does not contain an
induced subgraph that is a subdivided odd wheel or a theta graph with
nodes in opposite color classes. [The weights are not gains because they
are not oriented. However, this has major applications to signed hyper-
graphs; cf. Rusnak (2009a).] [Problem. Generalize to arbitrary graphs.]
[Note that in a bipartite graph the sum around a polygon has to be 0 or
2 (mod 4) and therefore belongs to a group ∼= Z2 so can be considered
a sign. However, it may not be possible to relabel the edges from Z2 so
as to get the same polygon sums. I.e., the polygon signing may not be
derivable from a signed graph.] (wg: bal)

Anke Truss
See S. Böcker.

Marcello Truzzi
See F. Harary.

S.V. Tsaranov
See also F.C. Bussemaker, P.J. Cameron, and J.J. Seidel.

1992a On spectra of trees and related two-graphs. In: Jaroslav Nešetřil and Miroslav
Fiedler, eds., Fourth Czechoslovak Symposium on Combinatorics, Graphs and
Complexity (Prachatice, 1990), pp. 337–340. Ann. Discrete Math., Vol. 51.
North-Holland, Amsterdam, 1992. MR 93i:05004 (book). Zbl 776.05077.

A two-graph whose points are the edges of a tree T and whose triples
are the nonseparating triples of edges of T (from Seidel and Tsaranov
(1990a) via Cameron (1994a)). An associated signed complete graph ΣT

on vertex set E(T ) is obtained by orienting T arbitrarily, then taking
σT (ef) = + or − depending on whether e and f are similarly or oppo-
sitely oriented in the path of T that contains both. Reorienting edges
corresponds to switching ΣT . Thm.: Letting n = |V (T )|, the matri-
ces 3In + A(ΣT ) and 2In+1 − A(T ) have the same numbers of zero and
negative eigenvalues. (TG: Adj, Geom)
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1993a Trees, two-graphs, and related groups. In: D. Jungnickel and S.A. Vanstone,
eds., Coding Theory, Design Theory, Group Theory (Proc. Marshall Hall Conf.,
Burlington, Vt., 1990), pp. 275–281. Wiley, New York, 1993. MR 94j:05062.

New proof of theorem on the group (Seidel and Tsaranov 1990a) of the
two-graph (Tsaranov 1992a) of a tree. (TG: Adj, Geom)

Michael J. Tsatsomeros
See C.R. Johnson and S. Kirkland.

Thomas W. Tucker
See J.L. Gross.

Vanda Tulli
See A. Bellacicco.

Edward C. Turner
See R.Z. Goldstein.

Daniel Turźık
See S. Poljak.

W.T. Tutte
†1967a Antisymmetrical digraphs. Canad. J. Math. 19 (1967), 1101–1117. MR 214512

(35 #5362). Zbl 161, 209e (e: 161.20905).
Integral (u, u)-flows on a signed graph with edge capacities, presented

in the language of integral (ũ, ũ∗)-flows on a digraph with edge capaci-
ties, with an orientation-reversing, fixed-point free, capacity-preserving
involution ∗. [Such a digraph is the double covering digraph of a bidi-
rected graph, thus the capacities and flows are equivalent to (u, u)-flows
on a capacitated signed graph.] Analog of the Min-Flow Max-Cut The-
orem (see 3.3). Structure of flows. Application to undirected graph
factors. [Problem. Convert the entire paper to the language of signed
graphs. Express the structure of (u, u)-flows in terms of signed-graphic
objects such as unbalanced unicyclic subgraphs. Extract the implicit ma-
troid theory, including the structure of cocircuits (cf. Chen and Wang
(2009a)).] [Annot. 9 Sept 2010, 12 Jan 2012.] (sg: ori, cov: Flows)

†1981a On chain-groups and the factors of graphs. In: L. Lovász and Vera T. Sós,
eds., Algebraic Methods in Graph Theory (Proc. Colloq., Szeged, 1978), Vol.
2, pp. 793–818. Colloq. Math. Soc. János Bolyai, 25. János Bolyai Math.
Soc., Budapest, and North-Holland, Amsterdam, 1981. MR 83b:05104. Zbl
473.05023.

The chain-group approach to the dual even-cycle matroid, G(−Γ)∗.
Developed entirely in terms of the group ∆(Γ) [topologically, B1(Γ,Z)]
of integral 1-coboundaries. Assuming Γ connected: “Dendroids of ∆(Γ)”
= bases of G(−Γ); Thms. 8.6–7 give their structure in the bipartite and
nonbipartite cases. Support of an elementary coboundary = circuit of
G(−Γ)∗; this is a bond of Γ if Γ is bipartite (Thm. 7.5) and a minimal
balancing set otherwise (Thm. 7.6). Thm. 7.8: Any coboundary times
some power of 2 is a sum of primitive coboundaries. [Problem. Explain
how this is related to total dyadicity of the incidence matrix.] “Rank
of ∆(Γ)” = rkG(−Γ); its value is given at the end of §8. §9 develops a
relationship between “homomorphisms” of ∆(Γ) (linear functionals) and
graph factors. §10: The dual chain group; characterization of circuits
of rkG(−Γ). [It is amazing what can be done with nothing but integral
1-coboundaries. Problem 1. Extend Tutte’s theory of integral chain
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|E+|/|E|. [There is a mistake. The properties are switching invariant
but x is not.] [Annot. 17 Jun 2012.] (Phys: SG)

James Van Buskirk
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reverse of π [reminiscent of signed graph coloring]. [Cf. Bloss (2003a)
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Timo Lepistö and Arto Salomaa, eds., Automata, Languages and Programming
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Σ′ is “algebraically equivalent” to Σ if it is obtained from Σ by a se-
quence of switchings and algebraic transforms. The latter means taking
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switching b, removing edges from b to all common neighbors of a and b,
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not. 8 Mar 2008.] (gg: Str)

2008a A graph labeling related to root lattices. In: B.D. Acharya, S. Arumugam,
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√
2. (SG: Adj, Geom)

2009a A method of classifying all simply laced root systems. J. Algebra Appl. 8 (2009),
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Let Γ be 2-connected. Thm.: If ϕ : E → Z≤1, extended to S ⊂ E
by ϕ(S) :=

∑
e∈S f(e), satisfies ϕ(C) > 0 for every induced circle, then

ϕ(E) > 0. Cor.: If ϕ : E → R satisfies ϕ(C) > 0 for every circle (not
necessarily induced), then ϕ(E) > 0. Cor.: If Σ has |E+(C)| > |E−(C)|
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Surveys experiments with spin glass materials, especially aging be-
havior. Observations tend to support a landscape of graph signatures
with numerous metastable states, subdividing as temperature decreases.
[Presumably, the states correspond to clusters of low-frustration states,
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§3.4, “The length of bridges of longest odd and even cycles.” §3.9, “The
‘odd circumference’ in bridges of longest odd cycles.” §7.6, “Longest
odd and even cycles. . . . .” §8.4, “Odd and even cycles with a given
number of diagonals.” §10.1, “Long cycles and long even cycles with
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16 Jun 2012.] (Phys: SG: Par: Fr)

Dan Warner
See C.R. Johnson.

Stanley Wasserman and Katherine Faust
1994a Social Network Analysis: Methods and Applications. Structural Anal. Soc. Sci.,

8. Cambridge Univ. Press, Cambridge, 1994. Zbl 980.24676.
§1.2: “Historical and theoretical foundations.” A brief summary of var-

ious network methods in sociometry, signed graphs and digraphs among
them. §4.4: “Signed graphs and signed directed graphs.” Mathematical
basics. §4.5: “Valued graphs and valued directed graphs.” Mentions un-
weighted and positively weighted signed (di)graphs. Ch. 6: “Structural
balance and transitivity.” Application of balance of signed (di)graphs
and of ensuing notions like clusterability, historically evolving into tran-
sitivity of unsigned digraphs. History and evaluation. §6.1: “Structural
balance.” Balance, indices of imbalance. §6.2: “Clusterability.” All
graphs, and complete graphs, as in Davis (1967a). §6.3: “Generaliza-
tions of clusterability.” §6.3.2: “Ranked clusterability.” As in Davis and
Leinhardt (1972a). [Annot. 28 Apr 2009.]

(PsS, SG, SD: Bal, Fr, Clu, Gen: Exp, Ref)

William C. Waterhouse
1977a Some errors in applied mathematics. Amer. Math. Monthly 84 (January, 1977),

no. 1, 25–27. Zbl 376.9001 (q.v.).
Criticizes Roberts and Brown (1975a, 1977a). See rebuttal in the Zbl

review.
John J. Watkins

See R.J. Wilson.
William Watkins

See M. Lien.
Kevin D. Wayne

See È. Tardos.
Nikolai Weaver

See E. Flapan.

Jeffrey R. Weeks and Kenneth P. Bogart
1979a Consensus signed digraphs. SIAM J. Appl. Math. 36 (1979), 1–14. MR 81i:92026.

Zbl 411.05042. (SD)

Erling Wei, Wenliang Tang, and Xioafeng Wang
2011a Flows in 3-edge-connected bidirected graphs. Frontiers Math. China 6 (2011),

no. 2, 339–348. MR 2780896 (2012b:05137). Zbl 1226.05130.
A nowhere-zero 25-flow exists. [Annot. 6 June 2011.] (SG: Flows)

Fuyi Wei
See also M.H. Liu.

Fu-yi Wei and Muhuo Liu
2011a [as “Fi-yi Wei” and Muhuo Liu] Ordering of the signless Laplacian spectral

radii of unicyclic graphs. Australasian J. Combin. 49 (2011), 255–264. MR
2790977 (2011m:05189). Zbl 1228.05208. (Par: Adj)

20xxa More results on the ordering of the signless Laplacian spectral radii of unicyclic
graphs. Submitted.
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See Cvetković, Rowlinson, and Simić (2007a). (Par: Adj)

20xxb On the signless Laplacian spectral radii of bicyclic graphs. Submitted.
See Cvetković, Rowlinson, and Simić (2007a). (Par: Adj)

Li Juan Wei
See Y.P. Hou.

Martin Weigt
See A.K. Hartmann.

Gerry M. Weiner
See J.S. Maybee.

Volkmar Welker
1997a Colored partitions and a generalization of the braid arrangement. Electronic J.

Combin. 4 (1997), no. 1, Article R4, 12 pp. MR 98b:57026. Zbl 883.52010.
The arrangement is the affine part (that is, where x0 = 1) of the

projective representation of G(Φ), where Φ is the complex multiplicative
gain graph Φ = {1}Kn+1 ∪ {re0i : 1 ≤ i ≤ n and 2 ≤ r ≤ s}. Here the
vertex set is {0, 1, . . . , n}, s is any positive integer, and re0i (in the
paper, e0i(r)) denotes an edge v0vi with gain r. The topics of interest
are those related to the complex complement. The study is based on
the combinatorics of the intersection semilattice [that is, the geometric
semilattice Latb Φ of balanced flats], including the Poincaré polynomial
of the arrangement [equivalent to the balanced chromatic polynomial of
Φ]. (gg: M, Geom, Invar)

Albert L. Wells, Jnr.
See also P.J. Cameron and Y. Cheng.

1982a Regular generalized switching classes and related topics. D.Phil. thesis, Oxford
Univ., 1982. (SG: Sw, Adj, Enum, TG, Geom, Cov, Aut)

1984a Even signings, signed switching classes, and (−1, 1)-matrices. J. Combin. The-
ory Ser. B 36 (1984), 194–212. MR 85i:05206. Zbl 527.05007.

(SG: Sw, Enum, Aut)

D.J.A. Welsh [Dominic Welsh]
See also L. Lovász and W. Schwaärzler.

1976a Matroid Theory. L.M.S. Monographs, Vol. 8. Academic Press, London, 1976.
MR 55 #148. Zbl 343.05002.

§11.4: “Partition matroids determined by finite groups”, sketches the
most basic parts of Dowling (1973b). (gg: M: Exp)

1992a On the number of knots and links. In: G. Halász, L. Lovász, D. Miklós, and
T. Szönyi, eds., Sets, Graphs and Numbers (Proc., Budapest, 1991), pp. 713–
718. Colloq. Math. Soc. János Bolyai, Vol. 60. János Bolyai Math. Soc., Bu-
dapest, and North-Holland, Amsterdam, 1992. MR 94f:57010. Zbl 799.57001.

The signed graph of a link diagram is employed to get an upper bound.
(SGc: Enum)

1993a Complexity: Knots, Colourings and Counting. London Math. Soc. Lect. Note
Ser., 186. Cambridge Univ. Press, Cambridge, Eng., 1993. MR 94m:57027. Zbl
799.68008.

Includes very brief treatments of some appearances of signed graphs.
§2.2, “Tait colourings”, defines the signed graph of a link diagram,

mentioned again in observation (2.3.1) on alternating links and Prop
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(5.2.16) on “states models” (from Schwärzler and Welsh (1993a)). §5.6,
“Thistlethwaite’s nontriviality criterion”: the criterion depends on the
signed graph.
§2.5, “The braid index and the Seifert index of a link”, defines the

Seifert graph, a signed graph based on splitting the link diagram.
(SGc, Knot)

§5.7, “Link invariants and statistical mechanics”, defines a relatively
simple spin model for signed graphs, with an arbitrary finite number of
possible spin values. The partition function is related to link diagrams.
§4.2, “The Ising model”, introduces the basic concepts in mathematical

terms. §6.4, “The complexity of the Ising model”, “Computing ground
states of spin systems”, pp. 105–107, discusses finding a ground state
of the Ising model. This is described as the min-weight cut problem
with weights the negatives [this is an error] of the Ising bond interaction
values: that is, the weighted frustration index problem in the negative
[erroneous] of the Ising graph. It is the max-cut problem when the Ising
graph is balanced (ferromagnetic) [should be antibalanced (antiferro-
magnetic)]. For external magnetic field, follows Barahona (1982a).

(sg: Fr, Phys)
§3.6, “Ice models”, counts “ice configurations” (certain graph orienta-

tions) via poise gains modulo 3, although the counting function is not
gain-graphic. (gg, Invar, Phys)
§4.4: “The Ashkin–Teller–Potts model”. This treatment of the Potts

model has a different Hamiltonian from that of Fischer and Hertz (1991a).
[It does not seem that Welsh intends to admit edge signs. If they are al-
lowed then the Hamiltonian (without edge weights) is−

∑
σ(eij)(δ(si, sj)

−1). Up to halving and a constant term, this is Doreian and Mrvar’s
(1996a) clusterability measure P (π), with α = .5, of the vertex partition
induced by the state.] [Also cf. Fischer and Hertz (1991a).] (clu, Phys)

1993b The complexity of knots. In: John Gimbel, John W. Kennedy and Louis
V. Quintas, eds., Quo Vadis, Graph Theory?, pp. 159–171. Ann. Discrete
Math., Vol. 55. North-Holland, Amsterdam, 1993. MR 94c:57021. Zbl 801.-
68086.

Link diagrams↔ dual pairs of sign-colored plane graphs: based on Ya-
jima and Kinoshita (1957a). Unsolved algorithmic problems about knots
based on link diagrams; in particular, triviality of diagrams is equiva-
lent to Problem 4.2: A polynomial-time algorithm to decide whether the
graphical Reidemeister moves can convert a given signed plane graph to
one with edges all of one sign. (SGc: D, Knot: Alg, Exp)

1993c Knots and braids: some algorithmic questions. In: Neil Robertson and Paul
Seymour, eds., Graph Structure Theory (Proc., Seattle, 1991), pp. 109–123.
Contemp. Math., Vol. 147. Amer. Math. Soc., Providence, R.I., 1993. MR
94g:57014. Zbl 792.05058.

§1 presents the sign-colored graph of a link diagram and §5, “Reide-
meister graphs”, describes Schwärtzler and Welsh (1993a). §3 defines the
sign-colored Seifert graph. (SGc. Sc(M): Invar, Alg, Knot: Exp)

1997a Knots. In: Lowell W. Beineke and Robin J. Wilson, eds., Graph Connections:
Relationships between Graph Theory and other Areas of Mathematics, Ch. 12,
pp. 176–193. The Clarendon Press, Oxford, 1997. MR 99a:05001 (book). Zbl
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878.57001.
Mostly describes the signed graph of a link diagram and its relation to

knot theory, including knot properties deducible directly from the signed
graph, the Kauffman bracket and two-variable polynomials, etc. Similar
to relevant parts of (1993a). (SGc: Knot: Invar: Exp)

Emo Welzl
See H. Edelsbrunner and J. Hage.

D. de Werra
See C. Benzaken.

Arthur T. White
1984a Graphs, Groups and Surfaces. Completely revised and enlarged edn. North

Holland Math. Stud., Vol. 8. North-Holland, Amsterdam, 1984. MR 86d:05047.
Zbl 551.05037.

Ch. 10: “Voltage graphs”. (GG: Top, Cov)

1994a An introduction to random topological graph theory. Combinatorics, Probabil-
ity and Computing 3 (1994), 545–555. MR 95j:05083. Zbl 815.05027.

Take a graph Γ with cyclomatic number k and randomly sign it so that
each edge is negative with probability p. The probability that (Γ, σ) is
balanced = 2−k if p = 1

2
[obvious] and ≤ [max(p, 1− p)]k in general [not

obvious] (this has an interesting asymptotic consequence due to Gimbel,
given in this paper). [Related: Frank and Harary (1979a).]

(SG: Rand, Bal)

2001a Graphs of Groups on Surfaces: Interactions and Models. North-Holland Math.
Stud., 188. North-Holland (Elsevier), Amsterdam, 2001. MR 1852593 (2002k:-
05001). Zbl 1054.05001.

§10-2, “Voltage graphs”: Voltage graphs and the covering graph. Thm.
10-8 is similar to Biggs (1974a), Thm. 19.5. Construction of surface em-
beddings. §11-3, “Nonorientable voltage graph imbeddings”: Rotation
schemes supplemented by edge signatures as in Ringel (1977a), Stahl
(1978a), and Zaslavsky (1992a). (GG, SG: Top, Cov)

Neil L. White
See also A. Björner.

1986a A pruning theorem for linear count matroids. Congressus Numerantium 54
(1986), 259–264. MR 88c:05047. Zbl 621.05009. (Bic: Gen)

Neil White and Walter Whiteley
1983a A class of matroids defined on graphs and hypergraphs by counting properties.

Unpublished manuscript, 1983.
See Whiteley (1996a) for an exposition and extension. (Bic: Gen)

Walter Whiteley
See also N. White.

1991a The combinatorics of bivariate splines. In: Peter Gritzman and Bernd Sturm-
fels, eds., Applied Geometry and Discrete Mathematics: The Victor Klee Fest-
schrift, pp. 587–608. DIMACS Ser. Discrete Math. Theor. Comput. Sci., Vol.
4. American Math. Soc., Providence, R.I., 1991. MR 1116378 (92m:41038).
Zbl 741.41014.

“Balance” used for circles with identity gain (in a gain graph with
additive matrix gains), independently of Harary (1953a). §3, “Splines
and matrices on graphs”: The matrix gains are Lr+1

hi (p. 592) and the
balance equation is (∗) (p. 593). [Annot. 12 Jun 2012.] (gg: bal)
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1996a Some matroids from discrete applied geometry. In: Joseph E. Bonin, James
G. Oxley, and Brigitte Servatius, eds., Matroid Theory (Proc., Seattle, 1995),
pp. 171–311. Contemp. Math., Vol. 197. Amer. Math. Soc., Providence, R.I.,
1996. MR 97h:05040. Zbl 860.05018.

Appendix: “Matroids from counts on graphs and hypergraphs”, which
expounds and extends Loréa (1979a), Schmidt (1979a), and especially
White and Whiteley (1983a), describes matroids on the edge sets of
graphs (and hypergraphs) that generalize the bicircular matroid. The
definition: given m ≥ 0 and k ∈ Z, S is independent iff ∅ ⊂ S ′ ⊆
S implies |S ′| ≤ m|V (S ′)| + k. [Suggested name: “Linearly bounded
matroids,” since they are defined by a linear bound on the rank.]

(Bic: Gen)(Ref)

Geoff Whittle
See also J. Geelen, J. Oxley, and C. Semple.

1989a Dowling group geometries and the critical problem. J. Combin. Theory Ser. B
47 (1989), 80–92. MR 90g:51008. Zbl 628.05018.

A Dowling-lattice version of Crapo and Rota’s critical problem. Some
minimal matroids whose critical exponent is k (i.e., tangential k-blocks)
are given, one being Dowling’s rank-nmatroid of {+,−}, G(±K◦n). [An-
not. 25 May 2009.] (gg: M: Invar)

1989b A generalisation of the matroid lift construction. Trans. Amer. Math. Soc. 316
(1989), 141–159. MR 90b:05038. Zbl 684.05014.

Examples include bicircular and frame matroids. (GG: M, Bic)

2005a Recent work in matroid representation theory. Discrete Math. 302 (2005), 285–
296. MR 2179649 (2006m:05053). Zbl 1076.05022. annot P. 288: The “free
spike Φr” is L(2Cr,∅). Pp. 290–291: Biased graphs and the bias [i.e., frame]
matroid. Conjecture 5.2: With few exceptions, a highly connected matroid
that is representable over more than one characteristic is a frame or dual frame
matroid. P. 294: The “free swirl Ψk” is G(2Ck,∅). U3,6 = L(2C3,∅) =
G(2C3,∅) [the latter because there are no vertex-disjoint unbalanced circles].
[Annot. 25 May 2009.] (gg: M: Exp)

Avi Wigderson
See S. Hoory.

Chris Wiggins
See E. Ziv.

J.K. Williams
See also B.G.S. Doman.

1981a Ground state properties of frustrated Ising chains. J. Phys. C 14 (1981), 4095–
4107.

§2, “The random-bond Ising chain in a uniform field: (T = 0)”: A path
with random edge signs, weighted J , magnetic field B [interpretable as
an extra all-positive vertex, as in ??]. Continued in Doman and Williams
(1982a), §2. [Annot. 28 Aug 2012.] (Phys, SG, WG: fr)

Richard C. Wilson and Ping Zhu
2008a A study of graph spectra for comparing graphs and trees. Pattern Recognition

41 (2008), no. 9, 2833–2841. Zbl 1154.68505.
The spectra of K(+Γ) and K(−Γ) appear to be similarly effective in

distinguishing small graphs and better than A(Γ). [Annot. 20 Dec
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2011.] (Par: Adj)

Robin J. Wilson and John J. Watkins
1990a Graphs: An Introductory Approach. A First Course in Discrete Mathematics.

Wiley, New York, 1990. MR 91b:05001. Zbl 712.05001.
§3.2: “Social Sciences” (pp. 51–53) applies signed graphs. §5.1: “Signed

digraphs” (pp. 96–98) discusses positive and negative feedback (i.e., pos-
itive and negative cycles) in applications. Based on Open University
(1981a). (SG, PsS, SD: Exp)

Steve Wilson
1989a Cantankerous maps and rotary embeddings of Kn. J. Combin. Theory Ser. B

47 (1989), no. 3, 262–273. MR 90j:05115. Zbl 687.05018.
Cantankerous map: graph in a surface, signed so every edge belongs to a

negative digon, and whose map automorphisms act transitively on flags.
Rotary map: map with automorphisms that are cyclic permutations
around a face and around a vertex on the face. Thm.: A rotary map is
either cantankerous or a kind of branched covering. [See Li and Širáň
(2007a) for more on cantankerous maps.] (sg: Top: Aut)

Shmuel Winograd
See R.M. Karp.

Wayland H. Winstead
See J.R. Burns.

Anthony Wirth
See M. Charikar and T. Coleman.

H.S. Witsenhausen
See Y. Gordon.

C. Witzgall and C.T. Zahn, Jr.
1965a Modification of Edmonds’ maximum matching algorithm. J. Res. Nat. Bur.

Standards (U.S.A.) Sect. B 69B (1965), 91–98. MR 32 #5548. Zbl 141.21901.
(par: ori)

Jakub Onufry Wojtaszczyk
See M. Cygan.

W.F. Wolff
See also P. Hoever and M.H. Waldor.

W.F. Wolff and J. Zittartz
1982a Correlations in inhomogeneous Ising models. I. General methods, the “fully-

frustrated square lattice” and the “chessboard” model. Z. Phys. B 47 (1982),
no. 4, 341–352. MR 675258 (85d:82104).

§ III, “The fully-frustrated square lattice model (FFS)”: Square lat-
tice graph signed so every square (“plaquette”) is negative. § IV, “The
chessboard model”: Square lattice graph with alternate squares negative
and positive. [Annot. 28 Aug 2012.] (Phys, SG: Fr)

1983a Spin glasses and frustration models: Analytical results. In: J.L. van Hemmen
and I. Morgenstern, eds., Heidelberg Colloquium on Spin Glasses (Proc., Hei-
delberg, 1983), pp. 252–271. Lect. Notes in Physics Vol. 192. Springer-Verlag,
Berlin, 1983.

Early theoretical physics study of frustrated graphs based on Toulouse
(1977a). Signed square lattice with translational sign symmetry and
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limited variation of signs and edge weights. § II, “Layered Ising mod-
els”. Dictionary: “plaquette” = square, “frustration index” = sign of a
plaquette. [Annot. 24 May 2012.] (Phys, SG: Fr)

Paul Wollan
See B. Guenin.

A. Wongseelashote
1976a An algebra for determining all path-values in a network with application to

K-shortest-paths problems. Networks 6 (1976), 307–334. MR 56 #14628. Zbl
375.90030. (gg: Paths)

R. Kevin Wood
See G.G. Brown.

Chai Wah Wu
2005a On Rayleigh–Ritz ratios of a generalized Laplacian matrix of directed graphs.

Linear Algebra Appl. 402 (2005), 207–227. MR 2141085 (2005m:05108). Zbl
1063.05065.

The graphs are weighted mixed graphs, i.e., bidirected graphs without
introverted edges, and the matrices are digraph matrices, i.e., (weighted)
outdegree matrices. The “Laplacian” is D−A where A is the adjacency
matrix and D is the diagonal outdegree matrix. [Annot. 23 Mar 2009.]

(sg, sd: ori: incid, Adj)

Leting Wu, Xiaowei Ying, Xintao Wu, Aidong Lu, and Zhi-Hua Zhou
2011a Spectral analysis of k-balanced signed graphs. In: Joshua Zhexue Huang, Long-

bing Cao and Jaideep Srivastava, eds., Advances in Knowledge Discovery and
Data Mining (Proc. 15th Pacific-Asia Conf., PAKDD 2011, Shenzen, Part II),
pp. 1–12. Lecture Notes in Computer Science, Vol. 6635. Springer, Berlin,
2011.

Spectral analysis of clusterable signed graphs. Dictionary: “k-balance”
= k-clusterability. [Annot. 26 Apr 2012.] (SG: Clu: Adj)

20xxa Examining spectral space of complex networks with positive and negative links.
Int. J. Social Network Mining, to appear. (SG: Adj: Clu, Bal)

Qiang Wu
See G.Z. Liu.

Shu-Hui Wu
See B.S. Tam.

Xiao Li Wu, Jing Jing Jiang, Ji Ming Guo, and Shang Wang Tan
2011a The minimal signless Laplacian spectral radius of graphs with diameter n− 4.

(In Chinese.) Acta Math. Sinica (Chin. Ser.) 54 (2011), no. 4, 601–608. MR
2868198 (2012i:05176). (Par: Adj)

Xintao Wu
See L.T. Wu.

Yarong Wu
See G.L. Yu.

Yuhan Wu
See L.H. You.

Zhaoyang Wu
2003a On the number of spikes over finite fields. Discrete Math. 265 (2003), 261–296.

MR 2004b:05057. Zbl 1014.05015.
A spike is L0(Ω) where ‖Ω‖ = 2Cn. (gg: M: Enum)
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See Harary, Lim, et al.

Bai Xiao, Song Yi-Zhe, and Peter Hall
2011a Learning invariant structure for object identification by using graph methods.

Computer Vision Image Understanding 115 (2011), 1023–1031.
Empirical tests of usefulness of the “feature vector”, consisting of the

eigenvalues of K(−Γ). [Annot. 24 Jan 2012.] (Par: Adj: Appl)

Guang-Hui Xu
See S.C. Gong.

Lei Xu
See Z.H. Chen.

Rui Xu and Cun-Quan Zhang
2005a On flows in bidirected graphs. Discrete Math. 299 (2005), 335–343. MR

2168714 (2006e:05081). Zbl 1073.05033.
Σ has a nowhere-zero 6-flow if it is coloop-free and edge 6-connected.

[Annot. 5 Feb 2010.] (SG: Flows)

Shaoji Xu
See also F.S. Roberts.

1998a Cycle Space: Cycle Bases, Signed Graphs and Marked Graphs. Doctoral disser-
tation, Rutgers Center for Operations Res., Rutgers Univ., 1998.

(SG, VS: Bal, Alg, PsS)

1998b The line index and minimum cut of weighted graphs. European J. Operational
Res. 109 (1998), no. 3, 672–685. Zbl 972.05026.

Takeshi Yajima and Shin’ichi Kinoshita
1957a On the graphs of knots. Osaka Math. J. 9 (1957), 155–163. MR 20 #4845. Zbl

80, 170b (e: 080.17002).
Examines the relationship between the two dual sign-colored graphs, Σ

and Σ′, of a link diagram (Bankwitz 1930a), translating the Reidemeister
moves into graph operations and showing that they will convert Σ into
Σ′. (SGc: Knot)

Takeo Yamada and Harunobu Kinoshita
2002a Finding all the negative cycles in a directed graph. Discrete Appl. Math. 118

(2002), 279–291. MR 2002m:05187. Zbl 999.05057.
In a real-weighted digraph, “negative” means the sum of weights is

negative. (WG)

Takeo Yamamoto
See T. Nakamura.

Chao Yan
See L.Q. Wang.

Jing-Ho Yan, Ko-Wei Lih, David Kuo, and Gerard J. Chang
1997a Signed degree sequences of signed graphs. J. Graph Theory 26 (1997), 111–117.

MR 98i:05160. Zbl 980.04848.
Net degree sequences of signed simple graphs. Thm. 2 improves

the Havel–Hakimi-type theorem from Chartrand, Gavlas, Harary, and
Schultz (1992a) by determining the length parameter. Thm. 7 charac-
terizes the net degree sequences of signed trees. [There seems to be room
to strengthen the characterization and generalize to weighted degree se-
quences: see notes on Chartrand et al. (1994a).] (SGw: ori: Invar)
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2007a Community mining from signed social networks. IEEE Trans. Knowledge Data

Engineering 19 (2007), no. 10, 1333–1348.
Given a (positively weighted) signed (di)graph, the authors provide

an algorithm for an approximate clustering. Input: The graph and a
length parameter l. Step 1: Construct transition probabilities pij :=
[σijwij]

+/d(vi). Step 2: Apply the probabilities in a random walk of
length ≤ l on positive edges; the matrix of l-step probabilities is (pij)

l.
Combine in a cluster the vertices that have high probabilities from a
given starting point. “High” and l are based on the network structure.

Also, a cut algorithm for approximate clustering. A cluster is X ⊂ V
such that the total net degree d±(Σ:X) ≥ d±(X,Xc) and d±(Xc, X) ≤
d±(Σ:Xc). [Annot. 11 Feb 2009.] (SG: WG: Clu: Alg)
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See Y.Z. Fan.
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See T.F. Wang.

Weiling Yang and Fuji Zhang
2007a The Kauffman bracket polynomial of links and universal signed plane graph.

In: Jin Akiyama et al., eds., Discrete Geometry, Combinatorics and Graph
Theory (7th China-Japan Conf., CJCDGCGT 2005, Tianjin and Xi’an, China,
2005), pp. 228–244. Lect. Notes in Computer Sci., Vol. 4381. Springer, Berlin,
2007. MR 2364767 (2009b:57031). Zbl 1149.05308.

The “chain polynomials” of sign-colored plane graphs with cyclomatic
number ≤ 5 are obtained systematically. [Cf. Jin and Zhang (2005a,
2007a).] [Annot. 5 July 2009.] (SGc: Invar)
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See Esther M. Arkin and V.V. Vazirani.
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1210.05115.

Dictionary: “bipartite edge frustration” of Γ = frustration index l(−Γ).
(sg: Par: Fr)
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2011a Extremal properties of the bipartite vertex frustration of graphs. Appl. Math.
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Dictionary: “bipartite vertex frustration” of Γ = frustration number
l0(−Γ). (sg: Par: Fr)

Z. Yarahmadi, T. Došlić, and A.R. Ashrafi
2010a The bipartite edge frustration of composite graphs. Discrete Appl. Math. 158
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See Cvetković, Rowlinson, and Simić (2007a). (Par: Adj)
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See N. Alon and G. Gutin.
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loops. J. South China Normal Univ. Natur. Sci. Ed. (2011), no. 1, 39–42. MR
2839257 (no rev). (SD: Adj)
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See L.T. Wu.

Xuerong Yong
See X.G. Liu and Y.P. Zhang.

En Sup Yoon
See G. Lee.

Young-Jin Yoon
1997a A characterization of supersolvable signed graphs. Commun. Korean Math.

Soc. 12 (1997), 1069–1073. MR 99j:05165. Zbl 945.05051.
Attempts to characterize supersolvability of G(Σ) in terms of [bias-

]simplicial vertices. [Fundamental conceptual and technical errors vitiate
the entire paper; see Koban (2004a). For correct results see Zaslavsky
(2001a) and Koban (2004a).] (SG: M: Str)

Takeo Yoshikawa, Takashi Iino, and Hiroshi Iyetomi
2011a Market structure as a network with positively and negatively weighted links. In:

Junzo Watada, Gloria Phillips-Wren, Lakhmi C. Jain, and Robert J. Howlett,
eds., Intelligent Decision Technologies (Proc. 3rd Int. Conf., IDT’2011), pp.
511–518. Smart Innovation, Systems and Technologies, Vol. 10. Springer-
Verlag, Berlin, 2011.

Preliminary report of (2012a). [Annot. 26 Jun 2012.]
(SG, WG: Clu: Appl)

2012a Observation of frustrated correlation structure in a well-developed financial
market. Progress Theor. Phys. Suppl. No. 194 (2012), 55–63.

Application of correlation clustering to the Tokyo stock market. The
“frustration” of a clustering π = {B1, . . . , Bk} ∈ ΠV in a weighted signed
graph (Σ, w) is F (π) := −

∑
i

∑
e∈E:Bi

we (cf. Traag and Bruggeman
(2009a)). [Annot. 26 Jun 2012.] (SG, WG: Clu: Appl)

Lihua You
See also L.Q. Wang and S.Y. Yi.
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Lihua You, Jiayu Shao, and Haiying Shan
2007a Bounds on the bases of irreducible generalized sign pattern matrices. Linear Al-

gebra Appl. 427 (2007), 285–300. MR 2351360 (2008g:15009). Zbl 1179.15034.
(QM: SD)

Lihua You and Yuhan Wu
2011a Primitive non-powerful symmetric loop-free signed digraphs with given base

and minimum number of arcs. Linear Algebra Appl. 434 (2011), no. 5, 1215–
1227. MR 2763581 (2012c:05201). Zbl 1204.05051. (SD: QM)

Zhifu You
See also B.L. Liu.

Zhifu You and Bolian Liu
2011a The signless Laplacian separator of graphs. Electronic J. Linear Algebra 22

(2011), 151–160. MR 2781043 (2012a:05209). Zbl 1226.05174. (Par: Adj)

A.P. Young
See K. Binder.

J.W.T. Youngs
1968a Remarks on the Heawood conjecture (nonorientable case). Bull. Amer. Math.

Soc. 74 (1968), 347–353. MR 36 #3675. Zbl 161.43303.
Introducing “cascades”: current graphs with bidirected edges. A “cas-

cade” is a bidirected graph, not all positive, that is provided with both
a rotation system (hence it is orientation embedded in a surface) and a
current (which is a special kind of bidirected flow). Dictionary: “broken”
means a negative edge. (sg: Ori: Appl, Flows)

1968b The nonorientable genus of Kn. Bull. Amer. Math. Soc. 74 (1968), 354–358.
MR 36 #3676. Zbl 161.43304.

“Cascades”: see Youngs (1968b). (sg: Ori: Appl)

Cheng-Ching Yu
See C.C. Chang.

Guihai Yu
See also L.H. Feng.

2008a On the maximal signless Laplacian spectral radius of graphs with given match-
ing number. Proc. Japan Acad. Ser. A Math. Sci. 84 (2008), no. 9, 163–166.
MR 2483600 (2009m:15012). Zbl 1175.05090.

See Cvetković, Rowlinson, and Simić (2007a). (Par: Adj)

Guanglong Yu, Yarong Wu, and Jinlong Shu
2011a Signless Laplacian spectral radii of graphs with given chromatic number. Linear

Algebra Appl. 435 (2011), no. 8, 1813–2096. MR 2810629 (2012e:05247). Zbl
1221.05244. (Par: Adj)

2011a Sharp bounds on the signless Laplacian spectral radii of graphs. Linear Algebra
Appl. 434 (2011), no. 3, 683–687. MR 2746075 (2012e:05246). Zbl 1225.05178.

(Par: Adj)

Jianming Yu
See G. Jiang.

Xi-Ying Yuan, Yue Liu, and Miaomiao Han
2011a The Laplacian spectral radius of trees and maximum vertex degree. Dis-

crete Math. 311 (2011), no. 8-9, 761–768. MR 2774232 (2011m:05191). Zbl
1216.05013.



the electronic journal of combinatorics #DS8 321

§3: Q := K(−Γ) is used to prove results about trees. [Annot. 21 Jan
2012.] (Par: Adj)

Raphael Yuster and Uri Zwick
1994a Finding even cycles even faster. In: Serge Abiteboul and Eli Shamir, eds.,

Automata, Languages and Programming (Proc. 21st Int. Colloq., ICALP 94,
Jerusalem, 1994), pp. 532–543. Lect. Notes Computer Sci., Vol. 820. Springer-
Verlag, Berlin, 1994. MR 96b:68002 (book). Zbl 844.00024 (book).

Abbreviated version of (1997a). (par: Cycles: Alg)

1997a Finding even cycles even faster. SIAM J. Discrete Math. 10 (1997), 209–222.
MR 98d:05137. Zbl 867.05065.

For fixed even k, a very fast algorithm for finding a k-gon. Also, one for
finding a shortest even circle. [Question. Are these the all-negative cases
of similarly fast algorithms to find positive k-gons, or shortest positive
circles, in signed graphs?] (par: Cycles: Alg)

Sergey Yuzvinsky
2004a Realization of finite abelian groups by nets in P2. Compos. Math. 140 (2004),

no. 6, 1614–1624. MR 2005g:52057. Zbl 1066.52027.
Prop. 3.3: A k-net in CP2 whose classes are pencils is the canonical

representation of the jointless Dowling geometry Q†(Zm) = G(ZmK3) of
a finite cyclic group. If a k-net in CP2 represents G(AK3) for a finite
abelian group A, then A is a subgroup of a 2-torus (Thm. 4.4) or has
small invariant factors (Thm. 5.4); in particular it cannot be Z3

2 (Thm.
4.2). The author conjectures more definitive characterizations.

(gg: Geom)

C.T. Zahn, Jr.
See also C. Witzgall.

1973a Alternating Euler paths for packings and covers. Amer. Math. Monthly 80
(1973), 395–403. MR 51 #10137. Zbl 274.05112. (par: ori)

Robert B. Zajonc
1968a Cognitive theories in social psychology. In: Gardner Lindzey and Elliot Aron-

son, eds., The Handbook of Social Psychology, Second Edition, Vol. 1, Ch. 5,
pp. 320–411. Addison-Wesley, Reading, Mass., 1968.

“Structural balance,” pp. 338–353. “The congruity principle,” pp.
353–359. (PsS: SD, SG, Bal: Exp, Ref)

Giacomo Zambelli
See A. Del Pia.

Wenan Zang
1998a Coloring graphs with no odd-K4. Discrete Math. 184 (1998), 205–212. MR

99e:05056. Zbl 957.05046.
An algorithm, based in part on Gerards (1994a), that, given an all-

negative signed graph, finds a subdivided −K4 subgraph or a 3-coloring
of the underlying graph. [Question. Is there a generalization to all signed
graphs?] [See also Thomassen (2001b).] (sg: par: Col, Alg, Ref)

Thomas Zaslavsky
See also M. Beck, P. Berthomé, E.D. Bolker, S. Chaiken, R. Flórez, D. Forge,
K.A. Germina, C. Greene, P. Hanlon, N. Reff, K. Rybnikov, D.C. Slilaty, and
P. Solé.

1977a Biased graphs. Unpublished manuscript, 1977.
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Published, greatly expanded, as (1989a, 1991a, 1995b) and more; as
well as (but restricted to signed graphs) (1982a, 1982b). (GG: M)

1979a Line graphs of digraphs. Abstract 768-05-3, Notices Amer. Math. Soc. 26 (Au-
gust, 1979), no. 5, A-448.) (SG: LG: Ori, Incid, Adj(LG). Sw)

1980a Voltage-graphic geometry and the forest lattice. In: Report on the XVth
Denison-O.S.U. Math. Conf. (Granville, Ohio, 1980), pp. 85–89. Dept. of
Math., The Ohio State Univ., Columbus, Ohio, 1980. (GG: M, Bic)

1981a The geometry of root systems and signed graphs. Amer. Math. Monthly 88
(1981), 88–105. MR 82g:05012. Zbl 466.05058.

Signed graphs correspond to arrangements of hyperplanes in Rn of
the forms xi = xj, xi = −xj, and xi = 0. Consequently, one can
compute the number of regions of the arrangement from graph theory,
esp. for arrangements corresponding to “sign-symmetric” graphs, i.e.,
having both or none of each pair xi = ±xj. Simplified account of parts of
(1982a, 1982b, 1982c), emphasizing geometry. (SG: M, Geom, Invar)

1981b Characterizations of signed graphs. J. Graph Theory 5 (1981), 401–406. MR
83a:05122. Zbl 471.05035.

Characterizes the sets of circles that are the positive ones in some
signing of a graph. (SG: Bal)

1981c Is there a theory of signed graph embedding? In: Report on the XVIth Denison-
O.S.U. Math. Conf. (Granville, Ohio, 1981), pp. 79–82. Dept. of Math., The
Ohio State Univ., Columbus, Ohio, 1981.

See (1997a). (SG: Top, M)

††1982a Signed graphs. Discrete Appl. Math. 4 (1982), 47–74. MR 84e:05095a. Zbl
476.05080. Erratum. Ibid. 5 (1983), 248. MR 84e:05095b. Zbl 503.05060.
G(Σ) Basic results on: Switching (§3). Minors (§4). The bias matroid

G(Σ) in many cryptomorphisms (§5) (some erroneous: Thm. 5.1(f,g);
partly corrected in the Erratum [and fully in (1991a)]), consistency of
matroid with signed-graph minors; separators of G(Σ). The signed cov-
ering graph Σ̃ (§6).

In §8A, the incidence and Kirchhoff matrices and matrix-tree theorem
[different from that of Murasugi (1989a)] [generalized by Chaiken (1982a)
to a weighted, all-minors version, both directed and undirected]. In §8B,
vector representation of the matroid G(Σ) by the incidence matrix [as
multisubsets of root systems Bn ∪ Cn].

Conjectures about the interrelation between representability in charac-
teristic 2 and unique representability in characteristic 0 [since answered
by Geoff Whittle (A characterisation of the matroids representable over
GF(3) and the rationals. J. Combin. Theory Ser. B 65 (1995), 222–261.
MR 96m:05046. Zbl 835.05015) as developed by Pagano (1998a, 20xxc)].

Examples (§7) include: Sign-symmetric graphs and signed expansions
±Γ. The all-negative graph −Γ, whose matroid (Cor. 7D.3; partly cor-
rected in the Erratum) is the even-circle matroid (see Doob 1973a) and
whose incidence matrices include the unoriented incidence matrix of Γ.
Signed complete graphs.

Generalizations to gain graphs (called “voltage graphs”) mentioned in
§9. (SG, GG: M, Bal, Sw, Cov, Incid, Geom; EC, KG)
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††1982b Signed graph coloring. Discrete Math. 39 (1982), 215–228. MR 84h:05050a.
Zbl 487.05027.

χΣ A “proper k-coloring” of Σ partitions V into a special “zero” part,
possibly void, that induces a stable subgraph, and up to k other parts
(labelled from a set of k colors), each of which induces an antibalanced
subgraph. A “zero-free proper k-coloring” is similar but without the
“zero” part. [The suggestion is that a signed analog of a stable vertex
set is one that induces an antibalanced subgraph. Problem. Use this
insight to develop generalizations of stable-set notions, such as cliques
and perfection. Example. Let α(Σ), the “antibalanced vertex set num-
ber”, be the largest size of an antibalance-inducing vertex set. Then
α(Γ) = α(+Γ∪−Kn).] §2, “Counting the coloring ways”: One gets two
related chromatic polynomials. The chromatic polynomial, χΣ(2k + 1),
counts all proper k-colorings; it is essentially the characteristic polyno-
mial of the bias matroid. It can often be most easily computed via the
zero-free chromatic polynomial, χ∗Σ(2k), which counts proper zero-free
colorings: see (1982c). Contraction-deletion formulas; subset expan-
sions, where the zero-free polynomial sums only over balanced edge sets.
§3, “Pairs of colorings and orientations”: Compatible and proper pairs.
Contraction and improper pairs. Counting formulas. (Generalizing R.P.
Stanley, Acyclic orientations of graphs, Discrete Math. 5 (1973), 171–
178. MR 47 #6537. Zbl 258.05113.)
Continued in (1982c). (SG, GG: M, Col, Invar, Cov, Ori, Geom)

1982c Chromatic invariants of signed graphs. Discrete Math. 42 (1982), 287–312. MR
84h:05050b. Zbl 498.05030.

Continuation of (1982b). §1, “Balanced expansion formulas”: The fun-
damental balanced expansion formulas, that express the chromatic poly-
nomial in terms of the zero-free chromatic polynomial. §2, “Counting
by color magnitudes and signs”. More complicated expansion formulas.
§§2–7: Many special cases, treated in great detail: antibalanced graphs,
signed graphs that contain +Kn or−Kn, signedKn’s (a.k.a. two-graphs),
etc. §3, “Sign-symmetric graphs”. §4, “Addition and deletion formu-
las”. §5, “All-negative graphs; the even-circle chromatic polynomial”.
§6, “Partial matching numbers and ordinary chromatic coefficients”. §7,
“Signed complete graphs”. §8, “Orientations”: formulas for numbers of
acyclic orientations in the examples (cf. 1991b). [Annot. Rev 26 Feb
2012.] (SG, GG: M, Invar, Col, Cov, Ori, Geom; EC, KG)

1982d Bicircular geometry and the lattice of forests of a graph. Quart. J. Math. Oxford
(2) 33 (1982), 493–511. MR 84h:05050c. Zbl 519.05020.

The set of all forests in a graph forms a geometric lattice. The set
of spanning forests forms a geometric semilattice. The characteristic
polynomials count (spanning) forests. (GG: M, Bic, Geom, Invar)

1982e Voltage-graphic matroids. In: Adriano Barlotti, ed., Matroid Theory and Its
Applications (Proc. Session of C.I.M.E., Varenna, Italy, 1980), pp. 417–423.
Liguore Editore, Naples, 1982. MR 863015. Zbl 1225.05002. Repr.: C.I.M.E.
Summer Schools, Vol. 83, Springer, Heidelberg, and Fondazione C.I.M.E., Flo-
rence, 2010. MR 2768789. Zbl 1225.05001.

The frame matroid of a gain graph. (GG: M, EC, Bic, Invar: Exp)

1984a How colorful the signed graph? Discrete Math. 52 (1984), 279–284. MR 86m:-
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05045. Zbl 554.05026.
Studies zero-free chromatic number χ∗, and in particular that of a

complete signed graph (which may have parallel edges). The signed
graphs whose χ∗ is largest or smallest. (SG: Col)

1984b Multipartite togs (analogs of two-graphs) and regular bitogs. In: Proc. Fif-
teenth Southeastern Conf. on Combinatorics, Graph Theory and Computing
(Baton Rouge, 1984), Vol. III. Congressus Numer. 45 (1984), 281–293. MR
86d:05109. Zbl 625.05044.

A modestly successful attempt to generalize two-graphs along the co-
homological lines of Cameron and Wells (1986a). [Annot. 6 July 2011.]

(SG: TG: Gen: Adj, Sw)

1984c Line graphs of switching classes. In: Report of the XVIIIth O.S.U. Denison
Maths Conference (Granville, Ohio, 1984), pp. 2–4. Dept. of Math., Ohio
State Univ., Columbus, Ohio, 1984.
Λ(Σ) The line graph of a switching class [Σ] of signed graphs is a switch-

ing class of signed graphs; call it [Λ′(Σ)]. The reduced line graph Λ
is formed from Λ′ by deleting parallel pairs of oppositely signed edges.
Then A(Λ) = A(Λ′) = 2I − HT H, where H is an incidence matrix of Σ.
Thm. 1: A(Λ) has all eigenvalues ≤ 2. Examples: For an ordinary graph
Γ, Λ(−Γ) = −Λ(Γ). Example: taking −Γ and attaching any number of
pendant negative digons to each vertex yields (the negative of) Hoff-
man’s generalized line graph. Additional results are claimed but there
are no proofs. [See also (20xxa).] [This work is intimately related to
that of Vijayakumar et al., which was then unknown to the author, and
to Cameron (1980a) and Cameron, Goethals, Seidel, and Shult (1976a).]

(SG: LG: Sw, Adj, Incid)

1987a The biased graphs whose matroids are binary. J. Combin. Theory Ser. B 42
(1987), 337–347. MR 88h:05082. Zbl 667.05015.

For the frame (bias), lift, and extended lift matroids: forbidden-minor
and structural characterizations. The latter for signed-graphiic frame
matroids is superseded by a result of Pagano (1998a).

[Error in Cor. 4.3: In the last statement, omit “G(Ω) = L(Ω).” That
is true when Ω has no loops, but may not be if Ω has a loop e (because
Theorem 3(3) applies with unbalanced block e, but (E \ e, e) is not a
2-separation).] (GG: M: Str)

1987b Balanced decompositions of a signed graph. J. Combin. Theory Ser. B 43
(1987), 1–13. MR 89c:05058. Zbl 624.05056.

Decompose E(Σ) into the fewest balanced subsets (generalizing the
biparticity of an unsigned graph), or balanced connected subsets. These
minimum numbers are δ0 and δ1. Thm. 1: δ0 = dχ∗e + 1, where χ∗

is the zero-free chromatic number of −Σ. Thm. 2: δ0 = δ1 if Σ is
complete. Conjecture 1. Σ partitions into δ0 balanced, connected, and
spanning edge sets (whence δ0 = δ1) if it has δ0 edge-disjoint spanning
trees. [Solved and generalized to basepointed matroids by D. Slilaty.]
Conjecture 2 is a formula for δ1 in terms of δ0 of subgraphs. [It has
been thoroughly disproved by Slilaty.] (SG: Fr)

1987c Vertices of localized imbalance in a biased graph. Proc. Amer. Math. Soc. 101
(1987), 199–204. MR 88f:05103. Zbl 622.05054.
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Such a vertex (also, a “balancing vertex”) is a vertex of an unbalanced
graph whose removal leaves a balanced graph. Some elementary results.

(GG: Fr)

1987d The Möbius function and the characteristic polynomial. In: Neil White, ed.,
Combinatorial Geometries, Ch. 7, pp. 114–138. Encycl. Math. Appl., Vol.
29. Cambridge Univ. Press, Cambridge, 1987. MR 88g:05048 (book). Zbl
632.05017.

Pp. 134–135 expound the geometrical version of Dowling lattices as in
Dowling (1973a). (gg: Geom, m, Invar: Exp)

1988a Togs (generalizations of two-graphs). In: M.N. Gopalan and G.A. Patwardhan,
eds., Optimization, Design of Experiments and Graph Theory (Proc. Sympos.
in Honour of Prof. M.N. Vartak, Bombay, 1986), pp. 314–334. Indian Inst. of
Technology, Bombay, 1988. MR 90h:05112. Zbl 689.05035.

An attempt to generalize two-graphs (here [alas?] called “unitogs”)
in a way similar to that of Cameron and Wells (1986a) although largely
independently. The notable new example is “Johnson togs”, based on
the Johnson graph of k-subsets of a set. “Hamming togs” are based on
a Hamming graph (that is, a Cartesian product of complete graphs) and
generalize examples of Cameron and Wells. Other examples are as in
(1984b). (SG: TG: Gen)

1988b The demigenus of a signed graph. In: Report on the XXth Ohio State-Denison
Mathematics Conference (Granville, Ohio, 1988). Dept. of Math., Ohio State
Univ., Columbus, Ohio, 1988. (SG: Top, M)

1989a Biased graphs. I. Bias, balance, and gains. J. Combin. Theory Ser. B 47
(1989), 32–52. MR 90k:05138. Zbl 714.05057.

Ω,Φ Fundamental concepts and lemmas of biased graphs. Bias from gains;
switching of gains; characterization of balance [for which see also Harary,
Lindstrom, and Zetterstrom (1982a)]. (GG: Bal, Sw)

1990a Biased graphs whose matroids are special binary matroids. Graphs Combin. 6
(1990), 77–93. MR 91f:05097. Zbl 786.05020.

A complete list of the biased graphs Ω such that G(Ω), L0(Ω), or L(Ω) is
one of the traditional special binary matroids, G(K5), G(K33), F7, their
duals, and G(Km) (for m ≥ 4) and R10. [Unfortunately omitted are
nonbinary matroids like the non-Fano plane and its dual.]

[Error: The graphs 〈+K◦n〉 were overlooked in the last statement of
Lemma 1H—due to an oversight in (1987a) Cor. 4.3—and thus in Props.
2A and 5A. A corrected last statement of Lemma 1H: “If Ω has no two
vertex-disjoint negative circles, then G(Ω) = M ⇐⇒ L(Ω) = M .”
In Prop. 2A, add Ω = 〈+K◦3〉 to the list for G(K4). In Prop. 5A, add
Ω = 〈+K◦m−1〉 to the list for G(Km). Thanks to Stefan van Zwam (25
July 2007).] (GG: M)

††1991a Biased graphs. II. The three matroids. J. Combin. Theory Ser. B 51 (1991),
46–72. MR 91m:05056. Zbl 763.05096.

G,L, L0 Basic theory of the bias [or better, “frame”] matroid G (§2) and the
lift and complete lift matroids, L and L0 (§3), of a gain graph or biased
graph. Infinite graphs. Matroids that are intermediate between the bias
and lift matroids. Several questions and conjectures. (GG: M)
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1991b Orientation of signed graphs. European J. Combin. 12 (1991), 361–375. MR
93a:05065. Zbl 761.05095.

Oriented signed graph = bidirected graph. The oriented matroid of an
oriented signed graph. A “cycle” in a bidirected graph is a bias circuit (a
balanced circle, or a handcuff with both circles negative) oriented to have
no source or sink. Cycles in Σ are compared with those in its signed (i.e.,
derived) covering graph Σ̃. The correspondences among acyclic orienta-
tions of Σ and regions of the hyperplane arrangements of Σ and Σ̃, and
dually the faces of the acyclotope of Σ. Thm. 4.1: the net degree vector
d(τ) of an orientation τ belongs to the face of the acyclotope that is
determined by the union of all cycles. Cor. 5.3 (easy): a finite bidirected
graph has a source or sink. (SG: Ori, M, Cov, Geom)(SGw: Invar)

1992a Orientation embedding of signed graphs. J. Graph Theory 16 (1992), 399–422.
MR 93i:05056. Zbl 778.05033.

Positive circles preserve orientation, negative ones reverse it. The min-
imal embedding surface of a one-point amalgamation of signed graphs.
The formula is almost additive. (SG: Top)

1992b Strong Tutte functions of matroids and graphs. Trans. Amer. Math. Soc. 334
(1992), 317–347. MR 93a:05047. Zbl 781.05012.

Suppose that a function of matroids with labelled points is defined that
is multiplicative on direct sums and satisfies a Tutte–Grothendieck re-
currence with coefficients (the “parameters”) that depend on the element
being deleted and contracted, but not on the particular minor from which
it is deleted and contracted: specifically, F (M) = aeF (M\e)+beF (M/e)
if e is not a loop or coloop in M . Thm. 2.1 completely characterizes such
“strong Tutte functions” for each possible choice of parameters: there is
one general type, defined by a rank generating polynomial RM(a, b;u, v)
(the “parametrized rank generating polynomial”) involving the parame-
ters a = (ae), b = (be) and the variables u, v, and there are a few special
types that exist only for degenerate parameters. All have a Tutte-style
basis expansion; indeed, a function has such an expansion iff it is a strong
Tutte function (Thms. 7.1, 7.2). The Tutte expansion is a polynomial
within each type. If the points are colored and the parameters of a point
depend only on the color, one has a multicolored matroid generaliza-
tion of Kauffman’s (1989a) Tutte polynomial of a sign-colored graph.
Kauffman’s particular choices of parameters are shown to be related to
matroid and color duality.

For a graph, “parametrized dichromatic polynomial” QΓ = uβ0(Γ)RG(Γ),
where G = graphic matroid and β0 = number of connected compo-
nents. A “portable strong Tutte function” of graphs is multiplicative
on disjoint unions, satisfies the parametrized Tutte–Grothendieck re-
currence, and has value independent of the vertex set. Thm. 10.1:
Such a function either equals QΓ or is one of two degenerate excep-
tions. Prop. 11.1: Kauffman’s (1989a) polynomial of a sign-colored
graph equals RG(|Σ|),σ(a, b; d, d) for connected Σ, where a+ = b− = B
and a− = b+ = A. [Cf. Traldi 1989a).]
[This paper differs from other generalizations of Kauffman’s polynomial,

by Przytycka and Przytycki (1988a) and Traldi (1989a) (and partially
anticipated by Fortuin and Kasteleyn (1972a)), who also develop the
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parametrized dichromatic polynomial of a graph, principally in that it
characterizes all strong Tutte functions; also in generalizing to matroids
and in having little to say about knots. Schwärzler and Welsh (1993a)
generalize to signed matroids (and characterize their strong Tutte func-
tions) but not to arbitrary colors. Bollobás and Riordan (1999a) initiate
the study of the underlying commutative algebra.]

(Sc(M), SGc: Gen: Invar, D, Knot)

1993a The projective-planar signed graphs. Discrete Math. 113 (1993), 223–247. MR
94d:05047. Zbl 779.05018.

P2 Characterized by six forbidden minors or eight forbidden topological
subgraphs, all small. A close analog of Kuratowski’s theorem; the proof
even has much of the spirit of the Dirac–Schuster proof of the latter, and
all but one of the forbidden graphs are simply derived from the Kura-
towski graphs. [Paul Seymour showed me an alternative proof from Ku-
ratowski’s theorem that explains this; but it uses sophisticated results,
as yet unpublished, of Robertson, Seymour, and Shih.] (SG: Top)

[Related: “projective outer-planarity” (POP): embeddable in the pro-
jective plane with all vertices on a common face. I have found most of
the 40 or so forbidden topological subgraphs for POP of signed graphs
(finding the rest will be routine); the proof is long and tedious and will
probably not be published. Problem. Find a reasonable proof.]

(SG: Top)

1994a Frame matroids and biased graphs. European J. Combin. 15 (1994), 303–307.
MR 95a:05021. Zbl 797.05027.

A simple matroidal characterization of the bias, or “frame”, matroids
of biased graphs. (GG: M)

1995a The signed chromatic number of the projective plane and Klein bottle and
antipodal graph coloring. J. Combin. Theory Ser. B 63 (1995), 136–145. MR
95j:05099. Zbl 822.05028.

Introducing the signed Heawood problem: what is the largest signed, or
zero-free signed, chromatic number of any signed graph that orientation
embeds in the sphere with h crosscaps? Solved for h = 1, 2.

(SG: Top, Col)

††1995b Biased graphs. III. Chromatic and dichromatic invariants. J. Combin. Theory
Ser. B 64 (1995), 17–88. MR 96g:05139. Zbl 857.05088.

Polynomials of gain and biased graphs: the fundamental object is a
four-variable polynomial, the “polychromial” (“polychromatic polyno-
mial”), that specializes to the chromatic, dichromatic, and Whitney-
number polynomials. The polynomials come in two flavors: unrestricted
and balanced, depending on the edge sets that appear in their defining
sums. (They can be defined in the even greater abstraction of “two-ideal
graphs”, which clarifies the most basic properties.)
§4: “Gain-graph coloring”. In Φ = (Γ, ϕ,G), a “zero-free k-coloring”

is a mapping f : V → [k] × G; it is “proper” if, when e:vw is a link
or loop and f(v) = (i, g), f(w) = (i, h), then h 6= gϕ(e; v, w). A “k-
coloring” is similar but the color set is enlarged by inclusion of a color 0;
propriety requires the additional restriction that f(v) and f(w) are not
both 0 (and f(v) 6= 0 if v supports a half edge). In particular, a “group-
coloring” of Φ is a zero-free 1-coloring (ignoring the irrelevant numerical
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part of the color). A “partial group-coloring” is a group-coloring of
an induced subgraph [which can only be proper if the uncolored vertices
form a stable set]. The unrestricted and balanced chromatic polynomials
count, respectively, unrestricted and zero-free proper k-colorings; the two
Whitney-number polynomials count all colorings, proper and improper,
by their improper edge sets.
§5: “The matroid connection”. The various polynomials are, in essence,

bias matroid invariants and closely related to corresponding lift matroid
and extended lift matroid invariants.

Almost infinitely many identities, some of them (esp., the balanced
expansion formulas in §6) essential. Innumerable examples worked in
detail. [The first half, to the middle of §6, is fundamental. The rest is
more or less ornamental. Most of the results are, intentionally, general-
izations of properties of ordinary graphs.] (GG: Invar, M, Col)

1996a The order upper bound on parity embedding of a graph. J. Combin. Theory
Ser. B 68 (1996), 149–160. MR 98f:05055. Zbl 856.05030.

The smallest surface that holds Kn with loops, if odd circles reverse
orientation, even ones preserve it (this is parity embedding). I.e., the
demigenus d(−K◦n). (Par: Top)

1997a Is there a matroid theory of signed graph embedding? Ars Combinatoria 45
(1997), 129–141. MR 97m:05084. Zbl 933.05067. (SG: M, Top)

1997b The largest parity demigenus of a simple graph. J. Combin. Theory Ser. B 70
(1997), 325–345. MR 99e:05043. Zbl 970.37744.

Like (1996a), but without loops. Conjecture 1. The minimal surface
for parity embedding Kn is sufficient for orientation embedding of any
signed Kn. Conjectures 3–4. The minimal surfaces of ±K◦n and ±Kn

are the smallest permitted by the lower bound obtained from Euler’s
polyhedral formula. (Par: KG: Top)

1997c Avoiding the identity. Problem 10606, Amer. Math. Monthly 104 (Aug.–Sept.,
1997), no. 7, 664.

Find an upper bound on f(m) = largest r such that any group of order
≥ r has m elements such that no product of any subset, possibly with
inverted elements, equals the identity. Solution by Stephen M. Gagola
(1999a).

[The solution implies that (∗) f1(m) ≤ d2m−1(m − 1)!
√
ee, where

f1(m) = smallest r such that every group of order ≥ r is a possible
gain group for every contrabalanced gain graph of cyclomatic number
m. Problem 1. Find a good upper bound on f1. (∗) is probably weak.
Problem 2. Find a good lower bound. Problem 3. Estimate f1 asymp-
totically.] (gg)

1998a Signed analogs of bipartite graphs. Discrete Math. 179 (1998), 205–216. MR
2000b:05067. Zbl 980.06737.

Basically, they are the antibalanced and bipartite signed graphs; but
the exact description depends on the characterization one chooses for
biparticity: whether it is evenness of circles, closed walks, face bound-
aries in surface embeddings, etc. Characterization by chromatic number
leads to a slightly more different list of analogs. (SG: Str, Top)

1998b A mathematical bibliography of signed and gain graphs and allied areas. Elec-
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tronic J. Combin., Dynamic Surveys in Combinatorics (1998), No. DS8. MR
2000m:05001a. Zbl 898.05001.

Complete and annotated—or as nearly so as I can make it. In prepa-
ration in perpetuum. Hurry, hurry, write an article!

(SG, Ori, GG, GN, SD, VS, TG, . . . , Chem, Phys, Biol, PsS, Appl)
Published edns.: Edn. 6a (Edition 6, Revision a), 20 July 1998 (iv +

124 pp.). Edn. 7, 22–26 Sept. 1999 (vi + 151 pp.). Edn. 8, 8 Sept. 2012
(vi + 341 pp.).

1998c Glossary of signed and gain graphs and allied areas. Electronic J. Combin.,
Dynamic Surveys in Combinatorics (1998), No. DS9. MR 2000m:05001b. Zbl
898.05002.

A complete (or so it is intended) terminological dictionary of signed,
gain, and biased graphs and related topics; including necessary special
terminology from ordinary graph theory and mathematical interpreta-
tions of the special terminology of applications.
(SG, Ori, GG, GN, SD, VS, TG, . . . , Chem, Phys, PsS, Appl)

Published edns.: 21 July 1998 (25 pp.). Second edn. 18 September
1998 (41 pp.).

2001a Supersolvable frame-matroid and graphic-lift lattices. European J. Combin. 22
(2001), 119–133. MR 2001k:05051. Zbl 966.05013.

Biased graphs whose bias and lift matroids are supersolvable are char-
acterized by a form of simplicial vertex ordering—with a few excep-
tions. As preliminary results, modular copoints are characterized [but
incompletely in the bias-matroid case, as observed by Koban (2004a)].
§4: “Examples”: 4a: “Group expansions and biased expansions”; 4b:
“Near-Dowling and Dowling lift lattices”; 4c: “An extension of Edelman
and Reiner’s theorem” to general gain groups (see Edelman and Reiner
(1994a)); 4d: “Bicircular matroids”. [Written in 1992 and long delayed.
Correction in Koban (2004a). Independently, Yoon (1997a) incorrectly
attempted the case of G(Σ). Jiang and Yu rediscovered the case of a
signed Kn.] (GG, SG: M, Geom)

2001b The largest demigenus of a bipartite signed graph. Discrete Math. 232 (2001),
189–193. MR 2001m:05100. Zbl 982.05041.

The smallest surface for orientation embedding of ±Kr,s. (SG: Top)

2002a Perpendicular dissections of space. Discrete Comput. Geom. 27 (2002), 303–
351. MR 2003i:52026. Zbl 1001.52011.

Given an additive real gain graph Φ on n vertices and n reference
points Qi in Ed, use Φ to specify perpendicular hyperplanes to each of
the lines QiQj by means of the “Pythagorean coordinate” along QiQj.
For generic points, the number of regions is computable based on the fact
that the generic hyperplane intersection lattice is Latb Φ. Modifications
of Pythagorean coordinates give intersection lattice Latb(‖Φ‖,∅) or a
slightly more complex variant, still for generic reference points.

(GG: Geom, M, Invar)

2003a Faces of a hyperplane arrangement enumerated by ideal dimension, with ap-
plication to plane, plaids, and Shi. Geom. Dedicata 98 (2003), 63–80. MR
2004f:52025. Zbl 1041.52021.

§6, “Affinographic arrangements”: hyperplane arrangements that rep-
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resent the extended lift matroid L0(Φ) where Φ is an additive real gain
graph. Examples: the weakly-composed-partition, extended Shi, and
extended Linial arrangements. The faces are counted in terms of dimen-
sion and dimension of the infinite part. Ehrenborg (20xxa) has more
explicit formulas for Shi. (GG: m, Geom, Invar)

††2003b Biased graphs IV: Geometrical realizations. J. Combin. Theory Ser. B 89
(2003), no. 2, 231–297. MR 2005b:05057. Zbl 1031.05034.

§§2–4: Various ways in which to represent the bias and lift matroids of a
gain or biased graph over a skew field F . Bias matroid: canonical vector
and hyperplanar representations (generalizing those of a graph) based
on a gain group ⊆ F×, Menelæan and Cevian representations (gen-
eralizations of theorems of Menelaus and Ceva), switching vs. change
of ideal hyperplane, equational logic. Lift matroid: canonical vector
and hyperplanar representations (the latter generalizing the Shi and
Linial arrangements among others) based on a gain group ⊆ F+, ortho-
graphic representation (an affine variation on canonical representation),
Pythagorean representation (Zaslavsky 2002a). Both: effect of switch-
ing, nonunique gain-group embedding. §5: Effect of Whitney operations,
separating vertex. §6: Matroids characterized by restricted general po-
sition. §7, “Thick graphs”: A partial unique-representation theorem for
biased graphs with sufficient edge multiplicity. §8: The 7 biased K4’s.

(GG: M, Geom, Invar)

2006a Quasigroup associativity and biased expansion graphs. Electron. Res. Announc.
Amer. Math. Soc. 12 (2006), 13–18. MR 2006i:20081. Zbl 1113.05044.

Summary of (2012a). (GG: Str)

2007a Biased graphs. VII. Contrabalance and antivoltages. J. Combin. Theory Ser.
B 97 (2007), no. 6, 1019–1040. MR 2008h:05025. Zbl 1125.05048.

Contrabalanced graphs, whose gains are called antivoltages. Emphasis
on the existence of antivoltages in Zµ, Z, and Zkp for application to
canonical representation of the contrabalanced bias and lift matroids.
The number of such antivoltages is a polynomial function of the group
order or (for Z) the bound on circle gains.

(GG: M, bic, Geom, Invar)

2009a Totally frustrated states in the chromatic theory of gain graphs. European J.
Combinatorics 30 (2009), 133–156. MR 2460223 (2009k:05100). Zbl 1125.05048.

Given a set Q of “spins”, a state is s : V → Q. The gain group G acts
on the spin set. In a permutation gain graph Φ with gain group G, edge
e:vw is “satisfied” if s(w) = s(v)ϕ(e), otherwise “frustrated”. A totally
frustrated state (every edge is frustrated) generalizes a proper color-
ing. Enumerative theory, including deletion/contraction, a monodromy
formula for the number of totally frustrated states, and a multivariate
chromatic polynomial. An abstract partition function in the edge alge-
bra. (GG: Col: Gen: Invar, M)

2010a Six signed Petersen graphs. In: International Conference on Recent Trends in
Graph Theory and Combinatorics (ICRTBC-2010) (Cochin, 2010) [Summaries],
pp. 75–76. Dept. of Mathematics, Cochin Univ. of Science and Technology,
2010.

Extended abstract of (2012b). There are six ways to sign the Petersen
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graph P up to switching isomorphism. Their frustration indices, auto-
morphism and switching automorphism groups, chromatic numbers, and
clusterability indices. [This abstract is not entirely reliable.] [Annot.
30 Aug, 26 Dec 2010.] (SG: Fr, Aut, Col, Clu)

2010b Matrices in the theory of signed simple graphs. In: B.D. Acharya, G.O.H. Ka-
tona, and J. Nesetril, eds., Advances in Discrete Mathematics and Applications:
Mysore, 2008 (Proc. Int. Conf. Discrete Math. 2008, ICDM-2008, Mysore, In-
dia, 2008), pp. 207–229. Ramanujan Math. Soc. Lect. Notes Ser., No. 13. Ra-
manujan Mathematical Soc., Mysore, India, 2010. MR 2766941 (2012d:05017).
Zbl 1231.05120.

The adjacency, incidence, and Kirchhoff (“Laplacian”) matrices, along
with the adjacency matrices of line graphs. Balance, vertex degrees,
eigenvalues, line graphs, strong regularity, etc. A survey, emphasizing
work of Seidel, Vijayakumar, and Zaslavsky (some of which is unpub-
lished).

Abelson and Rosenberg’s (1958a) adjacency matrix is mentioned.
(SG: Adj, Incid, LG: Exp)

2012a Associativity in multiary quasigroups: The way of biased expansions. Aequa-
tiones Math. 83 (2012), no. 1, 1–66. Zbl 1235.05059.

An n-ary quasigroup (Q, f) is essentially equivalent, up to isotopy, to
a biased expansion m · Cn+1. Factorizations of f appear as chords in
a maximal extension of m · Cn+1. Thm.: A biased expansion of a 3-
connected graph (order ≥ 4) is a group expansion. Cor.: If n ≥ 3 and
the factorization graph of (Q, f) is 3-connected, (Q, f) is isotopic to an
iterated group. Thm.: For a biased expansion of a 2-connected graph of
order ≥ 4, if all minors of order 4 are group expansions, so is the whole
expansion. Cor.: If in (Q, f) (n ≥ 3) all ternary residual quasigroups are
iterated group isotopes, so is (Q, f). Cor.: (Q, f) is an iterated group
isotope if |Q| = 3.

Other results: complete structural decomposition of nongroup bi-
ased expansions, or partially reducible multiary quasigroups, in terms
of groups and either irreducible expansions or multiary quasigroups, re-
spectively. (GG: Str)

2012b Six signed Petersen graphs, and their automorphisms. Recent Trends in Graph
Theory and Combinatorics (Cochin, 2010). Discrete Math. 312 (2012), no. 9,
1558–1583. Zbl 1239.05086.

There are six ways to sign the Petersen graph P up to switching
isomorphism. The frustration indices, automorphism and switching au-
tomorphism groups (in extensive detail), chromatic numbers, and clus-
terability indices of them and their negatives. All but automorphisms
and clusterability are switching invariant, thus are solved for all signed
P ’s. [Annot. 26 Dec 2010.] (SG: Fr, Aut, Col, Clu)

20xxa Line graphs of signed graphs and digraphs. In preparation.
Λ(Σ) Line graphs of signed graphs are, fundamentally, (bidirected) line

graphs of bidirected graphs. Then the line graph of a signed graph
is a polar graph, i.e., a switching class of bidirected graphs; the line
graph of a polar graph is a signed graph; and the line graph of a sign-
biased graph, i.e., of a switching class of signed graphs, is a sign-biased
graph. In particular, the line graph of an antibalanced switching class
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is an antibalanced switching class. (Partly for this reason, ordinary
graphs should usually be regarded as antibalanced, i.e., all negative, in
line graph theory.) Since a digraph is an oriented all-positive signed
graph, its line graph is a bidirected graph whose positive part is the
Harary–Norman line digraph. Among the line graphs of signed graphs,
some reduce by cancellation of parallel but oppositely signed edges to
all-negative graphs; these are precisely Hoffman’s generalized line graphs
of ordinary graphs, a fact which explains their line-graph-like behavior.
[Attempts at a completely descriptive line graph of a digraph were Mu-
racchini and Ghirlanda (1965a) and Hemminger and Klerlein (1979a).
The geometry of line graphs and signed graphs has been developed by
Vijayakumar et al. (q.v.). See also Zaslavsky (1979a, 1984c), Zelinka
(1976a) et al.] (SG: LG: Ori, Incid, Adj(LG), Sw)

20xxb Signed graphs and geometry. Int. Workshop on Set-Valuations, Signed Graphs,
Geometry and Their Appl. (IWSSG-2011, Mananthavady, Kerala, 2011). J.
Combin. Inform. Syst. Sci., to appear. (SG: Bal, Fr, Geom, Incid, Adj, M)

20xxc What is a strongly regular signed graph? In preparation. (SG: Adj)

20xxd Geometric lattices of structured partitions: I. Gain-graphic matroids and group-
valued partitions. Manuscript, 1985 et seq. (GG: M, Invar, col)

20xxe Geometric lattices of structured partitions: II. Lattices of group-valued parti-
tions based on graphs and sets. Manuscript, 1985 et seq. (GG: M, Invar, col)

20xxf The canonical vertex signature and the cosets of the complete binary cycle
space. Submitted.

∂(E) := {odd-degree vertices} of Γ. Modify Γ by set summation with
(a) an even-degree subgraph, (b) a circle in Γ or Γc, (c) a circle made up
of a path in Γ and another in Γc. (a) gives all Γ′ with the same ∂. (b)
does if n > 4. (c) does if ∂(E) 6= V (n even,∅ (n odd).

The canonical vertex signature of Σ is ∂σ(v) = (−1)#(negative edges at v)

(Sampathkumar (1972a, 1984a)). For simple |Σ|, (∂σ)−1(−1) = ∂(E−).
[Annot. 27 May 2010.] (SG, VS: Str)

20xxg Universal and topological gains for biased graphs. In preparation. (GG: Top)

20xxi Big flats in a box. In preparation.
The naive approach to characteristic polynomials via lattice point

counting (in characteristic 0) and Möbius inversion (as in Blass and
Sagan 1998a) can only work when one expects it to. (This is a theo-
rem!) (GG: Geom, M, Invar, col)

20xxj Biased graphs. V. Group and biased expansions. In preparation.
(GG: M, Geom, Invar)

20xxk Petersen signed graphs. In preparation.
There are 6 signatures of the Petersen graph P , up to switching iso-

morphism. For four of them (+P , −P , PI = the antipodal quotient
of the icosahedral graph, P1 with one negative edge), many facets are
examined closely. (SG: Sw, Bal, Fr, Clu, Cov, Top, Col, M: Exp)

20xxm Biased graphs. VIII. A cornucopia of examples. In preparation.
Numerous types of examples of biased graphs, many having particular

theory of their own, e.g., Hamiltonian bias. (GG: M, Geom)
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20xxn The least possible eigenvalue of a super line multigraph. Submitted.
(SG, LG: Gen)

20xxo Frustration vs. clusterability in two-mode signed networks (signed bipartite
graphs). Submitted.

Compares the frustration index l and the majority biclusterability
indices M(k1, k2), the latter based on Mrvar and Doreian (2009a), for
bipartite signed graphs, especially signed K2,n’s. [Annot. 8 Jan 2010.]

(SG: Fr, Clu)

Morris Zelditch, Jr.
See J. Berger.

Bohdan Zelinka
See also R.L. Hemminger.

1973a Polare und polarisierte Graphen. In: XVIII. Int. Wiss. Kolloqu. (Ilmenau,
1973), Vol. 2, Vortragsreihe “Theorie der Graphen und Netzwerke”, pp. 27–28.
Technische Hochschule, Ilmenau, 1973. Zbl 272.05102.

See (1976a). [This appears to be a very brief abstract of a lecture.]
(sg: Ori, sw)

1973b Quasigroups and factorisation of complete digraphs. Mat. Časopis 23 (1973),
333–341. MR 50 #12799. Zbl 271.20039.

Establishes correspondences between quasigroups, algebraic loops, and
groups on one hand, and 1-factored complete digraphs on the other, and
between automorphisms of the latter and autotopies of the former.

(GG: Aut)

1974a Polar graphs and railway traffic. Aplikace Mat. 19 (1974), 169–176. MR 49
#12066. Zbl 283.05116.

See (1976a) for definitions. Railway tracks and switches modeled by
edges and vertices of a polar graph. Forming its derived graph (see
(1976d)), thence a digraph obtained therefrom by splitting vertices into
two copies and adjusting arcs, the time for a train to go from one segment
to another is found by a shortest path calculation in the digraph. A
similar method is used to solve the problem for several trains.

(sg: Ori, sw: LG: Appl)

1976a Isomorphisms of polar and polarized graphs. Czechoslovak Math. J. 26(101)
(1976), 339–351. MR 58 #16429. Zbl 341.05121.

Basic definitions (Źıtek 1972a): “Polarized graph” B = bidirected
graph (with no negative loops and no parallel edges sharing the same
bidirection). “Polar graph” P ∼= switching class of bidirected graphs
(that is, we forget which direction at a vertex is in and which is out—
here called “north” and “south” poles—but we remember that they are
different).
Thms. 1–6. Elementary results about automorphisms, including finding

the automorphism groups of the “complete polarized” and polar graphs.
(The “complete polarized graph” has every possible bidirected link and
positive loop, without repetition.) Thm. 7: With small exceptions, any
(ordinary) graph can be made polar as, say, P so that AutP is trivial.

Thms. 8–10. Analogs of Whitney’s theorem that the line graph almost
always determines the graph. The “pole graph” B∗ of B or [B]: Split
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each vertex into an “in” copy and an “out” copy and connect the edges
appropriately. [Generalizes splitting a digraph into a bipartite graph. It
appears to be a “twisted” signed double covering graph.] Thm. 8. The
pole graph is determined, with two exceptions, by the edge relation e ∼1

f if both enter or both leave a common vertex. (A trivial consequence
of Whitney’s theorem.) Thm. 9. A polar graph [B] with enough edges
going in and out at each vertex is determined by the edge relation e ∼2 f
if one enters and the other exits a common vertex. (Examples show
that too few edges going in and out leave [B] undetermined.) Thm.
10. Knowing ∼1, ∼2, and which edges are parallel with the same sign,
and if no component of the simplified underlying graph of B is one of
twelve forbidden graphs, then [B] is determined. [Problem 1. Improve
Thm. 10 to a complete characterization of the bidirected graphs that
are reconstructible from their line graphs (which are to be taken as
bidirected; see Zaslavsky (2010b, 20xxa)). In connection with this, see
results on characterizing line graphs of bidirected (or signed) graphs by
Vijayakumar (1987a). Problem 2. It would be interesting to improve
Thm. 9.] (sg: Ori, sw: Aut, lg)

1976b Analoga of Menger’s theorem for polar and polarized graphs. Czechoslovak
Math. J. 26(101) (1976), 352–360. MR 58 #16430. Zbl 341.05122.

See (1976a) for basic definitions. Here is the framework of the 8 the-
orems. Given a bidirected or polar graph, B or P , vertices a and b,
and a type X of walk, let sX [s′X ] = the fewest vertices [edges] whose
deletion eliminates all (a, b) walks of type X, and let dX [d′X ] = maxi-
mum number of suitably pairwise internally vertex-disjoint [or, suitably
pairwise edge-disjoint] walks of type X from a to b. [My notation.] By
“suitably” I mean that a common internal vertex or edge is allowed in
P (but not in B) if it is used oppositely by the two walks using it. (See
the paper for details.) Thms. 1–41 (there are two Theorems 4) concern
all-positive and all-introverted walks in a bidirected (“polarized”) graph,
and are simply the vertex and edge Menger theorems applied to the pos-
itive and introverted subgraphs. Thms. 42–7 concern polar graphs and
have the form sX ≤ dX ≤ 2sX [s′X ≤ d′X ≤ 2s′X ], which is best possible.
Thms. 42–5 concern type “heteropolar” (equivalently, directed walks in
a bidirected graph). The proofs depend on Menger’s theorems in the
double covering graph of the polar graph. [Since this has 2 vertices for
each 1 in the polar graph, the range of dX [d′X ] is explained.] Thms. 6–7
concern type “homopolar” (i.e., antidirected walks). The proofs employ
the pole graph (see (1976a)). (sg: Ori, sw: Paths)

1976c Eulerian polar graphs. Czechoslovak Math. J. 26(101) (1976), 361–364. MR 58
#21869. Zbl 341.05123.

See (1976a) for basic definitions. An Eulerian trail in a bidirected graph
is a directed trail containing every edge. [Equivalently, a heteropolar trail
that contains all the edges in the corresponding polar graph.] It is closed
if the endpoints coincide and the trail enters at one end and departs
at the other. The fewest directed trails needed to cover a connected
bidirected graph is 1

2
the total of the absolute differences between in-

degrees and out-degrees at all vertices, or 1 if in-degree = out-degree
everywhere. (sg: Ori, sw: Paths)
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1976d Self-derived polar graphs. Czechoslovak Math. J. 26(101) (1976), 365–370. MR
58 #16431. Zbl 341.05124.

See (1976a) for basic definitions. The “derived graph” of a bidirected
graph [this is equivalent to the author’s terminology] is essentially the
positive part of the bidirected line graph. The theorem can be restated,
somewhat simplified: A finite connected bidirected graph B is isomorphic
to its derived graph iff B is balanced and contains exactly one circle.

(sg: Ori, sw: LG)

1976e Groups and polar graphs. Časopis Pěst. Mat. 101 (1976), 2–6. MR 58 #21790.
Zbl 319.05118.

See (1976a) for basic definitions. A polar graph PG(G, A) of a group
and a subset A is defined. [It is the Cayley digraph.] In bidirected lan-
guage: a (bi)directed graph is “homogeneous” if it has automorphisms
that are transitive on vertices, both preserving and reversing the orienta-
tions of edges, and that induce an arbitrary permutation of the incoming
edges at any given vertex, and similarly for outgoing edges. It is shown
that the Cayley digraph PG(G, A), where G is a group and A is a set
of generators, is homogeneous if A is both arbitrarily permutable and
invertible by AutG. [Bidirection—i.e., the polarity—seems to play no
part here.] (sg: Ori, sw: Aut)

1982a On double covers of graphs. Math. Slovaca 32 (1982), 49–54. MR 83b:05072.
Zbl 483.05057.

Is a simple graph Γ a double cover of some signing of a simple graph?
An elementary answer in terms of involutions of Γ. Further: if there
are two such involutions α0, α1 that commute, then Γ/αi has involution
induced by α1−i, so is a double cover of Γ/〈α0, α1〉, which is not nec-
essarily simple. [No properties of particular interest for signed covering
are treated.] (sg: Cov)

1983a Double covers and logics of graphs. Czechoslovak Math. J. 33(108) (1983),
354–360. MR 85k:05098a. Zbl 537.05070.

The double covers here are those of all-negative simple graphs (hence are
bipartite). Some properties of these double covers are proved, then con-
nections with a certain lattice (the “logic”) of a graph. (par: Cov: Aut)

1983b Double covers and logics of graphs II. Math. Slovaca 33 (1983), 329–334. MR
85k:05098b. Zbl 524.05058.

The second half of (1983a). (par: Cov: Aut)

1988a A remark on signed posets and signed graphs. Czechoslovak Math. J. 38(113)
(1988), 673–676. MR 90g:05157. Zbl 679.05067 (q.v.).

Harary and Sagan (1983a) asked: which signed graphs have the form
S(P ) for some poset P? Zelinka gives a rather complicated answer for all-
negative signed graphs, which has interesting corollaries. For instance,
Cor. 3: If S(P ) is all negative, and P has 0̂ or 1̂, then S(P ) is a tree.

(SG, Sgnd)

Hans-Olov Zetterström
See Harary, Lindstrom, and Zetterström (1982a).

Mingqing Zhai, Ruifang Liu, and Jinlong Shu
2011a An edge-grafting theorem on Laplacian spectra of graphs and its application.

Linear Multilinear Algebra 59 (2011), no. 3, 303–315. MR 2774085 (2012c:05202).
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Zbl 1226.05175. (Par: Adj)

Bingyan Zhang
See Y.P. Zhang.

Cun-Quan Zhang
See also R. Xu.

1993a Even-cycle decomposition. Problem 4.2, p. 681, in Nathaniel Dean, Open prob-
lems. In: Neil Robertson and Paul Seymour, eds., Graph Structure Theory
(Proc., Seattle, 1991), pp. 677–688. Contemp. Math., Vol. 147. Amer. Math.
Soc., Providence, R.I., 1993.

Conj. 12 is a sufficient condition for −Γ to decompose into balanced
circles. [Problem. Solve the obvious generalization to signed graphs. Is
that easier because minors exist?] [Annot. 11 Jun 2012.] (sg: par: Str)

De Long Zhang and Shang Wang Tan
2003a On the strongly regular graphs and the Seidel switching. (In Chinese.) Math.

Appl. (Wuhan) 16 (2003), no. 2, 145–148. MR 1979481 (no rev). Zbl 1030.05076
(no rev). (TG)

Fuji Zhang
See X.A. Jin and W. Yang.

Guang-Jun Zhang and Xiao-Dong Zhang
2011a The p-Laplacian spectral radius of weighted trees with a degree sequence and

a weight set. Electronic J. Linear Algebra 22 (2011), 267–276. MR 2788647
(2012i:05051). Zbl 1227.05190.
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F. Źıtek
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