The Need-to-Know List

In order to be able to fully appreciate the calculus that you learn this year, you need to be *completely comfortable* with the following fundamental building blocks.

1. Arithmetic, Algebra, and Fractions $(a+b)^{2} = a^{2} + 2ab + b^{2}, \text{ NOT} = a^{2} + b^{2} \qquad (a+b)/c = a/c + b/c$ $a^{2} - b^{2} = (a+b)(a-b) \qquad c/(a+b) \text{ does NOT simplify!}$ $x^{3} + y^{3} = (x+y)(x^{2} - xy + y^{2}) \qquad \frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$ $x^{3} - y^{3} = (x-y)(x^{2} + xy + y^{2}) \qquad \frac{1}{c/d} = \frac{d}{c}, \qquad \frac{a/b}{c/d} = \frac{a}{b}\frac{d}{c} = \frac{ad}{bc}$

Know how to **factor** and **find roots of** polynomials.

2. Powers

3. Areas and Volumes

Simplifies	Does Not Simplify		
$x^a x^b = x^{a+b}$	$x^a + x^b$	Area of a rectangle (square):	$A_{\rm rect} = lw \ (A_{\rm sq} = l^2)$
$a^x a^y = a^{x+y}$	$a^x + a^y$	Area of a triangle:	$A_{\rm tri} = \frac{1}{2}b\dot{h}$
$x^a y^a = (xy)^a$		Area of a circle:	$A_{\rm circ} = \pi r^2$
$(x^a)^b = x^{ab}$	$x^{(a^b)}$	Volume of any prism:	$V_{\rm prism} = Ah$
$x^{-a} = 1/x^a$		(rectangular prism):	$(V_{\rm box} = lwh)$
$\sqrt{xy} = \sqrt{x}\sqrt{y}$	$\sqrt{x+y}$	(cylinder):	$(V_{\rm cyl} = \pi r^2 h)$
$\sqrt{x^2} = x $		Volume of a sphere:	$V_{ m sph} = rac{4}{3}\pi r^3$

Memorize these special values!

 $1^0 = 1$ $0^1 = 0$ $0^0 =$ undefined

4. Trigonometry and Triangles

 $\sin \theta = \frac{\text{Opp}}{\text{Hyp}}, \qquad \cos \theta = \frac{\text{Adj}}{\text{Hyp}}, \qquad \tan \theta = \frac{\text{Opp}}{\text{Adj}}$

 $a^2 + b^2 = c^2$ for right triangles with hypotenuse c.

Memorize these special values:

$$30^{\circ} = \pi/6 \text{ radians}, \qquad 45^{\circ} = \pi/4, \qquad 90^{\circ} = \pi/2, \qquad 180^{\circ} = \pi, \qquad 360^{\circ} = 2\pi$$

Value	0	1/2	$\sqrt{2}/2$	$\sqrt{3}/2$	1
Sine	$\sin(0)$	$\sin(\pi/6)$	$\sin(\pi/4)$	$\sin(\pi/3)$	$\sin(\pi/2)$
Cosine	$\cos(\pi/2)$	$\cos(\pi/3)$	$\cos(\pi/4)$	$\cos(\pi/6)$	$\cos(0)$

Key Trig Identities

$\sin^2 x + \cos^2 x = 1$	
	double-angle sine formula double-angle cosine formula
$\sin^2 x = \frac{1}{2}(1 - \cos 2x)$	half-angle sine formula
$\cos^2 x = \frac{1}{2}(1 + \cos 2x)$	half-angle cosine formula