SUPPLEMENTARY UNSOLVED PROBLEMS

Math 221-11, 17
Fall, 2007
X10.1. Decide whether the function is one-to-one or not. If not, find an interval on which it is one-to-one, and explain why it is one-to-one on that interval.
(a) $f(x)=4 x^{2}+4$
(b) $f(x)=(x+1)^{2}+2 x$
(c) $f(t)=t^{6}+8 t^{3}$

X10.2. Assume y is a function of x, and find the derivative $d y / d x$. Also, find the equation of the tangent line to the curve where $y=1$.
(a) $x=y^{5}+5 y^{2}+10$
(b) $x=g(y)=\frac{y^{3}+4}{y^{2}+4 y+4}$

X11.1. Suppose we have a curve for which $y^{3}-6 x y+x^{3}=0$. Find the equation of the tangent line at the point $(3,3)$.

X11.2. A curve $y=f(x)$ satisfies $y^{5}=4 x y+24$. Find a formula for y^{\prime} and the slope of the tangent line at the point $(1,2)$.

X11.3. A curve satisfies $y^{4}-4 x y^{2}=16$. Find a formula for y^{\prime} and the slope of the tangent line at the point $(0,2)$.

X17.1. Time for fun with trig identities!
(a) Express $\tan 2 x$ in terms of functions of x.
(b) Simplify $(\tan 2 x)\left(\sec ^{2} x-2\right)$.
(c) Express $\cot 2 x$ in terms of functions of x.
(d) Simplify $\cot x / \cot 2 x$.

X17.2. Find the first and second derivatives; simplify if possible:
(a) $f(x)=\tan \frac{x}{2}$.
(b) $g(x)=\sec ^{2} x-1 / \cos 3 x$.

X17.3. In Problem 29(e) in the book, show that the function equals $\cos 3 x$.
X21.1. Find the antiderivatives of these functions:
(a) $3 x^{2}-25 x^{2}+4$
(b) $2 \sqrt{x}-81+\frac{12}{x^{3}}$
(c) 1
(d) -1
(e) x^{n} where n is any rational number
(f) $\sqrt{x} \cdot\left(x^{5}-8 x^{4}\right)$

X23.1. Consider the integral $\int_{0}^{1} x^{2} d x$. For parts (a, b) divide the interval $[0,1]$ into n equal subintervals.
(a) Evaluate the Riemann sum (23.1) for $n=4$ using the "left endpoint rule", where $x_{k}^{*}=x_{k-1}$.
(b) Evaluate the Riemann sum (23.1) for $n=4$ using the "right endpoint rule", where $x_{k}^{*}=x_{k}$.
(c) Compare your numerical answers to the exact value obtained in Solved Problem 4.
(d) If you feel ambitious, it will be interesting to do (a) or (b) with a larger value of n; say $n=8$. Compare your answer with the one you got from $n=4$ as well as with the exact value.

