- Show all your work for each problem; show enough work to fully justify your answer.
- Simplify all answers as far as possible.
- (1) [Points: 10] Let $f(x) = \sin 3x \cos^3 3x \tan 3x$. (a) Simplify f(x) as far as possible.

Solution.

 $\sin 3x \cos^3 3x \tan 3x = \sin 3x \cos^3 3x (\sin 3x / \cos 3x) = \sin^2 3x \cos^2 3x$ $= (\sin 3x \cos 3x)^2 = (\frac{1}{2} \sin 6x)^2 = \frac{1}{4} \sin^2 6x = \frac{1}{4} \frac{1 - \cos 12x}{2}$ $= \frac{1}{8} - \frac{1}{8} \cos 12x.$

(b) Differentiate f(x).

Solution. There are many possible answers, all of which are equal according to the trig identities. From my simplification above, I would get

$$f'(x) = \frac{d}{dx}\left(\frac{1}{8} - \frac{1}{8}\cos 12x\right) = 0 - \frac{d}{dx}\frac{1}{8}\cos 12x = -\frac{1}{8}\left(-\sin 12x\right)\frac{d}{dx}(12x) = \frac{3}{2}\sin 12x.$$

(2) [Points: 10] Evaluate: (a) $\sin^{-1}(\sin\frac{3}{4}\pi)$.

Solution. First you need to find $\sin \frac{3}{4}\pi$. You can use the identity $\sin(\pi - x) = \sin x$ with $x = \frac{3}{4}\pi$ or $x = \frac{1}{4}\pi$. It helps if you know the sine curve very well (study hint!). The answer is $\sqrt{2}/2$.

Then you find $\sin^{-1}\sqrt{2}/2$, which is an angle in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. This angle is $\frac{1}{4}\pi$. That's the answer.

(b) $\sin(\sin^{-1}\frac{3}{4})$.

Solution. The answer is $\sin(\text{angle whose sine is } \frac{3}{4})$. That's $\frac{3}{4}$.

(3) [Points: 5] Evaluate $\frac{d}{dx} \tan^{-1} x^2$. Solution. We know

$$\frac{d}{du} \tan^{-1} u = \frac{1}{1+u^2}.$$

In our problem $u = x^2$, so we need the chain rule. (Always think of the chain rule!) Thus,

$$\frac{d}{dx}\tan^{-1}u = \left(\frac{d}{du}\tan^{-1}u\right)\frac{du}{dx} = \frac{1}{1+u^2}2x = \frac{1}{1+(x^2)^2}2x = \frac{2x}{1+x^4}.$$