- Show all your work for each problem; show enough work to fully justify your answer.
- Simplify all answers as far as possible.
(1) [Points: 10] Let $f(x)=\sin 3 x \cos ^{3} 3 x \tan 3 x$.
(a) Simplify $f(x)$ as far as possible.

Solution.
$\sin 3 x \cos ^{3} 3 x \tan 3 x=\sin 3 x \cos ^{3} 3 x(\sin 3 x / \cos 3 x)=\sin ^{2} 3 x \cos ^{2} 3 x$
$=(\sin 3 x \cos 3 x)^{2}=\left(\frac{1}{2} \sin 6 x\right)^{2}=\frac{1}{4} \sin ^{2} 6 x=\frac{1}{4} \frac{1-\cos 12 x}{2}$
$=\frac{1}{8}-\frac{1}{8} \cos 12 x$.
(b) Differentiate $f(x)$.

Solution. There are many possible answers, all of which are equal according to the trig identities. From my simplification above, I would get
$f^{\prime}(x)=\frac{d}{d x}\left(\frac{1}{8}-\frac{1}{8} \cos 12 x\right)=0-\frac{d}{d x} \frac{1}{8} \cos 12 x=-\frac{1}{8}(-\sin 12 x) \frac{d}{d x}(12 x)=\frac{3}{2} \sin 12 x$.
(2) [Points: 10] Evaluate:
(a) $\sin ^{-1}\left(\sin \frac{3}{4} \pi\right)$.

Solution. First you need to find $\sin \frac{3}{4} \pi$. You can use the identity $\sin (\pi-x)=\sin x$ with $x=\frac{3}{4} \pi$ or $x=\frac{1}{4} \pi$. It helps if you know the sine curve very well (study hint!). The answer is $\sqrt{2} / 2$.

Then you find $\sin ^{-1} \sqrt{2} / 2$, which is an angle in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. This angle is $\frac{1}{4} \pi$. That's the answer.
(b) $\sin \left(\sin ^{-1} \frac{3}{4}\right)$.

Solution. The answer is $\sin \left(\right.$ angle whose sine is $\frac{3}{4}$). That's $\frac{3}{4}$.
(3) [Points: 5] Evaluate $\frac{d}{d x} \tan ^{-1} x^{2}$.

Solution. We know

$$
\frac{d}{d u} \tan ^{-1} u=\frac{1}{1+u^{2}} .
$$

In our problem $u=x^{2}$, so we need the chain rule. (Always think of the chain rule!) Thus,

$$
\frac{d}{d x} \tan ^{-1} u=\left(\frac{d}{d u} \tan ^{-1} u\right) \frac{d u}{d x}=\frac{1}{1+u^{2}} 2 x=\frac{1}{1+\left(x^{2}\right)^{2}} 2 x=\frac{2 x}{1+x^{4}} .
$$

