

Review of Algebra

Arithmetic Operations

The real numbers have the following properties:

$$a+b=b+a$$
 $ab=ba$ (Commutative Law)
 $(a+b)+c=a+(b+c)$ $(ab)c=a(bc)$ (Associative Law)
 $a(b+c)=ab+ac$ (Distributive Law)

In particular, putting a = -1 in the Distributive Law, we get

$$-(b+c) = (-1)(b+c) = (-1)b + (-1)c$$

and so

$$-(b+c)=-b-c$$

Example 1

(a)
$$(3xy)(-4x) = 3(-4)x^2y = -12x^2y$$

(b)
$$2t(7x + 2tx - 11) = 14tx + 4t^2x - 22t$$

(c)
$$4 - 3(x - 2) = 4 - 3x + 6 = 10 - 3x$$

If we use the Distributive Law three times, we get

$$(a + b)(c + d) = (a + b)c + (a + b)d = ac + bc + ad + bd$$

This says that we multiply two factors by multiplying each term in one factor by each term in the other factor and adding the products. Schematically, we have

$$(a+b)(c+d)$$

In the case where c = a and d = b, we have

$$(a + b)^2 = a^2 + ba + ab + b^2$$

(1) or
$$(a+b)^2 = a^2 + 2ab + b^2$$

Similarly, we obtain

$$(a-b)^2 = a^2 - 2ab + b^2$$

Example 2

(a)
$$(2x + 1)(3x - 5) = 6x^2 + 3x - 10x - 5 = 6x^2 - 7x - 5$$

(b)
$$(x + 6)^2 = x^2 + 12x + 36$$

(c)
$$3(x-1)(4x+3) - 2(x+6) = 3(4x^2 - x - 3) - 2x - 12$$

= $12x^2 - 3x - 9 - 2x - 12$
= $12x^2 - 5x - 21$

Fractions

To add two fractions with the same denominator, we use the Distributive Law:

$$\frac{a}{b} + \frac{c}{b} = \frac{1}{b} \times a + \frac{1}{b} \times c = \frac{1}{b}(a+c) = \frac{a+c}{b}$$

Thus it is true that

$$\frac{a+c}{b} = \frac{a}{b} + \frac{c}{b}$$

But remember to avoid the following common error:

$$\frac{a}{b+c} \not \times \frac{a}{b} + \frac{a}{c}$$

(For instance, take a = b = c = 1 to see the error.)

To add two fractions with different denominators, we use a common denominator:

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$

We multiply such fractions as follows:

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$

In particular, it is true that

$$\frac{-a}{b} = -\frac{a}{b} = \frac{a}{-b}$$

To divide two fractions, we invert and multiply:

$$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc}$$

Example 3

(a)
$$\frac{x+3}{x} = \frac{x}{x} + \frac{3}{x} = 1 + \frac{3}{x}$$

(b)
$$\frac{3}{x-1} + \frac{x}{x+2} = \frac{3(x+2) + x(x-1)}{(x-1)(x+2)} = \frac{3x+6+x^2-x}{x^2+x-2}$$
$$= \frac{x^2+2x+6}{x^2+x-2}$$

(c)
$$\frac{s^2t}{u} \cdot \frac{ut}{-2} = \frac{s^2t^2u}{-2u} = -\frac{s^2t^2}{2}$$

(d)
$$\frac{\frac{x}{y}+1}{1-\frac{y}{x}} = \frac{\frac{x+y}{y}}{\frac{x-y}{x}} = \frac{x+y}{y} \times \frac{x}{x-y} = \frac{x(x+y)}{y(x-y)} = \frac{x^2+xy}{xy-y^2}$$

Factoring

We have used the Distributive Law to expand certain algebraic expressions. We sometimes need to reverse this process (again using the Distributive Law) by factoring an expression as a product of simpler ones. The easiest situation occurs when the expression has a common factor as follows:

Expanding
$$\longrightarrow$$
 $3x(x-2) = 3x^2 - 6x$ \longleftarrow Factoring \longrightarrow

To factor a quadratic of the form $x^2 + bx + c$ we note that

$$(x + r)(x + s) = x^2 + (r + s)x + rs$$

so we need to choose numbers r and s so that r + s = b and rs = c.

Example 4 Factor $x^2 + 5x - 24$.

Solution The two integers that add to give 5 and multiply to give -24 are -3 and 8. Therefore

$$x^2 + 5x - 24 = (x - 3)(x + 8)$$

Example 5 Factor $2x^2 - 7x - 4$.

Solution Even though the coefficient of x^2 is not 1, we can still look for factors of the form 2x + r and x + s, where rs = -4. Experimentation reveals that

$$2x^2 - 7x - 4 = (2x + 1)(x - 4)$$

Some special quadratics can be factored by using Equations 1 or 2 (from right to left) or by using the formula for a difference of squares:

(3)
$$a^2 - b^2 = (a - b)(a + b)$$

The analogous formula for a difference of cubes is

(4)
$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

which you can verify by expanding the right side. For a sum of cubes we have

(5)
$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$

Example 6

(a)
$$x^2 - 6x + 9 = (x - 3)^2$$
 (Equation 2; $a = x, b = 3$)

(b)
$$4x^2 - 25 = (2x - 5)(2x + 5)$$
 (Equation 3; $a = 2x$, $b = 5$)

(c)
$$x^3 + 8 = (x + 2)(x^2 - 2x + 4)$$
 (Equation 5; $a = x, b = 2$)

Example 7 Simplify $\frac{x^2 - 16}{x^2 - 2x - 8}$.

Solution Factoring numerator and denominator, we have

$$\frac{x^2 - 16}{x^2 - 2x - 8} = \frac{(x - 4)(x + 4)}{(x - 4)(x + 2)} = \frac{x + 4}{x + 2}$$

To factor polynomials of degree 3 or more, we sometimes use the following fact.

The Factor Theorem (6) If P is a polynomial and P(b) = 0, then x - b is a factor of P(x).

Example 8 Factor $x^3 - 3x^2 - 10x + 24$.

Solution Let $P(x) = x^3 - 3x^2 - 10x + 24$. If P(b) = 0, where b is an integer, then b is a factor of 24. Thus the possibilities for b are ± 1 , ± 2 , ± 3 , ± 4 , ± 6 , ± 8 , ± 12 , ± 24 . We find that P(1) = 12, P(-1) = 30, P(2) = 0. By the Factor Theorem, x - 2 is a factor. Instead of substituting further, we use long division as follows:

$$\begin{array}{r}
x^2 - x - 12 \\
x - 2)x^3 - 3x^2 - 10x + 24 \\
\underline{x^3 - 2x^2} \\
-x^2 - 10x \\
\underline{-x^2 + 2x} \\
-12x + 24 \\
\underline{-12x + 24}
\end{array}$$

Therefore

$$x^{3} - 3x^{2} - 10x + 24 = (x - 2)(x^{2} - x - 12)$$
$$= (x - 2)(x + 3)(x - 4)$$

Completing the Square

Completing the square is a useful technique for graphing parabolas (as in Example 2 in Section 6 in Review and Preview) or integrating rational functions (as in Example 6 in Section 7.4). Completing the square means rewriting a quadratic $ax^2 + bx + c$ in the form $a(x + p)^2 + q$ and can be accomplished by:

- 1. Factoring the number a from the terms involving x.
- 2. Adding and subtracting the square of half the coefficient of x.

In general, we have

$$ax^{2} + bx + c = a\left[x^{2} + \frac{b}{a}x\right] + c$$

$$= a\left[x^{2} + \frac{b}{a}x + \left(\frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2}\right] + c$$

$$= a\left(x + \frac{b}{2a}\right)^{2} + \left(c - \frac{b^{2}}{4a}\right)$$

Example 9 Rewrite $x^2 + x + 1$ by completing the square.

Solution The square of half the coefficient of x is $\frac{1}{4}$. Thus

$$x^{2} + x + 1 = x^{2} + x + \frac{1}{4} - \frac{1}{4} + 1 = \left(x + \frac{1}{2}\right)^{2} + \frac{3}{4}$$

Example 10

$$2x^{2} - 12x + 11 = 2[x^{2} - 6x] + 11 = 2[x^{2} - 6x + 9 - 9] + 11$$
$$= 2[(x - 3)^{2} - 9] + 11 = 2(x - 3)^{2} - 7$$

Quadratic Formula

By completing the square as above we can obtain the following formula for the roots of a quadratic equation.

The Quadratic Formula (7)

Possible graphs of $y = ax^2 + bx + c$

The roots of the quadratic equation $ax^2 + bx + c = 0$ are

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Example 11 Solve the equation $5x^2 + 3x - 3 = 0$.

Solution With a = 5, b = 3, c = -3, the quadratic formula gives the solutions

$$x = \frac{-3 \pm \sqrt{3^2 - 4(5)(-3)}}{2(5)} = \frac{-3 \pm \sqrt{69}}{10}$$

The quantity $b^2 - 4ac$ that appears in the quadratic formula is called the **discriminant**. There are three possibilities:

- 1. If $b^2 4ac > 0$, the equation has two real roots.
- 2. If $b^2 4ac = 0$, the roots are equal.
- 3. If $b^2 4ac < 0$, the equation has no real root. (The roots are complex.)

These three cases correspond to the fact that the number of times the parabola $y = ax^2 + bx + c$ crosses the x-axis is 2, 1, or 0 (see Figure 1). In case (3) the quadratic $ax^2 + bx + c$ cannot be factored and is called **irreducible.**

(c) $b^2 - 4ac < 0$

Example 12 The quadratic $x^2 + x + 2$ is irreducible because its discriminant is negative:

$$b^2 - 4ac = 1^2 - 4(1)(2) = -7 < 0$$

Therefore it is impossible to factor $x^2 + x + 2$.

The Binomial Theorem

Recall the binomial expansion from Equation 1:

$$(a + b)^2 = a^2 + 2ab + b^2$$

If we multiply both sides by (a + b) and simplify, we get the binomial expansion

(8)
$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

Repeating this procedure, we get

$$(a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$$

In general, we have the following formula (which is a special case of the Binomial Theorem of Section 10.10):

The Binomial Theorem (9)

If k is a positive integer, then

$$(a+b)^{k} = a^{k} + ka^{k-1}b + \frac{k(k-1)}{1 \cdot 2}a^{k-2}b^{2}$$

$$+ \frac{k(k-1)(k-2)}{1 \cdot 2 \cdot 3}a^{k-3}b^{3}$$

$$+ \dots + \frac{k(k-1)\cdots(k-n+1)}{1 \cdot 2 \cdot 3 \cdot \dots \cdot n}a^{k-n}b^{n}$$

$$+ \dots + kab^{k-1} + b^{k}$$

Example 13 Expand $(x-2)^5$.

Solution Using the Binomial Theorem with a = x, b = -2, k = 5, we have

$$(x-2)^5 = x^5 + 5x^4(-2) + \frac{5 \cdot 4}{1 \cdot 2}x^3(-2)^2 + \frac{5 \cdot 4 \cdot 3}{1 \cdot 2 \cdot 3}x^2(-2)^3$$
$$+ 5x(-2)^4 + (-2)^5$$
$$= x^5 - 10x^4 + 40x^3 - 80x^2 + 80x - 32$$

Radicals

The most commonly occurring radicals are square roots. The symbol $\sqrt{}$ means "the positive square root of." Thus

$$x = \sqrt{a}$$
 means $x^2 = a$ and $x \ge 0$

Since $a = x^2 \ge 0$, the symbol \sqrt{a} makes sense only when $a \ge 0$. Here are two rules for working with square roots:

(10)
$$\sqrt{ab} = \sqrt{a}\sqrt{b} \qquad \sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

However there is no similar rule for the square root of a sum. In fact, you should remember to avoid the following common error:

$$\sqrt{a+b} \not
ot \sqrt{a} + \sqrt{b}$$

(For instance, take a = 9 and b = 16 to see the error.)

Example 14

(a)
$$\frac{\sqrt{18}}{\sqrt{2}} = \sqrt{\frac{18}{2}} = \sqrt{9} = 3$$

(b)
$$\sqrt{x^2y} = \sqrt{x^2} \sqrt{y} = |x| \sqrt{y}$$

Notice that $\sqrt{x^2} = |x|$ because $\sqrt{}$ indicates the positive square root. (See Section 1 of Review and Preview.)

In general, if n is a positive integer,

$$x = \sqrt[n]{a}$$
 means $x^n = a$

If n is even, then $a \ge 0$ and $x \ge 0$.

Thus $\sqrt[3]{-8} = -2$ because $(-2)^3 = -8$, but $\sqrt[4]{-8}$ and $\sqrt[6]{-8}$ are not defined. The following rules are valid:

$$\sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b} \qquad \sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$

Example 15
$$\sqrt[3]{x^4} = \sqrt[3]{x^3x} = \sqrt[3]{x^3} \sqrt[3]{x} = x\sqrt[3]{x}$$

To **rationalize** a numerator or denominator that contains an expression such as $\sqrt{a} - \sqrt{b}$, we multiply both the numerator and the denominator by the conjugate radical $\sqrt{a} + \sqrt{b}$. Then we can take advantage of the formula for a difference of squares:

$$(\sqrt{a} - \sqrt{b})(\sqrt{a} + \sqrt{b}) = (\sqrt{a})^2 - (\sqrt{b})^2 = a - b$$

Example 16 Rationalize the numerator in the expression $\frac{\sqrt{x+4}-2}{x}$.

Solution We multiply the numerator and the denominator by the conjugate radical $\sqrt{x+4}+2$:

$$\frac{\sqrt{x+4}-2}{x} = \left(\frac{\sqrt{x+4}-2}{x}\right)\left(\frac{\sqrt{x+4}+2}{\sqrt{x+4}+2}\right) = \frac{(x+4)-4}{x(\sqrt{x+4}+2)}$$
$$= \frac{x}{x(\sqrt{x+4}+2)} = \frac{1}{\sqrt{x+4}+2}$$

Exponents

Let a be any positive number and let n be a positive integer. Then, by definition,

1.
$$a^n = \underbrace{a \cdot a \cdot \cdots \cdot a}_{n \text{ factors}}$$

2.
$$a^0 = 1$$

3.
$$a^{-n} = \frac{1}{a^n}$$

4.
$$a^{1/n} = \sqrt[n]{a}$$

$$a^{m/n} = \sqrt[n]{a^m} = (\sqrt[n]{a})^m \qquad m \text{ is any integer}$$

Laws of Exponents (11)

Let a and b be positive numbers and let r and s be any rational numbers (that is, ratios of integers). Then

1.
$$a^r \times a^s = a^{r+s}$$

$$2. \ \frac{a^r}{a^s} = a^{r-s}$$

$$3. (a^r)^s = a^{rs}$$

$$4. (ab)^r = a^r b^r$$

$$5. \left(\frac{a}{b}\right)^r = \frac{a^r}{b^r} \qquad b \neq 0$$

In words, these five laws can be stated as follows:

- 1. To multiply two powers of the same number, we add the exponents.
- 2. To divide two powers of the same number, we subtract the exponents.
- 3. To raise a power to a new power, we multiply the exponents.
- 4. To raise a product to a power, we raise each factor to the power.
- 5. To raise a quotient to a power, we raise both numerator and denominator to the power.

Example 17

(a)
$$2^8 \times 8^2 = 2^8 \times (2^3)^2 = 2^8 \times 2^6 = 2^{14}$$

(b)
$$\frac{x^{-2} - y^{-2}}{x^{-1} + y^{-1}} = \frac{\frac{1}{x^2} - \frac{1}{y^2}}{\frac{1}{x} + \frac{1}{y}} = \frac{\frac{y^2 - x^2}{x^2 y^2}}{\frac{y + x}{xy}} = \frac{y^2 - x^2}{x^2 y^2} \cdot \frac{xy}{y + x}$$
$$= \frac{(y - x)(y + x)}{xy(y + x)} = \frac{y - x}{xy}$$
(c)
$$4^{3/2} = \sqrt{4^3} = \sqrt{64} = 8$$
 Alternative solution:
$$4^{3/2} = (\sqrt{4})^3 = 2^3 = 8$$

(c)
$$4^{3/2} = \sqrt{4^3} = \sqrt{64} = 8$$

Alternative solution:
$$4^{3/2} = (\sqrt{4})^3 = 2^3 = 8$$

(d)
$$\frac{1}{\sqrt[3]{x^4}} = \frac{1}{x^{4/3}} = x^{-4/3}$$

(e)
$$\left(\frac{x}{y}\right)^3 \left(\frac{y^2 x}{z}\right)^4 = \frac{x^3}{y^3} \cdot \frac{y^8 x^4}{z^4} = x^7 y^5 z^{-4}$$

Mathematical Induction

The principle of mathematical induction is useful when proving a statement S_n about the positive integer n. For instance, if S_n is the statement

$$(ab)^n = a^n b^n$$

then

$$S_1$$
 says that

$$ab = ab$$

$$S_2$$
 says that

$$(ab)^2 = a^2b^2$$

and so on.

Principle of **Mathematical Induction**

Let S_n be a statement about the positive integer n. Suppose that

- 1. S_1 is true
- 2. S_{k+1} is true whenever S_k is true.

Then S_n is true for all positive integers n.

This is reasonable because, since S_1 is true, it follows from condition 2 (with k = 1) that S_2 is true. Then, using condition 2 with k = 2, we see that S_3 is true. Again using condition 2, this time with k = 3, we have that S_4 is true. This procedure can be followed indefinitely.

In using the principle of mathematical induction, there are three steps.

Step 1: Prove that S_n is true when n = 1.

Step 2: Assume that S_n is true when n = k and deduce that S_n is true when n = k + 1

Step 3: Conclude that S_n is true for all n by the principle of mathematical induction.

Example 18 If a and b are real numbers, prove that $(ab)^n = a^n b^n$ for every positive integer n.

Solution Let S_n be the given statement.

- 1. S_1 is true because $(ab)^1 = ab = a^1b^1$.
- 2. Assume that S_k is true, that is, $(ab)^k = a^k b^k$. Then

$$(ab)^{k+1} = (ab)^k (ab) = a^k b^k ab$$

= $(a^k a)(b^k b) = a^{k+1} b^{k+1}$

This says that S_{k+1} is true.

3. Therefore, by the principle of mathematical induction, S_n is true for all n; that $a_n = a_n b_n$ for every positive integer n.

Example 19 Prove that, for every positive integer n,

$$1+2+3+\cdots+n=\frac{n(n+1)}{2}$$

Solution Let S_n be the given statement.

1. S_1 is true because

$$1 = \frac{1(1+1)}{2}$$

2. Assume that S_k is true, that is,

$$1 + 2 + \cdots + k = \frac{k(k+1)}{2}$$

Then

$$1 + 2 + \dots + (k+1) = (1 + 2 + \dots + k) + (k+1)$$

$$= \frac{k(k+1)}{2} + k + 1$$

$$= \frac{k(k+1) + 2(k+1)}{2}$$

$$= \frac{(k+1)(k+2)}{2}$$

Thus
$$1 + 2 + \cdots + (k+1) = \frac{(k+1)[(k+1)+1]}{2}$$

which shows that S_{k+1} is true.

3. Therefore S_n is true for all n by mathematical induction, that is,

$$1 + 2 + \cdots + (n + 1) = \frac{n(n + 1)}{2}$$

for every positive integer n.

APPENDIX A **Exercises**

In Exercises 1–16 expand and simplify.

1.
$$(-6ab)(0.5ac)$$

2.
$$-(2x^2y)(-xy^4)$$

3.
$$2x(x-5)$$

4.
$$(4 - 3x)x$$

5.
$$-2(4-3a)$$

6.
$$8 - (4 + x)$$

7.
$$4(x^2-x+2)-5(x^2-2x+1)$$

8.
$$5(3t-4)-(t^2+2)-2t(t-3)$$

9.
$$(4x-1)(3x+7)$$

10.
$$x(x-1)(x+2)$$

11.
$$(2x-1)^2$$

12.
$$(2 + 3x)^2$$

13.
$$y^4(6-y)(5+y)$$

14.
$$(t-5)^2 - 2(t+3)(8t-1)$$

15.
$$(1+2x)(x^2-3x+1)$$

16.
$$(1 + x - x^2)^2$$

In Exercises 17–28 perform the indicated operations and simplify.

17.
$$\frac{2+8x}{2}$$

18.
$$\frac{9b-6}{3b}$$

19.
$$\frac{1}{x+5} + \frac{2}{x-3}$$

20.
$$\frac{1}{x+1} + \frac{1}{x-1}$$

21.
$$u + 1 + \frac{u}{u + 1}$$

22.
$$\frac{2}{a^2} - \frac{3}{ab} + \frac{4}{b^2}$$

23.
$$\frac{x/y}{z}$$

24.
$$\frac{x}{y/z}$$

$$25. \left(\frac{-2r}{s}\right)\left(\frac{s^2}{-6t}\right)$$

26.
$$\frac{a}{bc} \div \frac{b}{ac}$$

$$27. \ \frac{1 + \frac{1}{c - 1}}{1 - \frac{1}{c - 1}}$$

28.
$$1 + \frac{1}{1 + \frac{1}{1 + x}}$$

In Exercises 29-48 factor the given expression.

29.
$$2x + 12x^3$$

30.
$$5ab - 8abc$$

M.
$$x^2 + 7x + 6$$

32.
$$x^2 - x - 6$$

33.
$$x^2 - 2x - 8$$

34.
$$2x^2 + 7x - 4$$

35.
$$9x^2 - 36$$

36.
$$8x^2 + 10x + 3$$

37.
$$6x^2 - 5x - 6$$

38.
$$x^2 + 10x + 25$$

39.
$$t^3 + 1$$

40.
$$4t^2 - 9s^2$$

41.
$$4t^2 - 12t + 9$$

42.
$$x^3 - 27$$

43.
$$x^3 + 2x^2 + x$$

44.
$$x^3 - 4x^2 + 5x - 2$$

45.
$$x^3 + 3x^2 - x - 3$$

46.
$$x^3 - 2x^2 - 23x + 60$$

47.
$$x^3 + 5x^2 - 2x - 24$$

48.
$$x^3 - 3x^2 - 4x + 12$$

In Exercises 49-54 simplify the given expression.

49.
$$\frac{x^2+x-2}{x^2-3x+2}$$

50.
$$\frac{2x^2-3x-2}{x^2-4}$$

51.
$$\frac{x^2-1}{x^2-9x+8}$$

52.
$$\frac{x^3 + 5x^2 + 6x}{x^2 - x - 12}$$

53.
$$\frac{1}{x+3} + \frac{1}{x^2-9}$$

54.
$$\frac{x}{x^2+x-2} - \frac{2}{x^2-5x+4}$$

In Exercises 55-60 complete the square.

55.
$$x^2 + 2x + 5$$

56.
$$x^2 - 16x + 80$$

57.
$$x^2 - 5x + 10$$

58.
$$x^2 + 3x + 1$$

59.
$$4x^2 + 4x - 2$$

60.
$$3x^2 - 24x + 50$$

In Exercises 61-68 solve the given equation.

61.
$$x^2 + 9x - 10 = 0$$

62.
$$x^2 - 2x - 8 = 0$$

63.
$$x^2 + 9x - 1 = 0$$

64.
$$x^2 - 2x - 7 = 0$$

65.
$$3x^2 + 5x + 1 = 0$$

66.
$$2x^2 + 7x + 2 = 0$$

67.
$$x^3 - 2x + 1 = 0$$

68.
$$x^3 + 3x^2 + x - 1 = 0$$

Which of the quadratics in Exercises 69-72 are irreducible?

69.
$$2x^2 + 3x + 4$$

70.
$$2x^2 + 9x + 4$$

71.
$$3x^2 + x - 6$$

72.
$$x^2 + 3x + 6$$

In Exercises 73-76 use the Binomial Theorem to expand the given expression.

73.
$$(a + b)^6$$

74.
$$(a + b)^7$$

75.
$$(x^2-1)^4$$

76.
$$(3 + x^2)^5$$

In Exercises 77-82 simplify the given radicals.

77.
$$\sqrt{32}\sqrt{2}$$

78.
$$\frac{\sqrt[3]{-2}}{\sqrt[3]{54}}$$

79.
$$\frac{\sqrt[4]{32x^4}}{\sqrt[4]{2}}$$

80.
$$\sqrt{xy}\sqrt{x^3y}$$

81.
$$\sqrt{16a^4b^3}$$

82.
$$\frac{\sqrt[5]{96a^6}}{\sqrt[5]{3a}}$$

In Exercises 83-100 use the Laws of Exponents to rewrite and simplify the given expression.

83.
$$3^{10} \times 9^8$$

84.
$$2^{16} \times 4^{10} \times 16^6$$

85.
$$\frac{x^9(2x)^4}{x^3}$$

86.
$$\frac{a^n \times a^{2n+1}}{a^{n-2}}$$

87.
$$\frac{a^{-3}b^4}{a^{-5}b^5}$$

88.
$$\frac{x^{-1}+y^{-1}}{(x+y)^{-1}}$$

93.
$$(2x^2y^4)^{3/2}$$

94.
$$(x^{-5}y^3z^{10})^{-3/5}$$

95.
$$\sqrt[5]{y^6}$$

96.
$$(\sqrt[4]{a})^3$$

97.
$$\frac{1}{(\sqrt{t})^5}$$

98.
$$\frac{\sqrt[8]{x^5}}{\sqrt[4]{x^3}}$$

99.
$$\sqrt[4]{\frac{t^{1/2}\sqrt{st}}{s^{2/3}}}$$

100.
$$\sqrt[4]{r^{2n+1}} \times \sqrt[4]{r^{-1}}$$

In Exercises 101-108 rationalize the given expression.

101.
$$\frac{\sqrt{x}-3}{x-9}$$

102.
$$\frac{(1/\sqrt{x})-1}{x-1}$$

103.
$$\frac{x\sqrt{x} - 8}{x - 4}$$

104.
$$\frac{\sqrt{2+h} + \sqrt{2-h}}{h}$$

105.
$$\frac{2}{3-\sqrt{5}}$$

$$106. \ \frac{1}{\sqrt{x} - \sqrt{y}}$$

107.
$$\sqrt{x^2+3x+4}-x$$

108.
$$\sqrt{x^2 + x} - \sqrt{x^2 - x}$$

In Exercises 109–116 state whether or not the given equation is true for all values of the variable.

109.
$$\sqrt{x^2} = x$$

110.
$$\sqrt{x^2+4} = |x|+2$$

111.
$$\frac{16+a}{16}=1+\frac{a}{16}$$

112.
$$\frac{1}{x^{-1} + y^{-1}} = x + y$$

113.
$$\frac{x}{x+y} = \frac{1}{1+y}$$

114.
$$\frac{2}{4+x} = \frac{1}{2} + \frac{2}{x}$$

115.
$$(x^3)^4 = x^7$$

116.
$$6 - 4(x + a) = 6 - 4x - 4a$$

In Exercises 117–126 n represents a positive integer. Use mathematical induction to prove the given statement.

117.
$$2^n > n$$

118.
$$3^n > 2n$$

119.
$$(1+x)^n \ge 1 + nx$$
 (where $x \ge -1$)

120. If
$$0 \le a < b$$
, then $a^n < b^n$.

121.
$$7^n - 1$$
 is divisible by 6.

$$122. \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

123.
$$1+3+5+\cdots+(2n-1)=n^2$$

124.
$$2+6+12+\cdots+n(n+1)=\frac{n(n+1)(n+2)}{3}$$

125.
$$\frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \cdots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$

126.
$$a + ar + ar^2 + \cdots + ar^{n-1} = \frac{a(1-r^n)}{1-r} \ (r \neq 1)$$