f Algebra

Arithmetic Operations

. The real numbers have the following properties:

at+b=b+a ab = ba (Commutative Law)
@+b)+c=a+ b+ {ab)c = a(bc) (Associative Law)
ab+c¢)y=ab + ac (Distributive Law)

In particular, putting ¢ = —1 in the Distributive Law, we get

—b+o)y=(0)b+oc)=(—Db+ (1)

Example 1
(@ Bxy)(—4x) = 3(—dx%y = —12x%y

(b) 2¢(7x + 2tx — 11) = 14&x + 482x — 22t
©4-3x—2)=4-3x+6=10 - 3x
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Appendix A

If we use the Distributive Law three timeé, we get
(a+b)c+d)=(a+ b+ (a+ bd=ac+ bc+ ad + bd

This says that we multiply two factors by multiplying each term in one factor by cuch
term in the other factor and adding the products. Schematically, we have

oy
KA

In the case where ¢ = a and d = b, we have

(@+ b2 =0a%>+ ba+ab + b?

or (a + b)? = a% + 2ab + b?

Similarly, we obtain

(@ — b = a®> — 2ab + b?

Example 2

@ Rx+ DBx—5=6x2+3x—10x—5=6x>—Tx— 5
) (x + 6)2 =x% + 12x + 36

© 3x— D@Ux +3)—2(x+ 6) = §(4x2 —x=3)-2x—12
: : 12x2—-3x—9—2x— 12
= 12x2 — 5x — 21

I

Fractions

To add two fractions with the same denominator, we use the Distributive Law:

a c 1 1 1 a+c
E+E—5Xa+z><c—z(a+c)—T
Thus it is true that
a+c a c
5 b

But remember to avoid the following common error:
a a , a

—_ + —

b+c¢ >< b ¢

(For instance, take ¢ = b = ¢ = 1 to see the error.)
To add two fractions with different denominators, we use a common denominator;

=ad+bc

C
ty bd
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We multiply such fractions as follows:

_ ac
"~ bd

[SWELY

" In particular, it is true that

a .
b _a_d_ad g
—E_—bxc_bc
d
Example 3
+ .
@322, 3.,,3 ‘ k
X X x x ,
®) 3 4% 3+ +xx—1) _ 3x+6+x*—x
x—1 x+2 x—Dx+2) *x2+x-2
_x2+2x+ 6
T x4+ x-2
()s_t.ut__s2t2u___§i%
YW T2 T T T T2
+
X1 *rTy . )
@ y __Y =x+y>< x =x(x+y)=x + xy -
-2 x=y y x—y yx—y  xy-—y? )
x x

Factoring

We have used the Distributive Law to expand certain algebraic expressions. We sometimes
need to reverse this process (again using the Distributive Law) by factoring an expression
as a product of simpler ones. The easiest situation occurs when the expression has a
common factor as follows:

Expanding ——>

3x(x — 2) = 3x2 — 6x

<«—— Factoring
To factor a quadratic of the form x2 + bx + ¢ we note that

E+NE+)=x>+@F+Hx+rs

so we need to choose numbers r and s so that r + s = b and rs = c.




The Factor Theorem (6)
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Example 4  Factor x2 + 5x — 24. .

Solution The two integers that add to give 5 and multiply to give —24 are ~3 ui)
8. Therefore

x4+ 5x— 24 =(x—3)x+8)

Example 5  Factor 2x2 — 7x — 4.

Solution Even though the coefficient of x2 is not 1, we can still look for factors
the form 2x + r and x + s, where rs = —4. Experimentation reveals that

23— Tx — 4= Qx+ Dx — 4)

Some special quadratics can be factored by using Equations 1 or 2 (from right to lef
or by using the formula for a difference of squares:

@ - b2=(a—b)a+b)

The analogous formula for a difference of cubes is

@~ b = (a—b)a*+ ab+b?)

=

which you can verify by expanding the right side. For a sum of cubes we have

@+ b= (a+ b)a® - ab + b?

Example 6

@ x?2—6x+9= (x — 3)2 (Equation 2;a = x, b = 3)

(b) 4x2 — 25 = (2x — 5Q2x + 5) (Equation 3; a = 2x, b = 5)
) x3+8= x + 2)(x2 —2x+ 4 (Equation 5; g = x, b = 2)

2 _
Example 7 Simplify ;2%.—5361*_6_8‘

Solution Factoring numerator and denominator, we have

x* =16  (x—4Hx+4 _ x+4
2~2x—8 (x—-Hx+2 x+2

To factor polynomials of degree 3 or more, we sometimes use the following fact.

If P is a polynomial and P(b) = 0, then x — b is a factor of P(x).

Example 8  Factor x3 — 3x% — 10x + 24.




Solution Let P(x) = x3 — 3x2 ~ 10x + 24. If P(b) = 0, where b is an integer, then
b is a factor of 24. Thus the possibilities for b are =1, £2, £3, +4, +6, =8, +12,
+24. We find that P(1) = 12, P(—1) = 30, P(2) = 0. By the Factor Theorem, x — 2
is a factor. Instead of substituting further, we use long division as follows:

x2— x - 12
x—2)x3 — 322 — 10x + 24
x3 - 2x2
—x2 — 10x
—x? 4+ 2x
—12x + 24
—12x + 24

Therefore ¥ =32 - 10x+24 = (x — )(x? — x — 12)
=(x—2)x + 3)x — 4 |

Completing the Square

Completing the square is a useful technique for graphing parabolas (as in Example 2 in

Section 6 in Review and Preview) or integrating rational functions (as in Example 6 in
. Section 7.4). Completing the square means rewriting a quadratic ax? + bx + ¢ in the

form a(x + p)?> + g and can be accomplished by:

1. Factoring the number a from the terms involving x.

2. Adding and subtracting the square of half the coefficient of x.

In general, we have

ax? + bx + ¢
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Example 9 Rewrite x2 + x + 1 by completing the square.

Solution The square of half the coefficient of x is i—. Thus
RAx+l=x+x+3-dr1=(+12+2 =
Example 10
232 - R2x+ 11 =2[x2 - 6x] + 11 =2[x2 —6x+ 9 — 9] + 11
=2[x =32 -9+ 11 =20 —32—-7 2

Quadratic Formula

By completing the square as above we can obtain the following formula for the roots of
a quadratic equation.



The Quadraﬁc Formula (7)

Figure 1
Possible graphs of y = ax? + bx + ¢

Appendix A

The roots of the quadratic equation ax?> + bx + ¢ = 0 are

_ =b = Vb?* - 4ac
N 2a

X

Example 11 Solve the equation 5x% + 3x — 3 = 0.
Solution With ¢ = 5, b = 3, ¢ = —3, the quadratic formula gives the solutions

3=V —4(5)(=3) -3+ V6
= 2(5) T 10

The quantity b> — 4ac that appears in the quadratic formula is called the discriminant,
There are three possibilities:
1. If b2 — 4ac > 0, the equation has two real roots.
2. If b2 — 4ac = 0, the roots are equal.
3. If b2 — 4ac < 0, the equation has no real root. (The roots are complex.)
These three cases correspond to the fact that the number of times the paraboly
y = ax? + bx + c crosses the x-axis is 2, 1, or O (see Figure 1). In case (3) the quadrat
ax? + bx + ¢ cannot be factored and is calle;d irreducible.
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(@) b2 —4ac >0 ) b% — dac =0 (c) b2 — dac <0

Example 12 The quadratic x> + x + 2 is irreducible because its discriminant s
negative:

b%2 —4ac =12 - 412 = -7<0

Therefore it is impossible to factor x2 + x + 2.

The Binomigl Theorem

Recall the binomial expansion from Equation 1:
(a + b)? = a® + 2ab + b2

If we multiply both sides by (a + b) and simplify, we get the binomial expansion

(@ + b)? =a®+ 3d% + 3ab? + b3
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Repeating this procedure, we get
(@ + b)* = a* + 4a% + 6a%b? + 4ab® + b*

- In general, we have the following formula (which is a special case of the Binomial
Theorem of Section 10.10):

The Binomial Theorem (9) If & is a positive integer, then
(@ + b)*¥=a* + ka* b + I—C%c._Tl)ak—zbz
k(k — Dk —2) 5.5
+ —1.2.3 ¢ b

k=1 k—n+1)
1235 ¢

+ o+ kab*l + b¥

4+ 0 4 nbn

Example 13 Expand (x — 2)°.

Solution Using the Binomial Theorem with a = x, b = —2, k = 5, we have

5-4 543
L9)5 = 45 40 DR 32y 2D o 3
x 2)’ x+5x(2)+1.2x(2)+1.2.3x( 2)
+ 5x(—2)* + (—2)°
= x5 — 10x* + 40x3 — 80x2 + 80x — 32 B

Radicals

The most commonly occurring radicals are square roots. The symbol V' means “the
positive square root of.” Thus :

x=Va means x2=g and x=0

Since @ = x2 = 0, the symbol Va makes sense only when a = (. Here are two rules
for working with square roots:

10) VT = Vavh \/;=:—g-

However there is no similar rule for the square root of a sum. In fact, you should remember
to avoid the following common error:

@ Va+b¥Va + Vb

(For instance, take @ = 9 and b = 16 to see the error.)

Example 14
V18 /18
@ V2 2
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® V% = Va2Vy = [x|Vy
Notice that Vx? = |x| because V' indicates the positive square root. (See Sectin
1 of Review and Preview.) B

In general, if n is a positive integer,

n
x=Va means x"=a

If niseven, thena= 0 and x = 0.

Thus V—8 = —2 because (—2)® = -8, but V=8 and V=8 are not defined. Th
" following rules are valid:

NVab =Va 5 ng—*{\fz—

Example 15 Vit = Vidx = Ve Vx = xVx

To rationalize a numerator or denominator that contains an expression such #
Va — Vb, we multiply both the numerator and the denominator by the conjugate radicu
Va + Vb . Then we can take advantage of the formula for a difference of squares;

(Va - V&)(Va + V) = (Va) -~ (Vb)) =a—b
\/m—z.

Example 16 Rationalize the numerator in the expression

Solution We multiply the numerator and the denominator by the conjugate radica
Vx+4 + 2

Vx+4 -2 (Vﬁ?—z)(\/m+2>_ x+4) -4
x x H(Vx+4d +2)

Vx+4 +2

x _ 1
CH(Va+r 4 +2) Vitd +2

Exponenis

Let a be any positive number and let n be a positive integer. Then, by definition,
1. anza-a.....a
[ —
n factors

2.a=1

m is any integer




Laws of Exponents (11)

Principle of
Mathematical Induction
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Let a and b be positive numbers and let » and s be any rational numbers (that is,
ratios of integers). Then

»

,

1. a" X a* = a"™*s 2. % = g’s 3. @) = a*
r r

4. (ab)" = a'b" 5. (g) = Z—, b+0

In words, these five laws can be stated as follows:

1. To multiply two powers of the same number, we add the exponents.

2. To divide two powers of the same number, we subtract the exponents.

3. To raise a power to a new power, we multiply the exponents.

4. To raise a product to a power, we raise each factor to the power.

5. To raise a quotient to a power, we raise both numerator and denominator to the power.

Example 17
(a) 28 X 82 = 28 X (232 = 28 x 26 = 214
11 -
x—2 _y—2 _ x2 y: x2y2 _ y2 _x2 xy -
& i = - S it )
Xt +y 1+_1_ y+x Xy y+x
x Yy Xy
-0 tx _y—x
xy(y + x) xy
(© 42 =V4 =V64 =8  Alternative solution: 432 = (V4)* =23 = 8
11
(d) = =5 = 4/3
3/,2,\4 3 8,4
V(XX X YX 754 .
© <y)(2) oo TR =

Mathematical Induction

The principle of mathematical induction is useful when proving a statement S, about the
positive integer n. For instance, if S,, is the statement

(ab)” = a”b"
then S; says that ab = ab
S, saysthat  (ab)?> = a?b?

and so on.

Let S, be a statement about the positive integer n. Suppose that
1. S, is true v '
2. Si+1 is true whenever S, is true.

Then S, is true for all positive integers n.
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This is reasonable because, since §; is true, it follows from condition 2 (with k = |}
that S, is true. Then, using condition 2 with k = 2, we see that.S; is true. Again using
condition 2, this time with k = 3, we have that S, is true. This procedure can be followe
indefinitely. ‘

In using the principle of mathematical induction, there are three steps.

Step 1: Prove that S, is true when n' = 1.
Step 2: Assume that S, is true when n = k and deduce that S, is true when n = k + |.
Step 3: Conclude that S, is true for all n by the principle of mathematical induction.

Example 18  If g and b are real numbers, prove that (ab)" = a”b" for every positive
integer n.

Solution Let S, be the given statement.
1. S, is true because (ab)! = ab = a'b!.
2. Assume that Sy is true, that is, (ab)* = a*b*. Then
(ab)**1 = (ab)X(ab) = a*b*ab
= (aka)(bkb) = ak+1bk+1

This says that S, is true.

3. Therefore, by the principle of mathematical induction, S, is true for all #; that i
(ab)" = a"b" for every positive integer n.

Example 19 Prove that, for every positive integer #,

nn + 1)

I+2+3+ -4 n="00

Solution Let S, be the given statement.
1. §; is true because -

_1a+1

1 2

. Assume that S, is true, that is,

_ Kk + 1)

142+ - +k 5

1+2+ - +k+D=00+2+ -+ +&+1)

_kk+ 1)
2

_ktk+ D +2k+1)
2

_ k+ Dk +2)
2

+k+1

k+ Dik+ 1 + 1]
2

1+24 -+ (k+1)="_
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which shows that S, is true.
3. Therefore S, is true for all n by mathematical induction, that is, g .

+ 1
1+2+---+(n+1)=%
for every pbsitive integer n. ‘ B
APPENDIX A Exercises

Exercises 1--16 expand and simplify. 33.x2-2x-8 34, 2x2+7x— 4

.+ (~6ab)(0.5ac) 2. —@x%y)(—xy% 35. 9x2 — 36 36 8x2+ 10x +3 |
& 2x(x = 3) 4. (4 - 3x)x 37. 6x2 — 5x — 6 38, %% + 10x + 25

~2(4 ~ 3a) 6. 8- (4+x) 39. 8 +1 40. 472 — 952 '

T4 —x +2) - 562 - 2x + 1) 4. 422 — 126 + 9 Cax-21 |
8. 5@t —4) — (2 +2) — 212 - 3) 43, x3 4+ 2x2 + x 44, x> —4x2 + 5x — 2
. (4x — D@Bx +7) 10. x(x — D(x + 2) 45. x> +3x2—x— 3 46. x* — 2x? ~ 23x + 60

i1, 2x — 1)? 12. 2 + 3x)? 47. x3 + 5x2 —2x — 24
13, y%6 — )5 + y) 48. x3 — 3x2 — 4x + 12
— 82 _ —
. (£ = 5) 202+ 3)(8¢ ] D) In Exercises 49—54 simplify the given expression.
15. (1 + 20)(x2 — 3x + 1) 16. (1 + x — x?)?

’+x—-2- 2x2 - 3x—2
49. %% —3x+2 50. x2—4
n Exercises 17—28 perform the indicated operations and simplify. .
51 x2—1 52 x3 + 5x2 + 6x B
i 2+ 8x 18 9 — 6 *x2—9x + 8 T2 —x - 12 o
o2 T . . ‘ ;
1 " 2 ‘20. 1 + 1 53°x+3+x2—9
‘x+5 x-3 x+1 x-—1
' 54 x 2
u 2_3,4 "x2+x-2 x2—5x+4
u+l+u+1 22'a2 ab+b2
In Exercises 55— 60 complete the square.
x/y X
—_— 24. —
z y/z 55. x>+ 2x + 5 56. x* — 16x + 80
1 <—_2r)<j_) 2. 2.0 57. x2 — 5x + 10 58, x2 + 3x + 1
TN s J\~6r " be  ac ;
59. 4x2 + 4x — 2 60. 3x2 — 24x + 50
1
1+ c -1 1 In Exercises 61—68 solve the given equation.
_ 28. 1 + ————
-1 {4 L 61. X2+ 9x — 10 =0 62. x2—2x—8=0
c—1 1+x
63. x24+9x—-1=0 64. x2—2x—7=0
ln Exercises 2948 factor the given expression. 65.3x2+5x+1=0 66. 2x2 4+ Tx+2=0
M. 2x + 12x3 30. 5ab — 8abc 67.x3—-2x+1=0

M. x2+7x+ 6 32.x2-x-6 68. x* +3x2+x~1=90
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Which of the quadratics in Exercises 69-72 are irreducible?

69. 2x2 +3x+ 4 70. 2x2 + 9x + 4

71. 3224+ x -6 72. x2+3x+ 6

In Exercises 73-76 use the Binomial Theorem to expand the given
expression.

73. (a + b)S 74. (a + b)7

75. (x* — 1)* 76. (3 + x?y
In Exercises 7782 simpl;‘sz the given radicals.
2

77. V32 V2 B T
V9645
V3a

In Exercises 83-100 use the Laws of Exponents to rewrite and
simplify the given expression.

80. Vxy Vxdy 81. V16a*p® 82.

83. 310 x 98 84. 216 x 410 x 166

am® X a2n+1

86. — =

x4yt
&+
89, 3712 _ » 90. 965
91. 125% ' 92. 6447
93. (2x2y*%3? | 94. (x3y3z10)73/5
95. V55 9. (Va)’

1 - VxS
(*\/—E)g 98. Vx_;

§2/3

88.

97.

99, 100. Vr2rT x /1

In Exercises 101-108 rationalize the given expression.

oL Y* -3 102, M/ Vx) -1
x—9 x -1

P

. V2+h +V2Z_i
) h

103. —— 190

2 1
. = 106, —=——
3-V5 Vx - Vy
107. Vx2 +3x+4 — x 108. Vx2 + x — Vx2 —x

In Exercises 109—116 state whether or not the given equation iy
true for all values of the variable.

109. Vx? =x

16 + a a
111. T 1+ 16 112.

105

110. Vx2+ 4 = |x] +2

x4+ ymt =

X 1
113'x+y_r+_};

115, (3 = x7
116. 6 —4(x +a) = 6 — 4x — 4a

In Exercises 117—126 n represents a positive integer. Use mathe-
matical induction to prove the given statement.

117. 2" >n 118. 3" > 2n
119. (1 + x)* =1+ nx (wherex = —1)
120. If 0 = a < b, then a" < b".

121. 77 — 1 is divisible by 6.

a\” a”
122, (Z) =5

12. 1 +34+5+---+@2n— D =n?

nn + )(n + 2)

124.2+6+ 12+ ---+nn+1)= 3

1, .4 __n
12 nn+1) n+1

a(l - r®
I1-r

125, - + - +

126. a+ar+ar2+ -+ gnl= 1)




