- Total points: $10+10+5$ quiz points.
- Show complete work - that is, all the steps needed to completely justify your answer.
- Simplify your answers as much as possible.
- If you need extra space, work on the back and make a note on the front.
(1) There is a sequence $a_{1}, a_{2}, \ldots, a_{n}, \ldots$ in which $a_{n}=\cos \left(3 / n^{2}\right)$. Does this sequence converge, and if so, what is its limit?

Solution: It converges; I prove it by producing the limit.

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \cos \left(3 / n^{2}\right)=\cos \lim _{n \rightarrow \infty} 3 / n^{2}=\cos 0=1
$$

(2) Does the series $\sum_{n=1}^{\infty} \ln \frac{n^{3}+1}{2 n^{3}+1}$ converge?

Solution: No. If it converged, the terms $a_{n}=\ln \frac{n^{3}+1}{2 n^{3}+1}$ would have to approach 0. However:

$$
a_{n}=\frac{n^{3}+1}{2 n^{3}+1}=\frac{1}{2}+\frac{1}{2} \frac{1}{2 n^{3}+1}
$$

so that

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}\left(\frac{1}{2}+\frac{1}{2} \frac{1}{2 n^{3}+1}\right)=\frac{1}{2}+\frac{1}{2} \lim _{n \rightarrow \infty} \frac{1}{2 n^{3}+1}=\frac{1}{2}+\frac{1}{2} \cdot 0=\frac{1}{2}
$$

Therefore,

$$
\lim _{n \rightarrow \infty} \ln \frac{n^{3}+1}{2 n^{3}+2}=\ln \left(\lim _{n \rightarrow \infty} \frac{n^{3}+1}{2 n^{3}+2}\right)=\ln \frac{1}{2} \neq 0
$$

Since $\lim _{n \rightarrow \infty} a_{n} \neq 0$ (the terms do not approach 0), the series has no sum, i.e., it diverges.
(3) Does the series $\sum_{n=1}^{\infty} \frac{1}{n}$ converge? (You should recognize this series and know its properties. I don't expect a proof.)

No-despite the fact that $\lim _{n \rightarrow \infty} a_{n}=0$. This is the harmonic series.

