- Total points: 15 quiz points.
- Show complete work - that is, all the steps needed to completely justify your answer.
- Simplify your answers as much as possible.
- If you need extra space, work on the back and make a note on the front.

Here is a power series: $\sum_{n=1}^{\infty} \frac{(x+3)^{n}}{n!}$.

What is the center of the power series?
Ans.: -3 , because $x-a=x+3=x-(-3)$.

What is the radius of convergence? Ans.: $R=\infty$, because I know the series (see below).

What is the interval of convergence?
Answer: $(-\infty, \infty)$.

Do you recognize this series? If so, write a formula for its sum.

$$
\text { Ans.: This is } e^{x+3} \text { since the exponential series is } e^{y}=\sum_{n=0}^{\infty} \frac{y^{n}}{n!} \text {. }
$$

Comment.

Several people applied the ratio test but came up with the wrong radius and interval of convergence, namely $R=1$ and interval $[-4,-2]$ (or similar). The reason was usually a slightly tricky algebra error. When you apply the ratio test, $a_{n}=(x+3)^{n} / n$!. Thus,

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\left|\frac{(x+3)^{n+1} /(n+1)!}{(x+3)^{n} / n!}\right|=\left|\frac{(x+3)^{n+1}}{(x+3)^{n}} \frac{n!}{(n+1)!}\right|=\left|(x+3) \frac{1}{n+1}\right| \rightarrow 0 \text { as } n \rightarrow \infty \text {. }
$$

The algebra error is to cancel $\frac{n!}{(n+1)!}$ carelessly, getting 1 so the ratio appears to be $|x+3|$, which would give $R=1$, etc. It's necessary to pay close attention when working with factorials.

