- Total points: $10+10$ quiz points.
- Show complete work - that is, all the steps needed to completely justify your answer.
- Simplify your answers as much as possible.
(1) Write in Σ notation the power series
(centered at 0) for $\frac{1}{8+x^{3}}$.
Answer: $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{3 n}}{8^{n+1}}$
Find the interval of convergence.
Answer: (-2, 2)
Explanation: I use the geometric series,

$$
\frac{1}{1-y}=\sum_{n=0}^{\infty} y^{n}
$$

which converges for $|y|<1$ (interval of convergence $(-1,1)$). First, transform the fraction into the exact form of a geometric series (which means you'll have a constant factor outside):

$$
\frac{1}{8+x^{3}}=\frac{1}{8\left(1+x^{3} / 8\right)}=\frac{1}{8} \frac{1}{1-\left[-x^{3} / 8\right]}
$$

then apply the geometric series formula:

$$
=\frac{1}{8} \sum_{n=0}^{\infty}\left(-\frac{x^{3}}{8}\right)^{n}=\frac{1}{8} \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{3 n}}{8^{n}}=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{3 n}}{8^{n+1}}
$$

Either of the last two sums is a good answer.
The interval of convergence comes from the interval of convergence for a geometric series, using $y=-x^{3} / 8$. Thus, we need $\left|x^{3} / 8\right|<1$. Solve this: $|x|^{3}<8$, so $|x|<2$. The interval is $(-2,2)$; and if you want the radius of convergence, it's $R=2$.
(2) Write in Σ notation the power series
(centered at 1 , not at 0) for $\frac{1}{1+x}$.
Answer: $\sum_{n=0}^{\infty} \frac{(x-1)^{n}}{2^{n+1}}$
Find the interval of convergence.
Answer: $(-1,3)$
Explanation: We need a power series in $x-1$, not x, so let $z=x-1$. Thus, $x=z+1$, and the fraction becomes $1 /(2+z)$, which you treat like the series in problem (1):

$$
\frac{1}{2+z}=\frac{1}{2(1+[z / 2])}=\frac{1}{2} \frac{1}{1+[z / 2]}=\frac{1}{2} \sum_{n=0}^{\infty}\left(\frac{z}{2}\right)^{n}=\frac{1}{2} \sum_{n=0}^{\infty} \frac{(x-1)^{n}}{2^{n}}=\sum_{n=0}^{\infty} \frac{(x-1)^{n}}{2^{n+1}}
$$

Either of the last two sums is a good answer.
The interval of convergence is also done as in problem (1). We have convergence when $|y|<1$, where $y=z / 2=(x-1) / 2$. That is, $|x-1|<2$, so $R=2$ and the interval is $(-1,3)$.

