Math 222-06 QUIZ 16 2008/12/1 Name \qquad

- Total points: $10+10$ quiz points.
- Show complete work - that is, all the steps needed to completely justify your answer.
- Simplify your answers as much as possible.
(1) Write the definition of $\binom{-2}{n}$ and simplify as far as possible.

Definition:

$$
\binom{-2}{n}=\frac{(-2)(-3) \cdots(-2-n+1)}{n!}
$$

Simplification:

$$
=(-1)^{n} \frac{(2)(3) \cdots(n+1)}{n!}=(-1)^{n} \frac{(1)(2)(3) \cdots(n)(n+1)}{n!}=(-1)^{n}(n+1) .
$$

Answer: $(-1)^{n}(n+1)$
(2) A curve $y=f(x)$ has arc length function $s(x)=x+x^{3}$. Find the square of the slope of the curve, i.e., $f^{\prime}(x)^{2}$. Where is the curve horizontal?

Solution: Remember that $(d s)^{2}=(d x)^{2}+(d y)^{2}$. Thus,

$$
\left(\frac{d s}{d x}\right)^{2}=\left(\frac{d x}{d x}\right)^{2}+\left(\frac{d y}{d x}\right)^{2}=1+f^{\prime}(x)^{2}
$$

Therefore,

$$
f^{\prime}(x)^{2}=\left(\frac{d s}{d x}\right)^{2}-1=\left(1+3 x^{2}\right)^{2}-1=3 x^{2}\left(3 x^{2}+2\right) .
$$

The curve is horizontal at $3 x^{2}\left(3 x^{2}+2\right)=0$, thus at $x=0$. (N.B. There's no way of knowing the height of the curve from the information given in the problem.)

