Quiz List for Math 304-04, Fall 2018
Solutions

Quiz 1. (M 8/27)
Qn 1 . What is my name?
Answer: Thomas Zaslavsky
Qn 2. Let $a, b \in \mathbb{R}$. What is the rank of the matrix $M=\left[\begin{array}{cc}a & 0 \\ 0 & b\end{array}\right]$?
Answer: It depends on the values of a and b.
If both $a, b \neq 0$, the rank is 2 because M has two pivot columns.
If one is 0 and the other is not, the rank is 1 because M has one pivot column.
If $a, b=0$, the rank is 0 because $M=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$, the zero matrix.
(Note that it is not important whether a or b equals 1.)

Quiz 2. (F 8/31)

Qn 1. What is your name?
Answer: (You know best.)
Qn 2. Assume C is a 4×6 matrix with rank 4 . Let L_{C} be the function whose equation is $L_{C}(\mathbf{x})=C \cdot \mathbf{x}$.
(i) What is the domain of L_{C} ?

Answer: \mathbb{R}^{6} because \mathbf{x} has to be a 1×6 matrix, i.e., $\mathbf{x} \in \mathbb{R}^{6}$, for the multiplication to be valid.
(ii) What is the codomain of L_{C} ?

Answer: \mathbb{R}^{4} because the product has 4 rows and one column; that is, $C \mathrm{x} \in \mathbb{R}^{4}$.
(iii) Is L_{C} one-to-one (injective)? Why?

Answer: No, because we have a test (Theorem 1.8), which is that L_{C} is injective if and only if $r=n$ (rank $=\#$ of columns).
Answer: (Alternative.) No, because there are two vectors \mathbf{x} with the same value of $C \mathbf{x}$ (I'm not producing them here, but this answer is complete only if you produce two such vectors; we'll do that soon).
(iv) Is L_{C} onto (surjective)? Why?

Answer: Yes, because according to our test, L_{C} is surjective if and only if $r=m$ (rank $=\#$ of rows).
Answer: (Alternative.) Yes, because for every vector $\mathbf{y} \in \mathbb{R}^{4}$, I can produce an $\mathbf{x} \in \mathbb{R}^{6}$ such that $C \mathbf{x}=\mathbf{y}$ (I'm not actually producing \mathbf{x} here; we'll study this soon).

Quiz 3. (M 9/17)
Qn 1. Write $\mathbf{x}=\left[\begin{array}{l}1 \\ 3 \\ 9 \\ 4\end{array}\right]$ as a linear combination of the standard basis vectors in \mathbb{R}^{4}.
Answer: $\mathbf{x}=1 \mathbf{e}_{1}+3 \mathbf{e}_{2}+9 \mathbf{e}_{3}+4 \mathbf{e}_{4}$.

Qn 2. A linear transformation $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ has values

$$
L\left(\mathbf{e}_{1}\right)=\left[\begin{array}{l}
2 \\
2 \\
0
\end{array}\right] \text { and } L\left(\mathbf{e}_{2}\right)=\left[\begin{array}{c}
3 \\
0 \\
-1
\end{array}\right]
$$

What is the matrix of L ?
Answer: The matrix is $\left[\begin{array}{cc}2 & 3 \\ 2 & 0 \\ 0 & -1\end{array}\right]$.
(The values of $L\left(\mathbf{e}_{j}\right)$ are the columns of the matrix.)

Quiz 4. (W 10/3)
Qn 1. Suppose A and B are symmetric $n \times n$ matrices. Prove that $A B$ is symmetric if and only if $A B=B A$.
Answer: $A B$ is symmetric $\Longleftrightarrow(A B)^{T}=A B \Longleftrightarrow B^{T} A^{T}=A B$ (by the transpose of a product) $\Longleftrightarrow B A=A B$ (because A, B are symmetric). Done!

Quiz 5. (F 10/5)

Qn 1. Write the definition of when a matrix A is symmetric.
Answer: A is symmetric if $A^{T}=A$.
Qn 2. Write the vector $\left[\begin{array}{c}1 \\ -1 \\ \pi \\ e\end{array}\right]$ as a linear combination of the standard basis vectors in \mathbb{R}^{4}.
Answer: $\left[\begin{array}{c}1 \\ -1 \\ \pi \\ e\end{array}\right]=1 \mathbf{e}_{1}-1 \mathbf{e}_{2}+\pi \mathbf{e}_{3}+e \mathbf{e}_{4}$.
Qn 3. Write $\left[\begin{array}{c}2 \\ 5 \\ -1\end{array}\right]$ as a linear combination of $\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$, if possible. If not, show it is impossible.
Answer: The first step is to set up the linear combination with unknown coefficients:

$$
\left[\begin{array}{c}
2 \\
5 \\
-1
\end{array}\right]=c_{1}\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]+c_{2}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+c_{3}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] .
$$

This is a linear system

$$
\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right] \underset{2}{\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]}=\left[\begin{array}{c}
2 \\
5 \\
-1
\end{array}\right]
$$

You solve it the same way as any linear system, by setting up the augmented matrix and reducing to RREF.

$$
\left[\begin{array}{cccc}
2 & 1 & 1 & 2 \\
1 & 0 & 1 & 5 \\
0 & 1 & 1 & -1
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 5 \\
0 & 1 & 0 & -\frac{9}{2} \\
0 & 0 & 1 & \frac{7}{2}^{2}
\end{array}\right]
$$

It follows that $c_{1}=5, c_{2}=-\frac{9}{2}, c_{3}=\frac{7}{2}$, so the answer is

$$
\left[\begin{array}{c}
2 \\
5 \\
-1
\end{array}\right]=5\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]-\frac{9}{2}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+\frac{7}{2}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] .
$$

Quiz 6. (M 10/29)
Two bases of \mathbb{R}^{3} are $\mathcal{E}=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ and

$$
\mathcal{B}=\left\{\mathbf{b}_{1}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \quad \mathbf{b}_{2}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right], \quad \mathbf{b}_{3}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right\} .
$$

(a) Find the coordinate vector of $\mathbf{v}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ with respect to \mathcal{B}.

Answer:
We solve $c_{1} \mathbf{b}_{1}+c_{2} \mathbf{b}_{2}+c_{3} \mathbf{b}_{3}=\mathbf{v}$. That becomes the augmented matrix

$$
\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & 0 & 0 & 1 / 2 \\
0 & 1 & 0 & 1 / 2 \\
0 & 0 & 1 & 1 / 2
\end{array}\right]
$$

so the coordinate vector is $[\mathbf{v}]_{\mathcal{B}}=\left[\begin{array}{lll}1 / 2 & 1 / 2 & 1 / 2\end{array}\right]^{T}$.
It's also possible to guess this particular answer by noticing that $\mathbf{b}_{1}+\mathbf{b}_{2}+\mathbf{b}_{3}=$ $\left[\begin{array}{lll}2 & 2 & 2\end{array}\right]^{T}=2 \mathbf{v}$ so $\mathbf{v}=\frac{1}{2} \mathbf{b}_{1}+\frac{1}{2} \mathbf{b}_{2}+\frac{1}{2} \mathbf{b}_{3}$, which tells you the components of the coordinate vector.
(b) If $[\mathbf{w}]_{\mathcal{B}}=\left[\begin{array}{c}5 \\ 0 \\ -1\end{array}\right]$, what is \mathbf{w} ?

Answer: By the definition of a coordinate vector, $\mathbf{w}=5 \mathbf{b}_{1}+0 \mathbf{b}_{2}-1 \mathbf{b}_{3}=$ $\left[\begin{array}{lll}4 & 5 & -1\end{array}\right]^{T}$.
(c) Find the transition matrix (change of basis matrix) ${ }_{\varepsilon} P_{\mathcal{B}}$.

Answer: The transition matrix has the form

$$
\left[[\mathbf { b } _ { 1 }] _ { \varepsilon } \quad \left[\begin{array}{ll}
\left.\mathbf{b}_{2}\right]_{\varepsilon} & \left.\left.\left[\mathbf{b}_{3}\right]_{\varepsilon}\right]=\left[\begin{array}{lll}
\mathbf{b}_{1} & \mathbf{b}_{2} & \mathbf{b}_{3}
\end{array}\right] .\right] . ~
\end{array}\right.\right.
$$

since \mathcal{E} is the standard basis. Therefore, the answer is

$$
\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

(d) How is ${ }_{\varepsilon} P_{\mathcal{B}}$ related to ${ }_{\mathcal{B}} P_{\mathcal{E}}$? (Do not compute.)

Answer: They are inverse matrices. I.e., ${ }_{\varepsilon} P_{\mathcal{B}}=\left({ }_{\mathcal{B}} P_{\mathcal{E}}\right)^{-1}$, or if you prefer, ${ }_{\mathcal{B}} P_{\mathcal{E}}=\left({ }_{\varepsilon} P_{\mathcal{B}}\right)^{-1}$.

Quiz 7. (F 11/9)
Let $A=\left[\begin{array}{ccc}1 & 1 & 0 \\ 0 & 1 & 1 \\ -1 & 0 & 1\end{array}\right]$.
Qn 1. Find all eigenvalues of A and their eigenspaces.
Answer:
Step 1: Find the eigenvalues. We need $\operatorname{det}(A-\lambda I)=0$. First, compute the characteristic polynomial:

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left[\begin{array}{ccc}
1-\lambda & 1 & 0 \\
0 & 1-\lambda & 1 \\
-1 & 0 & 1-\lambda
\end{array}\right] \\
& =\left[(1-\lambda)^{3}+(-1)+0\right]-[0+0+0] \\
& =-\lambda^{3}+3 \lambda^{2}-3 \lambda=-\lambda\left(\lambda^{2}-3 \lambda+3\right) .
\end{aligned}
$$

Next, solve $-\lambda\left(\lambda^{2}-3 \lambda+3\right)=0$. One solution is $\lambda_{1}=0$, from the first factor. For the second factor, apply the quadratic formula: $\lambda^{2}-3 \lambda+3=0$ gives $\lambda_{2}, \lambda_{3}=\frac{3 \pm \sqrt{9-12}}{2}$, which are not real numbers, so we ignore them. (Confession: I made a little mistake in choosing A.)
Step 2: Find the eigenspaces. There is only one eigenvalue to work with here, namely $\lambda_{1}=0$. Its eigenspace is $\operatorname{Nul}\left(A-\lambda_{1} I\right)=\operatorname{Nul}(A)$. Thus, I will find the null space of A :

$$
A \rightarrow\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

That gives $\mathbf{x}=x_{3}\left[\begin{array}{lll}1 & -1 & 1\end{array}\right]^{T}$, where x_{3} is a free variable. The eigenspace is

$$
\operatorname{Nul}\left(A-\lambda_{1} I\right)=\operatorname{span}\left\{\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right\}
$$

and a basis for it is $\left\{\left[\begin{array}{lll}1 & -1 & 1\end{array}\right]^{T}\right\}$. (Both of those answers for the eigenspace were accepted on this quiz.)
Qn 2. Compare their algebraic and geometric multiplicities.
Answer: This only makes sense for $\lambda_{1}=0$. The algebraic multiplicity is 1 , since λ_{1} is a zero just once of the characteristic polynomial. The geometric multiplicity is the dimension of the eigenspace, which is also 1 . Thus, the algebraic and geometric multiplicities are equal.

Quiz 8. (M 11/19)
Diagonalize $\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]$. That means

1. Find the eigenvalues.

Answer: $\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{cc}1-\lambda & 1 \\ 1 & 2-\lambda\end{array}\right]=(1-\lambda)(2-\lambda)-1=\lambda^{2}-3 \lambda+1$.
This is the characteristic polynomial. Set it equal to 0 and solve by the quadratic formula: $\lambda=\frac{3 \pm \sqrt{9-4}}{2}$, so the eigenvalues are

$$
\lambda_{1}=\frac{3+\sqrt{5}}{2} \quad \text { and } \quad \lambda_{2}=\frac{3-\sqrt{5}}{2} .
$$

2. Find the eigenvectors.

Answer: For eigenvectors corresponding to λ_{1} we set up the matrix

$$
\left[\begin{array}{cc}
1-\lambda_{1} & 1 \\
1 & 2-\lambda_{2}
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & \frac{1-\sqrt{5}}{2} \\
0 & 0
\end{array}\right]
$$

which gives one free variable so the eigenspace basis has one vector. Solving the system, $x_{1}=-\frac{1-\sqrt{5}}{2} x_{2}$ with x_{2} free. That gives us an eigenvector

$$
\mathbf{x}_{1}=\left[\begin{array}{c}
\frac{-1+\sqrt{5}}{2} \\
1
\end{array}\right] .
$$

Similarly, for λ_{2} we get an eigenvector

$$
\mathbf{x}_{2}=\left[\begin{array}{c}
\frac{-1-\sqrt{5}}{2} \\
1
\end{array}\right] .
$$

3. Find the matrices P and D such that $A=P D P^{-1}$.

Answer: The general rule is that D is the eigenvalue matrix and, if we have a basis of eigenvectors, $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$, then $P=\left[\begin{array}{ll}\mathbf{x}_{1} & \mathbf{x}_{2}\end{array}\right]$. Thus,

$$
D=\left[\begin{array}{cc}
\frac{3+\sqrt{5}}{2} & 0 \\
0 & \frac{3-\sqrt{5}}{2}
\end{array}\right] \quad \text { and } \quad P=\left[\begin{array}{cc}
\frac{-1+\sqrt{5}}{2} & \frac{-1-\sqrt{5}}{2} \\
1 & 1
\end{array}\right] .
$$

