Quiz 1. (M 8/27)

Qn 1. What is my name?

Qn 2. Let $a, b \in \mathbb{R}$. What is the rank of the matrix $M = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$?

Quiz 2. (F 8/31)

Qn 1. What is your name?

- Qn 2. Assume C is a 4×6 matrix with rank 4. Let L_C be the function whose equation is $L_C(\mathbf{x}) = C \cdot \mathbf{x}$.
 - (i) What is the domain of L_C ?
 - (ii) What is the codomain of L_C ?
 - (iii) Is L_C one-to-one (injective)? Why?
 - (iv) Is L_C onto (surjective)? Why?

Quiz 3. (M 9/17)

Qn 1. Write $\mathbf{x} = \begin{bmatrix} 1\\3\\9\\4 \end{bmatrix}$ as a linear combination of the standard basis vectors in \mathbb{R}^4 .

Qn 2. A linear transformation $L: \mathbb{R}^2 \to \mathbb{R}^3$ has values

$$L(\mathbf{e}_1) = \begin{bmatrix} 2\\ 2\\ 0 \end{bmatrix}$$
 and $L(\mathbf{e}_2) = \begin{bmatrix} 3\\ 0\\ -1 \end{bmatrix}$.

What is the matrix of L?

Quiz 4. (W 10/3)

Qn 1. Suppose A and B are symmetric $n \times n$ matrices. Prove that AB is symmetric if and only if AB = BA.

Quiz 5. (F 10/5)

Qn 1. Write the definition of when a matrix A is symmetric.

Qn 1. Write the definition of when a matrix $\begin{bmatrix} 1\\ -1\\ \pi\\ e \end{bmatrix}$ as a linear combination of the standard basis vectors in \mathbb{R}^4 . Qn 3. Write $\begin{bmatrix} 2\\ 5\\ -1 \end{bmatrix}$ as a linear combination of $\begin{bmatrix} 2\\ 1\\ 0 \end{bmatrix}$, $\begin{bmatrix} 1\\ 0\\ 1 \end{bmatrix}$, $\begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix}$, if possible. If not, show it is impossible.

Quiz 6. (M 10/29)

Two bases of \mathbb{R}^3 are $\mathcal{E} = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ and

$$\mathcal{B} = \left\{ \mathbf{b}_1 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \ \mathbf{b}_2 = \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \ \mathbf{b}_3 = \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}.$$

(a) Find the coordinate vector of $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ with respect to \mathcal{B} .

(b) If
$$[\mathbf{w}]_{\mathcal{B}} = \begin{bmatrix} 0\\ -1 \end{bmatrix}$$
, what is \mathbf{w} ?

(c) Find the transition matrix (change of basis matrix)
$$_{\mathcal{E}}P_{\mathcal{B}}$$
.

(d) How is $_{\mathcal{E}}P_{\mathcal{B}}$ related to $_{\mathcal{E}}\mathcal{B}P_{\mathcal{E}}$? (Do not compute.)

Let
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$
.

Qn 1. Find all eigenvalues of A and their eigenspaces.

Qn 2. Compare their algebraic and geometric multiplicities.

Quiz 8. (M 11/19)

Diagonalize $\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$. That means 1. Find the eigenvalues.

2. Find the eigenvectors.

3. Find the matrices P and D such that $A = PDP^{-1}$.