The following set \mathcal{B} is a basis for the vector space \mathbb{P}_2 :

$$\mathcal{B} = \{t+1, t^2+1, 2t^2-2t+5\}.$$

- $p(t) \in \mathbb{P}_2$ is a polynomial whose coordinate vector with respect to \mathcal{B} is $[p(t)]_{\mathcal{B}} = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$.
 - (1) What polynomial is p(t)?

(2) A linear transformation $T: \mathbb{P}_2 \to \mathbb{R}^2$ has the property that

$$T(t+1) = \begin{bmatrix} 2 \\ 0 \end{bmatrix}, \quad T(t^2+1) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad T(2t^2-2t+5) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

Find the value of T(p(t)).