- (1) Let $A = \begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix}$. Does \mathbb{R}^2 have a basis that consists of eigenvectors of A? (Hint: Yes.)
 - (a) (10 points) Find such a basis. Let's call your basis \mathscr{B} .
 - (b) (5 points) Find the coordinates of $\mathbf{u} = \begin{bmatrix} -4\\ 3 \end{bmatrix}$ with respect to \mathscr{B} . (c) (5 points) Find the vector $A^{100}\mathbf{u}$. It is okay to give your answer as a linear
 - combination of baisis vectors in \mathscr{B} .

(2) (10 points) Let $C = \begin{bmatrix} 0 & -1 \\ 2 & 0 \end{bmatrix}$. Does \mathbb{R}^2 have a basis that consists of eigenvectors of C? Does C have any eigenvectors? (Justify your answer, of course. It's a math class!)