QUIZ 7 FOR MATH 304-06, 11/6 YOUR NAME SOLUTIONS

(1) (5 points) For vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, what does $\mathbf{u} \perp \mathbf{v}$ mean? The answer should be a meaning, not an equation.

It means that the two vectors are orthogonal, or their dot product = 0 (either answer is okay).

(2) (5 points) For vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, what equation corresponds to the statement " $\mathbf{u} \perp \mathbf{v}$ "?

 $\mathbf{u}\cdot\mathbf{v}=0.$

(3) (10 points) Let
$$\mathbf{x} = \begin{bmatrix} 3\\4\\5 \end{bmatrix}$$
 and $\mathbf{y} = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}$.

- (a) How long is the vector \mathbf{x} ?
- (b) Are \mathbf{x} and \mathbf{y} orthogonal?
- (c) Find a vector that is orthogonal to **y**.

(a) Length =
$$\|\mathbf{x}\| = \sqrt{50} = 5\sqrt{2}$$
.
(b) $\mathbf{x} \cdot \mathbf{y} = -1 \neq 0$, so they are not orthogonal.
(c) Cute answer: **0**. Expected answer: $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$. Smart answer: any vector of the form $\begin{bmatrix} a\\a\\b \end{bmatrix}$ for any real numbers a, b .

(4) (10 points) Suppose we have two bases, $\mathcal{B} = {\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3}$ and $\mathcal{C} = {\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3}$, for \mathbb{R}^3 and also we have a linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$. And suppose

$$[T(\mathbf{b}_1)]_{\mathfrak{C}} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \quad [T(\mathbf{b}_2)]_{\mathfrak{C}} = \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \quad [T(\mathbf{b}_3)]_{\mathfrak{C}} = \begin{bmatrix} 4\\2\\7 \end{bmatrix}.$$

What is the matrix M of T relative to the bases \mathcal{B} and \mathcal{C} ?

$$M = \begin{bmatrix} 1 & 1 & 4 \\ 2 & 0 & 2 \\ 3 & -1 & 7 \end{bmatrix}.$$