Show all the work or explanation necessary to justify the answer.

- (1) $(4 \times 3 \text{ points})$ Which of the following is a vector space? Answer Yes or No in the exam book. Give a reason for each No answer. A reason is not needed for a Yes answer.
 - (a) The set $W_3 \subseteq \mathcal{P}_3$ that consists of all polynomials of degree exactly 3.
 - (b) The set $Z \subseteq \mathcal{P}_2$ that consists of all polynomials in \mathcal{P}_3 whose constant term is 1.
 - (c) The set $K \subseteq \mathbb{R}^3$ that consists of all $\mathbf{x} \in \mathbb{R}^3$ such that $x_1 x_2 x_3 = 0$.
 - (d) The null space of a matrix.
- (2) (5 points) We have a function between two vector spaces, namely $T : \mathbb{R}^3 \to \mathcal{P}_4$. List the properties of T that make it a linear transformation.
- (3) (5 points) Is the following function $T : \mathbb{R}^3 \to \mathbb{R}^2$ a linear transformation? Answer Yes or No in the exam book. Give a reason for a No answer. A reason is not needed for a Yes answer.

$$T(\mathbf{x}) = \begin{bmatrix} x_1 x_2 \\ x_1 + x_3 \end{bmatrix}.$$

(4) (20 points) Let V be the vector space \mathcal{P}_2 with basis $\mathcal{B} = \{p_1(t), p_2(t), p_3(t)\}$, where $p_1(t) = t^2 + t + 1$, $p_2(t) = 2t^2 + 4$, $p_3(t) = t^2 - t$.

Also, let $\mathcal{E} = \{t^2, t, t^0\}$ (the standard basis for \mathcal{P}_2).

- (a) There is a vector $\mathbf{u} \in \mathcal{P}_2$ whose coordinate vector with respect to \mathcal{E} is $\begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}$. What polynomial is \mathbf{u} ?
- (b) There is a vector $\mathbf{v} \in \mathcal{P}_2$ whose coordinate vector with respect to \mathcal{B} (not \mathcal{E} !) is $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$. What polynomial is \mathbf{v} ?

(c) Find the change-of-basis matrix $\underset{\mathcal{E} \leftarrow \mathcal{B}}{P}$.

(5) (5 points) In \mathbb{R}^3 there are two bases, \mathcal{B} and \mathcal{C} . How is the change-of-basis matrix $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ related to the change-of-basis matrix $\underset{\mathcal{B} \leftarrow \mathcal{C}}{P}$?

PLEASE TURN OVER FOR MORE PROBLEMS

(6) (33 points) The matrix for this problem is $A = \begin{bmatrix} 1 & 1 \\ -1 & 3 \end{bmatrix}$.

- (a) Find $\det A$.
- (b) What can you say about the rank of A?
- (c) Is A invertible? (Do not find the inverse.)
- (d) Find det A^3 without computing A^3 .
- (e) Find det A^T without using A^T .
- (f) Find the eigenvalues of A.
- (g) Find a basis for each eigenspace of A.
- (h) Is A diagonalizable? If so, diagonalize it. If not, say why not.

(7) (20 points) The matrix for this problem is
$$A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 3 & 0 \\ 2 & 0 & 1 \end{bmatrix}$$
.
(a) Find the eigenvalues of A .

- (b) Is A invertible? Use the eigenvalues to decide this. (Do not find the inverse.)
- (c) Find a basis for each eigenspace of A.
- (d) Is A diagonalizable? If so, diagonalize it. If not, say why not.