Show all the work or explanation necessary to justify the answer. Remember standard notation: for example, in \mathbb{R}^3 , $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ and so on, and $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$.

Please start each new numbered problem on a fresh page.

- (1) (4 points) State the Cauchy–Schwarz inequality. Solution: $|\langle \mathbf{u}, \mathbf{v} \rangle| \leq ||\mathbf{u}|| ||\mathbf{v}||$. The absolute value sign on the inner product is essential. Half credit for omitting it, or assuming dot product or <.
- (2) (4 points) State the triangle inequality for vectors. Solution: $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$, or $\|\mathbf{u} - \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$.
- (3) (8 points) Is the function $\langle \mathbf{u}, \mathbf{v} \rangle = u_1 v_2 + u_2 v_1$ an inner product on \mathbb{R}^2 ? Prove your answer. (Read carefully.)

Solution: No. Check the fourth property: $\langle \mathbf{u}, \mathbf{u} \rangle \geq 0$. According to this inner product, $\langle \mathbf{u}, \mathbf{u} \rangle = 2u_1u_2$, which can be negative, and it can be zero for some nonzero vectors (that is two separate violations). It is sufficient if you found an example of a negative result, e.g., $\mathbf{u} = (1, -1)$ gives inner product -2.

If you checked the first three properties by actual calculation using this inner product and found they are satisfied, you got 4 points for that.

It is not enough to say this formula differs from the dot-product formula. There are many other inner products that can be defined on \mathbb{R}^2 (see the next question for one of them). You have to check the properties.

- (4) (24 points) Consider the inner product $\langle \mathbf{u}, \mathbf{v} \rangle = 2u_1v_1 + 8u_2v_2$ on \mathbb{R}^2 . Solution: I gave you this inner product for a reason. If you ignore it and use dot product instead, you get little credit.
 - (a) Find the norm of the vector $\mathbf{u} = (2, 1)$. Solution: (4 pts) $||(2, 1)|| = \sqrt{\langle (2, 1), (2, 1) \rangle} = \sqrt{2 \cdot 2 \cdot 2 + 8 \cdot 1 \cdot 1} = 4$.
 - (b) Find a unit vector $\hat{\mathbf{u}}$ in the same direction as \mathbf{u} . Solution: (2 pts) $\|\mathbf{u}\|^{-1}\mathbf{u} = \frac{1}{4}(2,1) = (\frac{1}{2},\frac{1}{4}).$
 - (c) Find the distance between **u** and \mathbf{e}_1 . Solution: (2 pts) $\mathbf{u} - \mathbf{e}_1 = (1, 1)$, so the answer is $||(1, 1)|| = \sqrt{2 \cdot 1 \cdot 1 + 8 \cdot 1 \cdot 1} = \sqrt{10}$.

(d) Find a basis for the orthogonal complement, W^{\perp} , of $W = \text{span}\{\mathbf{u}\}$. Solution: (6 pts) $W^{\perp} = \{\mathbf{v} \in \mathbb{R}^2 : \langle \mathbf{v}, \mathbf{u} \rangle = 0\}$. That means we have to solve the equation $\langle (v_1, v_2), (2, 1) \rangle = 0$. That is, $2v_1 2 + 8v_2 1 = 0$. The solution is $v_1 = -2v_2$, giving $\mathbf{v} = v_2 \begin{bmatrix} -2\\ 1 \end{bmatrix}$. A basis is therefore $\{\begin{bmatrix} -2\\ 1 \end{bmatrix}\}$, or instead you can use any (nonzero) scalar multiple of that basis vector. (e) What is the orthogonal projection $\operatorname{proj}_{W^{\perp}} \mathbf{u}$? If possible, solve without calculation.

Solution: (2 pts) The basis for W^{\perp} is $\{(-2,1)\}$, so

$$\operatorname{proj}_{W^{\perp}} \mathbf{u} = \frac{\langle (2,1), (-2,1) \rangle}{\langle (2,1), (2,1) \rangle} \begin{bmatrix} -2\\1 \end{bmatrix} = \frac{2 \cdot 2 \cdot (-2) + 8 \cdot 1 \cdot 1}{\langle (-2,1), (-2,1) \rangle} \begin{bmatrix} -2\\1 \end{bmatrix} = 0 \begin{bmatrix} -2\\1 \end{bmatrix} = \mathbf{0}.$$

The solution without calculation is this: Since W^{\perp} is orthogonal to **u** by definition of the \perp operation, the projection has to be the zero vector.

I gave full credit for either solution.

(f) What is the orthogonal projection $\operatorname{proj}_W(1,0)$. Solution: (4 pts) The basis for W is $\{\mathbf{u}\}$, so

$$\operatorname{proj}_{W}(1,0) = \frac{\langle (1,0), (2,1) \rangle}{\langle (2,1), (2,1) \rangle} \begin{bmatrix} 2\\1 \end{bmatrix} = \frac{2 \cdot 1 \cdot 2 + 8 \cdot 0 \cdot 1}{\langle (2,1), (2,1) \rangle} \begin{bmatrix} 2\\1 \end{bmatrix} = \frac{4}{16} \begin{bmatrix} 2\\1 \end{bmatrix} = \begin{bmatrix} 1/2\\1/4 \end{bmatrix}$$

(g) Use (1,0) and the projection found in (4f) to find a nonzero vector that is orthogonal to $\operatorname{proj}_W(1,0)$.

Solution: (2 pts) What I was looking for is $(1,0) - \text{proj}_W(1,0) = (\frac{1}{2}, -\frac{1}{4})$, which is always orthogonal to $\text{proj}_W(1,0)$ by general theory.

A second solution is to project (1,0) onto W^{\perp} . We know a basis for W^{\perp} from part (d). This method gives

$$\operatorname{proj}_{W^{\perp}} \begin{bmatrix} 1\\0 \end{bmatrix} = \frac{\langle (1,0), (-2,1) \rangle}{\langle (-2,1), (-2,1) \rangle} \begin{bmatrix} -2\\1 \end{bmatrix} = \frac{-4+0}{8+8} \begin{bmatrix} -2\\1 \end{bmatrix} = \begin{bmatrix} 1/2\\-1/4 \end{bmatrix}$$

(the same answer—not a coincidence). This is not exactly what I was looking for, but I accepted it.

In fact, I accepted any correct answer with correct work.

(5) (10 points) Let V be an inner product space (that is, a vector space with inner product \langle , \rangle). Prove that $\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$ for vectors in V if and only if $\mathbf{u} \perp \mathbf{v}$.

Solution: Rewrite the left side of the equation as

$$\begin{aligned} \langle \mathbf{u} + \mathbf{v}, \mathbf{u} + \mathbf{v} \rangle &= \langle \mathbf{u}, \mathbf{u} \rangle + \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{v}, \mathbf{u} \rangle + \langle \mathbf{v}, \mathbf{v} \rangle \\ &= \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 + \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{v}, \mathbf{u} \rangle \\ &= \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 + 2\langle \mathbf{u}, \mathbf{v} \rangle, \end{aligned}$$

using the basic properties of an inner product. This last = $\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$ if and only if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$, which is the criterion for orthogonality of \mathbf{u} and \mathbf{v} (i.e., $\mathbf{u} \perp \mathbf{v}$) with respect to the inner product.

This is not a question about dot product.

One example is not a proof. It is only one example and tells you nothing about other examples.

(6) (30 points) Consider the matrix $A = \begin{bmatrix} 0 & 0 & 0 & 4 \\ 0 & 0 & 4 & 0 \\ 0 & 4 & 0 & 0 \\ 4 & 0 & 0 & 0 \end{bmatrix}$.

- (a) Can A be orthogonally diagonalized? Explain why (or why not) in few words. Solution: (2 pts) Yes, because it is symmetric, or you could say $A = A^T$. There is no other valid reason.
- (b) Find the eigenvalues of A and their multiplicities. Solution: (8 pts) We find the determinant of $A - \lambda I$, i.e.,

$$\det \begin{bmatrix} \lambda & 0 & 0 & 4 \\ 0 & \lambda & 4 & 0 \\ 0 & 4 & \lambda & 0 \\ 4 & 0 & 0 & \lambda \end{bmatrix} = (\lambda^2 - 4^2)^2$$

so $\lambda = 4, 4, -4, -4$. You should use a valid method of evaluating the determinant, or you will get wrong answers and it will spoil the rest of the problem. Note that we can do row operations on $A - \lambda I$ to get the determinant, but we cannot do row operations on A because that will change all the eigenvalues.

(c) Find a basis for the eigenspace of each eigenvalue.

Solution: (5 pts each) First, I'll do $\lambda = 4$:

$$A - 4I = \begin{bmatrix} -4 & 0 & 0 & 4 \\ 0 & -4 & 4 & 0 \\ 0 & 4 & -4 & 0 \\ 4 & 0 & 0 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

so we have two equations and two free variables. Specifically, $x_1 - x_4 = 0$ and $x_2 - x_3 = 0$ so (watch out for the sign changes) $x_1 = x_4$ and $x_2 = x_3$. This gives the solution vector

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_4 \\ x_3 \\ x_4 \end{bmatrix} = x_4 \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}.$$

for the eigenspace of $\lambda = 4$ is $\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix} \right\}$

Second, I'll do $\lambda = -4$:

So, a basis

$$A - (-4)I = \begin{bmatrix} 4 & 0 & 0 & 4 \\ 0 & 4 & 4 & 0 \\ 0 & 4 & 4 & 0 \\ 4 & 0 & 0 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

so we have two equations and two free variables. Specifically, $x_1 + x_4 = 0$ and $x_2 + x_3 = 0$ so (watch out for the sign changes) $x_1 = -x_4$ and $x_2 = -x_3$. This

gives the solution vector

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -x_4 \\ -x_3 \\ x_3 \\ x_4 \end{bmatrix} = x_4 \begin{bmatrix} -1 \\ 0 \\ 0 \\ 1 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ -1 \\ 1 \\ 0 \end{bmatrix}.$$

So, a basis for the eigenspace of $\lambda = -4$ is $\left\{ \begin{bmatrix} -1 \\ 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 1 \\ 0 \end{bmatrix} \right\}.$

(d) Find the diagonal matrix D and the matrix P for diagonalization.

Solution: (3 pts) The diagonal matrix is easy: $D = \begin{bmatrix} 4 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & -4 & 0 \\ 0 & 0 & 0 & -4 \end{bmatrix}$ (from the

eigenvalues). Some people prefer to put the -4's first. The order doesn't matter,

as long as you form *P* in the same order. The matrix *P* is formed by stacking up the eigenvectors: $P = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$.

Use the same order of eigenvectors as the order you used for eigenvalues in D.

- (e) Is A similar to D? Solution: (1 pt) Yes, because $A = PDP^{-1}$.
- (f) Produce an orthogonal diagonalization of A. That means find the matrices Dand P for an orthogonal diagonalization.

Solution: (3 pts) D is always the diagonal eigenvalue matrix, the same as in (d). For the new P we have to check whether the two eigenvalue bases in part (c) are orthonormal bases. Fortunately for us, the two eigenvectors in the $\lambda = 4$ basis are orthogonal and the two vectors in the $\lambda = -4$ basis are orthogonal. (If not, we have to do Gram-Schmidt on each set separately to get an orthogonal basis.) The eigenvectors for $\lambda = 4$ are orthogonal to those for $\lambda = -4$ by a theorem (or by checking; if they are not, you have a numerical error). Thus, we already have an orthogonal basis.

But we need unit vectors. Each basis vector in this example has norm $\sqrt{2}$. So, we divide each vector by $\sqrt{2}$, giving the orthogonal matrix

$$P = \begin{bmatrix} 1/\sqrt{2} & 0 & -1/\sqrt{2} & 0\\ 0 & 1/\sqrt{2} & 0 & -1/\sqrt{2}\\ 0 & 1/\sqrt{2} & 0 & 1/\sqrt{2}\\ 1/\sqrt{2} & 0 & 1/\sqrt{2} & 0 \end{bmatrix}.$$

- (g) Invert the matrix P from part (6f) without doing any computation. Solution: (3 pts) If you have a correct (i.e., orthogonal) matrix P in (f), then $P^{-1} = P^T$ so you only have to transpose.
- (h) (0 pts) Have you been to Diagon Alley? Did you see an eigenvector there? Solution: No, and no (speaking personally), but I hope to, one day.

(7) (10 points) Consider \mathbb{P}_2 , the polynomial vector space with basis $\mathcal{B} = \{p_1(t), p_2(t), p_3(t)\},$ where

$$p_1(t) = t^2$$
, $p_2(t) = t^2 + t$, $p_3(t) = t^2 + t + 1$.

Also, the vector space \mathbb{R}^2 with the standard basis $\mathcal{E} = \{\mathbf{e}_1, \mathbf{e}_2\}$, where

$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

(a) Find the coordinate vector, $[p(t)]_{\mathcal{B}}$, of p(t) = t - 2 with respect to the basis \mathcal{B} . Solution: (4 pts) You want to solve $t - 2 = c_1 p_1(t) + c_2 p_2(t) + c_3 p_3(t)$. The solution is

$$t - 2 = c_1 p_1(t) + c_2 p_2(t) + c_3 p_3(t) = c_1(t^2) + c_2(t^2 + t) + c_3(t^2 + t + 1)$$

= $(c_1 + c_2 + c_3)t^2 + (c_2 + c_3)t + c_3,$

so $c_1 + c_2 + c_3 = 0$, $c_2 + c_3 = 1$, and $c_3 = -2$. The solution is $c_1 = -1$, $c_2 = 3$, $c_3 = -2$, so the answer is $[p(t)]_{\mathcal{B}} = \begin{bmatrix} -1\\ 3\\ -2 \end{bmatrix}$.

(b) For the transformation $T : \mathbb{R}^2 \to \mathbb{P}_2$ given by the rule $T(a, b) = at^2 + (a+b)t - 2b$, find the matrix M of T with respect to the bases \mathcal{E} and \mathcal{B} .

Solution: (3pts) Theory says that $M = [[T(\mathbf{e}_1)]_{\mathcal{B}} [T(\mathbf{e}_2)]_{\mathcal{B}}]$ so you have to find $T(\mathbf{e}_1) = t^2 + t$ and $T(\mathbf{e}_2) = t - 2$. (3 pts) Then $M = [[t^2 + t]_{\mathcal{B}} [t - 2]_{\mathcal{B}}]$. Since $t^2 + t = p_2(t)$, we know $[t^2 + t]_{\mathcal{B}} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$. We know $[t - 2]_{\mathcal{B}}$ from part (a). So, $M = \begin{bmatrix} 0 & -1\\1 & 3\\0 & -1 \end{bmatrix}$.

(8) (10 points) A basis for \mathbb{R}^3 is $\mathcal{B} = \left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 2\\1\\1 \end{bmatrix} \right\}.$

Turn it into an orthonormal basis using Gram–Schmidt.

Solution: (Orthogonal basis: 9 points. Orthonormal basis: 10 points.) Let's call $\begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix}$

the vectors
$$\mathbf{b}_1 = \begin{bmatrix} 1\\0 \end{bmatrix}$$
, $\mathbf{b}_2 = \begin{bmatrix} 2\\0 \end{bmatrix}$, and $\mathbf{b}_3 = \begin{bmatrix} 1\\1 \end{bmatrix}$.
We start by constructing an orthogonal basis $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$.
First step: $\mathbf{u}_1 = \mathbf{b}_1 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}$.
Second step: $\mathbf{u}_2 = \mathbf{b}_2 - \frac{\mathbf{b}_2 \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 = \begin{bmatrix} 1\\2\\0 \end{bmatrix} - \frac{3}{2} \begin{bmatrix} 1\\1\\0 \end{bmatrix} = \begin{bmatrix} -1/2\\1/2\\0 \end{bmatrix}$. (You can simplify
this by multiplying by 2; but I won't in this solution.)
Third step: $\mathbf{u}_3 = \mathbf{b}_3 - \frac{\mathbf{b}_3 \cdot \mathbf{u}_1}{\mathbf{u}_1 - \mathbf{u}_1} \mathbf{u}_1 - \frac{\mathbf{b}_3 \cdot \mathbf{u}_2}{\mathbf{u}_1 - \mathbf{u}_1} \mathbf{u}_2 = \begin{bmatrix} 2\\1\\1\\-\frac{3}{2} \begin{bmatrix} 1\\1\\1\\-\frac{3}{2} \begin{bmatrix} 1\\1\\1\\-\frac{1}{2} \end{bmatrix} \begin{bmatrix} -1/2\\1/2\\1/2\\1 \end{bmatrix} = \begin{bmatrix} -1/2\\1/2\\1/2\\1/2\\1 \end{bmatrix}$

This gives an orthogonal basis. For the orthonormal basis we calculate norms: $\|\mathbf{u}_1\| = \sqrt{2}$, $\|\mathbf{u}_2\| = \frac{1}{\sqrt{2}}$, $\|\mathbf{u}_3\| = 1$. Thus, the orthonormal basis is

$$\Big\{ \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{bmatrix}, \begin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \Big\}.$$

Check (optional): Are the vectors orthogonal? Yes, all dot products are 0. Are they unit vectors? Yes. Yay!