TEST 3 FOR MATH 304-06, $11/25/19$ YOUR NAME

Show all the work or explanation necessary to justify the answer. Remember standard notation: for example, in \mathbb{R}^3 , \mathbf{e}_1 = $\sqrt{ }$ $\overline{}$ 1 0 0 1 | and so on, and $\mathbf{u} =$ \lceil $\overline{1}$ u_1 u_2 u_3 1 $\vert \cdot$ Please start each new numbered problem on a fresh page.

- (1) (4 points) State the Cauchy–Schwarz inequality.
- (2) (4 points) State the triangle inequality for vectors.
- (3) (8 points) Is the function $\langle \mathbf{u}, \mathbf{v} \rangle = u_1 v_2 + u_2 v_1$ an inner product on \mathbb{R}^2 ? Prove your answer. (Read carefully.)
- (4) (24 points) Consider the inner product $\langle \mathbf{u}, \mathbf{v} \rangle = 2u_1v_1 + 8u_2v_2$ on \mathbb{R}^2 .
	- (a) Find the norm of the vector $\mathbf{u} = (2, 1)$.
	- (b) Find a unit vector \hat{u} in the same direction as u .
	- (c) Find the distance between **u** and \mathbf{e}_1 .
	- (d) Find a basis for the orthogonal complement, W^{\perp} , of $W = \text{span}\{\mathbf{u}\}.$
	- (e) What is the orthogonal projection $proj_{W^{\perp}}$ **u**? If possible, solve without calculation.
	- (f) What is the orthogonal projection $proj_W(1, 0)$.
	- (g) Use $(1, 0)$ and the projection found in $(4f)$ to find a nonzero vector that is orthogonal to $proj_W(1,0)$.
- (5) (10 points) Let V be an inner product space (that is, a vector space with inner product \langle , \rangle). Prove that $\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$ for vectors in V if and only if $u \perp v$.

(6) (30 points) Consider the matrix
$$
A = \begin{bmatrix} 0 & 0 & 0 & 4 \\ 0 & 0 & 4 & 0 \\ 0 & 4 & 0 & 0 \\ 4 & 0 & 0 & 0 \end{bmatrix}
$$
.

- (a) Can A be orthogonally diagonalized? Explain why (or why not) in few words.
- (b) Find the eigenvalues of A and their multiplicities.
- (c) Find a basis for the eigenspace of each eigenvalue.
- (d) Find the diagonal matrix D and the matrix P for diagonalization.
- (e) Is A similar to D ?
- (f) Produce an orthogonal diagonalization of A. That means find the matrices D and P for an orthogonal diagonalization.
- (g) Invert the matrix P from part (6f) without doing any computation.
- (h) (0 pts) Have you been to Diagon Alley? Did you see an eigenvector there?

PLEASE TURN OVER FOR MORE! MORE! MORE!

(7) (10 points) Consider \mathbb{P}_2 , the polynomial vector space with basis $\mathcal{B} = \{p_1(t), p_2(t), p_3(t)\},$ where

$$
p_1(t) = t^2
$$
, $p_2(t) = t^2 + t$, $p_3(t) = t^2 + t + 1$.

Also, the vector space \mathbb{R}^2 with the standard basis $\mathcal{E} = {\bf{e}_1, e_2}$, where

$$
\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.
$$

- (a) Find the coordinate vector, $[p(t)]_B$, of $p(t) = t 2$ with respect to the basis B.
- (b) For the transformation $T : \mathbb{R}^2 \to \mathbb{P}_2$ given by the rule $T(a, b) = at^2 + (a+b)t-2b$, find the matrix M of T with respect to the bases $\mathcal E$ and $\mathcal B$.

(8) (10 points) A basis for
$$
\mathbb{R}^3
$$
 is $\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \right\}.$

Turn it into an orthonormal basis using Gram–Schmidt.