Test 3 for Math 304-06, 11/25/19 Your name _

Show all the work or explanation necessary to justify the answer. Remember standard notation: for example, in \mathbb{R}^3 , $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ and so on, and $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$.

Please start each new numbered problem on a fresh page.

- (1) (4 points) State the Cauchy–Schwarz inequality.
- (2) (4 points) State the triangle inequality for vectors.
- (3) (8 points) Is the function $\langle \mathbf{u}, \mathbf{v} \rangle = u_1 v_2 + u_2 v_1$ an inner product on \mathbb{R}^2 ? Prove your answer. (Read carefully.)
- (4) (24 points) Consider the inner product $\langle \mathbf{u}, \mathbf{v} \rangle = 2u_1v_1 + 8u_2v_2$ on \mathbb{R}^2 .
 - (a) Find the norm of the vector $\mathbf{u} = (2, 1)$.
 - (b) Find a unit vector $\hat{\mathbf{u}}$ in the same direction as \mathbf{u} .
 - (c) Find the distance between \mathbf{u} and \mathbf{e}_1 .
 - (d) Find a basis for the orthogonal complement, W^{\perp} , of $W = \text{span}\{\mathbf{u}\}$.
 - (e) What is the orthogonal projection $\operatorname{proj}_{W^{\perp}} \mathbf{u}$? If possible, solve without calculation.
 - (f) What is the orthogonal projection $\operatorname{proj}_W(1,0)$.
 - (g) Use (1,0) and the projection found in (4f) to find a nonzero vector that is orthogonal to $\operatorname{proj}_W(1,0)$.
- (5) (10 points) Let V be an inner product space (that is, a vector space with inner product \langle , \rangle). Prove that $\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$ for vectors in V if and only if $\mathbf{u} \perp \mathbf{v}$.

(6) (30 points) Consider the matrix
$$A = \begin{bmatrix} 0 & 0 & 0 & 4 \\ 0 & 0 & 4 & 0 \\ 0 & 4 & 0 & 0 \\ 4 & 0 & 0 & 0 \end{bmatrix}$$
.

- (a) Can A be orthogonally diagonalized? Explain why (or why not) in few words.
- (b) Find the eigenvalues of A and their multiplicities.
- (c) Find a basis for the eigenspace of each eigenvalue.
- (d) Find the diagonal matrix D and the matrix P for diagonalization.
- (e) Is A similar to D?
- (f) Produce an orthogonal diagonalization of A. That means find the matrices D and P for an orthogonal diagonalization.
- (g) Invert the matrix P from part (6f) without doing any computation.
- (h) (0 pts) Have you been to Diagon Alley? Did you see an eigenvector there?

PLEASE TURN OVER FOR MORE! MORE! MORE!

(7) (10 points) Consider \mathbb{P}_2 , the polynomial vector space with basis $\mathcal{B} = \{p_1(t), p_2(t), p_3(t)\},\$ where

$$p_1(t) = t^2$$
, $p_2(t) = t^2 + t$, $p_3(t) = t^2 + t + 1$.

Also, the vector space \mathbb{R}^2 with the standard basis $\mathcal{E} = \{\mathbf{e}_1, \mathbf{e}_2\}$, where

$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

- (a) Find the coordinate vector, [p(t)]_B, of p(t) = t 2 with respect to the basis B.
 (b) For the transformation T : ℝ² → ℙ₂ given by the rule T(a, b) = at²+(a+b)t-2b, find the matrix M of T with respect to the bases & and B.

(8) (10 points) A basis for
$$\mathbb{R}^3$$
 is $\mathcal{B} = \left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 2\\1\\1 \end{bmatrix} \right\}.$

Turn it into an orthonormal basis using Gram–Schmidt.