#5 here is corrected.

- (1) (5 points) What is the Cauchy–Schwartz Inequality? $|\langle \mathbf{u}, \mathbf{v} \rangle| \leq ||\mathbf{u}|| ||\mathbf{v}||.$
- (2) (0 points) What is the Cauchy–Schwartz Inequality used for? Many things.
- (3) (5 points) What is the Triangle Inequality (for vectors)? $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|bfv\|.$
- (4) (5 points) Prove that, if P is an orthogonal matrix and D is diagonal, then PDP^{-1} is symmetric.

(Explanation: A matrix A is symmetric when $A^T = A$. So, we test this with the matrix PDP^{-1} .)

Since P is orthogonal, $P^{-1} = P^T$. Thus, we want to know if $PDP^T = (PDP^T)^T$. $(PDP^T)^T = P^{TT}D^TP^T = PD^TP^T = PDP^T$

since a diagonal matrix is symmetric.

- (5) (20 points) In \mathcal{P}_2 , there is an inner product (nicknamed "Betsy") $\langle p(t), q(t) \rangle := p(-1)q(-1) + p(0)q(0) + p(1)q(1)$. The vectors $\mathbf{u}_1 = 1 = t^0$ and $\mathbf{u}_2 = t$ are orthogonal with respect to "Betsy". With respect to the inner product "Betsy",
 - (a) what is the orthogonal projection of $\mathbf{x} := t^2$ onto the subspace span $\{1, t\}$?
 - (b) what is the nearest point to \mathbf{x} in the same subspace, span $\{1, t\}$?

(Explanation: Part of the question is not to be confused by writing vector notation for a polynomial. Keep in mind that we are in a vector space whose vectors are polynomials. E.g., $t^0 = 1$ is a constant polynomial.)

(a) Use the standard formula for orthogonal projection. For that, the basis for $W = \text{span}\{1, t\}$ must be an orthogonal set. (That's why I told you 1 and t are orthogonal.) Then,

$$\operatorname{proj}_{W} \mathbf{x} = \frac{\langle t^{2}, 1 \rangle}{\langle 1, 1 \rangle} 1 + \frac{\langle t^{2}, t \rangle}{\langle t, t \rangle} t$$

Now compute the inner products. For instance, in $\langle t^2, 1 \rangle$ we have $p(t) = t^2$ and q(t) = 1.

$$\langle t^2, 1 \rangle = (-1)^2 (1) + (0^2)(1) + (1^2)(1) = 2, \langle t^2, t \rangle = (-1)^2 (-1) + (0^2)(0) + (1^2)(1) = 0, \langle 1, 1 \rangle = (1)(1) + (1)(1) + (1)(1) = 3, \langle t, t \rangle = (-1)(-1) + (0)(0) + (1)(1) = 2.$$

Substituting in the formula,

$$\operatorname{proj}_W \mathbf{x} = \frac{2}{3}\mathbf{1} + \frac{0}{\langle t, t \rangle}t = \frac{2}{3}.$$
 (That is a polynomial of degree 0.)

(b) The nearest point is the projection. Answer: $\frac{2}{3}$.

- (6) (25 points) In \mathbb{R}^3 , there is an inner product (nicknamed "Arthur") defined by $\langle \mathbf{u}, \mathbf{v} \rangle := 2u_1v_1 + 2u_2v_2 + (u_1 + u_3)(v_1 + v_3)$. Let $\mathcal{E} = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ be the standard basis for \mathbb{R}^3 .
 - (a) Which pairs of vectors in \mathcal{E} are orthogonal with respect to the inner product "Arthur"?
 - (b) Use Gram–Schmidt orthogonalization to turn \mathcal{E} into an orthogonal basis with respect to "Arthur".

(a) (You have to remember that $\mathbf{e}_1 = \begin{bmatrix} 1\\0\\0 \end{bmatrix}$, etc.) Use Arthur: $\langle \mathbf{e}_1, \mathbf{e}_2 \rangle = 2(1)(0) + 2(0)(1) + (1+0)(0+0) = 0,$ $\langle \mathbf{e}_1, \mathbf{e}_3 \rangle = 2(1)(0) + 2(0)(0) + (1+0)(0+1) = 1,$ $\langle \mathbf{e}_2, \mathbf{e}_3 \rangle = 2(0)(0) + 2(1)(0) + (0+0)(0+1) = 0.$

So $\mathbf{e}_1, \mathbf{e}_2$ are orthogonal, $\mathbf{e}_2, \mathbf{e}_3$ are orthogonal, but bfe_1, bfe_3 are not orthogonal.

(b) We'll construct an orthogonal basis $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$.

First, we take $\mathbf{u}_1 = \mathbf{e}_1$.

Next, we consider \mathbf{e}_2 . Since it is already orthogonal to \mathbf{u}_1 (which is \mathbf{e}_1) by part (a), we can use it as the next orthogonal basis vector: $bfu_2 = \mathbf{e}_2$.

Finally, we want \mathbf{u}_3 which is orthogonal to \mathbf{u}_1 and \mathbf{u}_2 . Since \mathbf{e}_3 is not orthogonal to both of them, we can't use it without modification. The vector we want for \mathbf{u}_3 is

$$\mathbf{e}_{3} - \left(\frac{\langle \mathbf{e}_{3}, \mathbf{u}_{1} \rangle}{\langle \mathbf{u}_{1}, \mathbf{u}_{1} \rangle} 1 + \frac{\langle \mathbf{e}_{3}, \mathbf{u}_{2} \rangle}{\langle \mathbf{u}_{2}, \mathbf{u}_{2} \rangle} \mathbf{u}_{2}\right)$$

$$= \mathbf{e}_{3} - \left(\frac{1}{3}\mathbf{u}_{1} + \frac{0}{2}\mathbf{u}_{2}\right)$$

$$= \begin{bmatrix} 0\\0\\1 \end{bmatrix} - \left(\begin{bmatrix} 1/3\\0\\0 \end{bmatrix} + \begin{bmatrix} 0\\0\\0 \end{bmatrix}\right)$$

$$= \begin{bmatrix} -1/3\\0\\1 \end{bmatrix}.$$

This last vector is the answer for \mathbf{u}_3 .

The basis we want is $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\} = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} -1/3\\0\\1 \end{bmatrix} \right\}.$