Version A	Version B
Let $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$, $D = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$, $E = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix}$.	Let $Z = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, $Y = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$, $X = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$, $W = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$, $V = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$.
1. (12 points) On the line provided for each part, write the letters of all matrices, $A - E$, which answer the question.If none of the matrices answer the question, write the letter N.No justifications are needed for this question.	1. (12 points) On the line provided for each part, write the letters of all matrices, $Z - V$, which answer the question.If none of the matrices answer the question, write the letter N.No justifications are needed for this question.
 (a) Which of the matrices have rank equal to 1? (a) <u>B,E</u> 	 (a) Which of the matrices have rank equal to 1? (a) <u>Z_X</u>
(b) Which of the matrices have nullity equal to 2? (b)B	(b) Which of the matrices have nullity equal to 2? (b) <u>Z.X</u>
(c) Which of the matrices have column space equal to \mathbb{R}^3 ? (c) <u>Conly</u>	(c) Which of the matrices have column space equal to \mathbb{R}^3 ? (c) Y.W
(d) Which of the matrices have row space equal to \mathbb{R}^2 ? (d)N	(d) Which of the matrices have row space equal to \mathbb{R}^2 ? (d)N
 (e) Which of the matrices can be a change of basis matrix? (e) <u>C only</u> 	(c) Which of the matrices can be a change of basis matrix? (e)
(f) Which of the matrices has $\mathbf{e}_1 - \mathbf{e}_2$ in its null space? (f) (f)	(f) Which of the matrices has $\mathbf{e}_3 - \mathbf{e}_1$ in its null space? (f) Z , X , V
Version A	Version B
2. (12 points) Let $S = \{1 + t, t + t^2, t^2 + t^3, 1 + t^3\}$ be a collection of vectors in \mathbb{P}_3 .	2. (12 points) Let $S = \left\{ \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ be a collection of vectors in $\mathbb{R}_{2 \times 2}$.
 (a) Is S a linearly independent set of vectors in P₃? Justify your answer. No. A possible dependence relation is (1 + t³) = (1 + t) - (t + t²) + (t² + t³). Alternate solution: Using coordinate vectors, row reduce the matrix 1 1 0 0 1 1 1 0 0 1 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 0 There is a dependence relation: The fourth vector is a linear combination of the other three vectors. (b) Does S span P₃? Justify your answer.	(a) Is <i>S</i> a linearly independent set of vectors in $\mathbb{R}_{2\times 2}$? Justify your answer. No. A possible dependence relation is $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Alternate solution: Using coordinate vectors, row reduce the matrix $\begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. There is a dependence relation: The fourth vector is a linear combination of the other three vectors.
No. The dependence relation above implies that the span of <i>S</i> is at most 3-dimensional. Since \mathbb{P}_3 is 4-dimensional, <i>S</i> cannot span \mathbb{P}_3 .	 (b) Does S span R_{2×2}? Justify your answer. No. The dependence relation above implies that the span of S is at most 3-dimensional.

Version A	Version B
6. (16 points) Consider the matrix $A = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 3 & 4 & 1 \\ 2 & 2 & 2 & k \end{bmatrix}$.	6. (16 points) Consider the matrix $B = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 3 & 4 & 5 & 2 \\ 3 & 3 & 3 & m \end{bmatrix}$.
(a) Determine an values of k such that (vul(4) is 2-dimensional.	(d) Determine an values of <i>m</i> such that Nu(<i>b</i>) is 2-unnetisional.
$A = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 3 & 4 & 1 \\ 2 & 2 & 2 & k \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -2 & 1 \\ 0 & 0 & 0 & k-2 \end{bmatrix}, k = 2 \text{ is the only solution.}$	$B = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 3 & 4 & 5 & 2 \\ 3 & 3 & 3 & m \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -2 & 1 \\ 0 & 0 & 0 & m -3 \end{bmatrix}. m = 3 \text{ is the only solution.}$
(b) For each value of <i>k</i> from part a, provide a basis for Nul(<i>A</i>).	(b) For each value of <i>m</i> from part a, provide a basis for Nul(<i>B</i>).
Row reduce to $\begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & -1 & -2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ Parameterize to get basis $\begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \\ 1 \end{bmatrix}$ $\begin{bmatrix} -2 \\ 1 \\ 0 \\ 1 \end{bmatrix}$	Row reduce to $\begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & -1 & -2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ Parameterize to get basis $\begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \\ 1 \end{bmatrix}$ $\begin{bmatrix} -2 \\ 1 \\ 0 \\ 1 \end{bmatrix}$
(c) For each value of k from part a, provide a basis for $Col(A)$.	(c) For each value of m from part a, provide a basis for $Col(B)$.
$\left\{ \begin{bmatrix} 1\\2\\2\\2\end{bmatrix}, \begin{bmatrix} 2\\3\\2\end{bmatrix} \right\} \text{ or equivalent.}$	$\left\{ \begin{bmatrix} 1\\3\\3\end{bmatrix}, \begin{bmatrix} 2\\4\\3\end{bmatrix} \right\} \text{ or equivalent.}$
Version A	Version B
7. (12 points) Let $A = \begin{bmatrix} 6 & 0 & 2 & 5 \\ 4 & 1 & 7 & 5 \\ 0 & 0 & 3 & 0 \\ 3 & 0 & 2 & 1 \end{bmatrix}$. Parts (b), (c), and (d) do not require any justification.	7. (12 points) Let $A = \begin{bmatrix} 2 & 9 & 0 & 3 \\ 0 & 1 & 0 & 0 \\ 1 & 7 & 3 & 4 \\ 3 & 5 & 0 & 2 \end{bmatrix}$. Parts (b), (c), and (d) do not require any justification.
(a) Compute det(A) using any valid technique(s) from the course.	(a) Compute det(A) using any valid technique(s) from the course.
det(A) = -27	$\det(A) = -15$
(b) Using your result from part a provide $det(A^{-1})$ if it exists, otherwise write DNE.	(b) Using your result from part a provide $det(A^{-1})$ if it exists, otherwise write DNE.
(b) $\frac{-1}{27}$	$\frac{-1}{15}$
(c) Using your result from part a provide det $(\frac{1}{2}A)$. Do not attempt to simplify your answer.	(c) Using your result from part a provide det $(\frac{1}{3}A)$. Do not attempt to simplify your answer.
-27	-15
(c) $\frac{\frac{2}{16}}{16}$	(c) <u>16</u>
(d) Using your result from part a provide $det(AA^T)$. Do not attempt to simplify your answer.	(d) Using your result from part a provide $det(A^TA)$. Do not attempt to simplify your answer.
(d) <u>(-27)² = 729</u>	(d) $(-15)^2 = 225$

