Consultation is fine, but no electronics, please.

A basis for
$$\mathbb{R}^3$$
 is $\mathcal{B} = \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 3\\2\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\1 \end{bmatrix} \right\}.$
(1) A vector $\mathbf{x} \in \mathbb{R}^3$ has the coordinate vector $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$. What is \mathbf{x} ?

(2) With the basis \mathcal{B} , what is the coordinate vector of $\mathbf{y} = \begin{bmatrix} 3\\4\\4 \end{bmatrix}$?

TURN OVER FOR MORE! MORE!

A basis for
$$\mathcal{P}_3$$
 is $\mathcal{D} = \{x^3, x^3 + 1, x^3 + x, x^3 + x^2\}.$
(3) A polynomial $p(x) \in \mathbb{P}_3$ has $[p(x)]_{\mathcal{D}} = \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}$. What is $p(x)$?

(4) What is the coordinate vector $[x^3 + x^2 + x + 1]_{\mathcal{D}}$?