Class Problem 1

 $\begin{vmatrix} 1 \\ 1 \end{vmatrix}$.

One purpose of this is to show you the difference between *finding the vector* given the coordinate vector (in 1, 3) and *finding the coordinate vector* given the vector (in 2, 4).

A basis for
$$\mathbb{R}^3$$
 is $\mathcal{B} = \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 3\\2\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\1 \end{bmatrix} \right\}$.
(1) A vector $\mathbf{x} \in \mathbb{R}^3$ has the coordinate vector $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$. What is \mathbf{x} ?
Solution. The coordinate vector tells us that
 $\mathbf{x} = 1 \begin{bmatrix} 1\\2\\3 \end{bmatrix} + 1 \begin{bmatrix} 3\\2\\0 \end{bmatrix} + 1 \begin{bmatrix} -1\\0\\1 \end{bmatrix} = \begin{bmatrix} 3\\4\\4 \end{bmatrix}$.
(2) With the basis \mathcal{B} , what is the coordinate vector of $\mathbf{y} = \begin{bmatrix} 3\\4\\4 \end{bmatrix}$?
Solution 1. (Trick method!) Since $\mathbf{x} = \mathbf{y}$, the coordinate vector is $[\mathbf{y}]_{\mathcal{B}} =$

Solution 2. Set $\mathbf{y} = c_1 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + c_2 \begin{bmatrix} 3 \\ 2 \\ 0 \end{bmatrix} + c_3 \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$ and solve. The augmented matrix is $\begin{bmatrix} 1 & 3 & -1 & | & 3 \\ 2 & 2 & 0 & | & 4 \\ 3 & 0 & 1 & | & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & | & 1 \\ 0 & 0 & 1 & | & 1 \end{bmatrix}$. So $c_1 = c_2 = c_3 = 1$ and the coordinate vector is $[\mathbf{y}]_{\mathcal{B}} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

TURN OVER FOR MORE! MORE!

A basis for \mathcal{P}_3 is $\mathcal{D} = \{x^3, x^3 + 1, x^3 + x, x^3 + x^2\}.$

(3) A polynomial
$$p(x) \in \mathbb{P}_3$$
 has $[p(x)]_{\mathcal{D}} = \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}$. What is $p(x)$?

Solution. From the coordinate vector we know that

$$p(x) = 1(x^3) + 0(x^3 + 1) + 1(x^3 + x) + 0(x^3 + x^2) = 2x^3 + x.$$

(4) What is the coordinate vector $[x^3 + x^2 + x + 1]_{\mathcal{D}}$?

Solution 1. Set up the equation: $(x^3 + x^2 + x + 1) = a_1(x^3) + a_2(x^3 + 1) + a_3(x^3 + x) + a_4(x^3 + x^2)$, which gives the polynomial equation

$$x^{3} + x^{2} + x + 1 = (a_{1} + a_{2} + a_{3} + a_{4})x^{3} + a_{4}x^{2} + a_{3}x + a_{2}.$$

Comparing coefficients,

$$a_1 + a_2 + a_3 + a_4 = 1,$$

 $a_4 = 1,$
 $a_3 = 1,$
 $a_2 = 1,$

so $a_1 = -2$ and the coordinate vector is

$$[x^3 + x^2 + x + 1]_{\mathcal{D}} = \begin{bmatrix} -2\\1\\1\\1\\1 \end{bmatrix} \in \mathbb{R}^4.$$

Reminder: A coordinate vector is always in some \mathbb{R}^n , never in any other vector space.

Solution 2. I noticed that $x^3 + x^2 + x + 1 = 1(x^3 + x^2) + 1(x^3 + x) + 1(x^3 + 1) - 2(x^3)$, so the coordinate vector is

$$[x^3 + x^2 + x + 1]_{\mathcal{D}} = \begin{bmatrix} -2\\1\\1\\1 \end{bmatrix} \in \mathbb{R}^4$$