Consultation is fine, but no electronics, please.

(1) (20 points) In \mathbb{R}^2 , one basis is $\mathcal{B} = \{ \begin{bmatrix} 3\\1 \end{bmatrix}, \begin{bmatrix} 1\\3 \end{bmatrix} \}$ and another basis is $\mathcal{C} = \{ \begin{bmatrix} 1\\-1 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix} \}$. Find the two basis change matrices $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ and $\underset{\mathcal{B} \leftarrow \mathcal{C}}{P}$.

(2) (10 points) Let $\mathbf{x} \in \mathbb{R}^2$. Use one of your basis change matrices to convert the coordinate vector $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 4 \\ -1 \end{bmatrix}$ to the coordinate vector $[\mathbf{x}]_{\mathcal{C}}$, without finding the vector \mathbf{x} .

TURN OVER FOR MORE! MORE!

(3) (20 points) In \mathbb{P}_2 , one basis is $\mathcal{E} = \{1, x, x^2\}$ and another is $\mathcal{A} = \{x + x^2, 1 + x^2, 1 + x\}$. Find the two basis change matrices $\underset{\mathcal{E} \leftarrow \mathcal{A}}{P}$ and $\underset{\mathcal{A} \leftarrow \mathcal{E}}{P}$. Hint: One of them is easy.